Эта удивительная подушка

Гильзин Карл Александрович

Часть 1. Плыви подушка! Катись, подушка!

 

 

Эра воздушных подушек

омните в «Мойдодыре» Чуковского:

И подушка, как лягушка, Ускакала от меня!

Но наша подушка плывет и катится всерьез. Ведь уговор был — без сказок.

Вы-то, наверное, думаете, что речь идет о подушке обыкновенной, на которой спим. Но разве на них свет клином сошелся?

Я уж не говорю о подушках, которые широко применяются в технике и служат вовсе не для того, чтобы на них спать. Инженеры — народ изобретательный и мыслящий весьма рационально: когда им приходится давать названия всяким машинам и сооружениям, то чаше всего они вообще ничего не придумывают.

Зачем зря ломать голову, если можно выбрать название из многих уже существующих?

Так, в технике можно встретить какое-нибудь «ухо», которое вовсе не слышит, «щеку», никогда не украшавшую ни одно лицо, и еще много другого в том же роде. Нетрудно обнаружить в самых разных вариантах и весь «постельный» комплект: «постель», на которой никто не спит, а располагаются части станка или слой какого-нибудь материала. «Одеяло», которым укрывают, например, растения, грунт или машины. И уж конечно, «подушку».

Подушке в этом смысле особенно повезло. Где только ее не встретишь! Бетонную или цементную — под зданием, из гравия и песка — под автомагистралью или железнодорожным полотном, водяную — на нее низвергаются потоки воды за плотиной гидроэлектростанции, резиновую — под точным станком или прибором, и еще разные подушки в десятках самых неожиданных мест.

Однако и самая обыкновенная подушка тоже не обязательно должна быть «пух-перо». Когда турист идет в поход с ночевкой, разве он берет с собой пуховую подушку? Другое дело — надувная резиновая подушечка, лучший друг странствующих. Легкая, места занимает мало, а надуешь — и спи себе на здоровье!

А почему она, собственно, резиновая? Сделана из резины? Но и обычная подушка изготовлена из ткани, а ее называют не тканевой, а пуховой. Значит, следовало бы говорить не «резиновая», а «воздушная» подушка, поскольку место пух-пера б ней занимает воздух.

Так мы встретились с героем нашей книги — воздушной подушкой, с которой связаны многие замечательные достижения научно-технической революции, очевидцами и участниками которой мы являемся. А перспективы использования воздушной подушки в будущем просто фантастичны: можно утверждать, что мы живем в эру воздушной подушки.

Звучит это неожиданно, но здесь нет преувеличения. Воздух, обыкновенный окружающий нас воздух выступает ныне во многих совершенно новых и исключительно важных качествах. Мы знаем, что без воздуха невозможна жизнь, что мы им дышим, он спасает от губительного солнечного и космического излучения, защищает как самое лучшее возможное одеяло (опять «одеяло»!) от космического холода и адской жары дневного солнца, что он источник неповторимого очарования окружающих нас красок и звуков…

В общем, многое известно о воздухе, даже его вес. Как подсчитала советская электронная машина, общий вес атмосферного воздуха равен 5157 триллионам тонн — огромная величина.

Но не всегда мы представляем себе, сколькими рабочими профессиями овладел в последние годы воздух, какие разные существуют из него изделия: автомашины, морские суда, туристские лодки, точнейшие станки, огромные здания, скоростные поезда, дирижабли, космические аппараты теперь часто строятся именно из… воздуха!

Если и не целиком, то их важнейшие части изготовлены из воздуха как конструкционного материала. Подобно тому, как состоит из него в основном резиновая надувная подушка — без воздуха нет и подушки!

Бывают выставки, все экспонаты которых изготовлены из одного материала, например чугуна или дерева. Пока еще не было выставки изделий, изготовленных в основном из воздуха. Но что мешает устроить подобную выставку… на страницах нашей книги?

Вы увидите немало любопытных экспонатов, но они будут лишь незначительной частью бесчисленной армии воздушных подушек, созданных человеком и верно ему служащих.

Если бы удалось с помощью какой-нибудь электронной машины подсчитать общее число всех существующих на свете воздушных подушек, то на долю каждого живущего на Земле человека, от грудных младенцев до старцев-долгожителей, пришлось бы их по многу сотен и даже тысяч! Чем не новая «подушечная» эра…

А ведь есть еще подушки, созданные не человеком, а природой, так сказать, естественные, и им тоже несть числа…

 

На все вкусы

Не все то просто, что кажется простым. Это относится и к подушке. Вот, например, недавно появилась специальная подушка против бессонницы. Ее создали японские инженеры по радиоэлектронике. Внутри нее размещен миниатюрный аппарат, имитирующий падение дождевых капель. И не просто создающий иллюзию дождя, но согласующий ритм падения капель с частотой пульсаций крови человека, в чем, по мнению инженеров, и заключается главный усыпляющий эффект.

А есть подушки, предназначенные специально для младенцев. Оказывается, обычная подушка таит в себе нешуточную угрозу их здоровью и даже жизни. Если во сне ребенок случайно повернется лицом вниз, уткнется носом в подушку, то может задохнуться. Существуют специальные строгие стандарты на безопасные подушки для малышей. В них устанавливается толщина, плотность и воздухопроницаемость. При испытании на соответствие этим требованиям через подушку просасывается воздух.

Иногда родители путешествуют вместе с грудными детьми. Тащить в дальний путь кроватку или коляску сложно. Гораздо удобнее воспользоваться надувной резиновой колыбелькой. Сложенная, она легко умещается в дамской сумке.

Новорожденные требуют постоянного наблюдения, особенно если ребенок болен или ослаблен. Иногда, например, у новорожденного по какой-то причине может прекратиться дыхание. Тут нужно самое срочное медицинское вмешательство. Эту непростую задачу в Англии решает воздушная подушка в союзе с электроникой: надувной матрасик для новорожденных изготовляется из нескольких отдельных секций, а каждая из них соединена трубкой с сигнальным прибором. Когда ребенок дышит нормально, давление воздуха в секциях колеблется, и прибор легонько тикает, как настольные часы. Стоит дыханию прекратиться, как давление воздуха в матрасике перестает колебаться и прибор начинает издавать резкие гудки, а сигнальная лампочка — непрерывно мигать. Теперь уже дело за врачами.

Не менее важна помощь, которую может оказать воздушная подушка взрослым, если они больны. Иной раз больному самое мягкое ложе доставляет мучения. Например, в случае тяжелых ожогов любое прикосновение к коже крайне болезненно. Или когда больной вынужден долго лежать неподвижно и от этого у него появляются пролежни.

Чтобы помочь больным, применяются специальные надувные подушки в виде бублика — их подкладывают под особенно болезненные участки тела, и они уже не соприкасаются с постелью. Используют и лечебные надувные матрацы — они состоят из отдельных секций, каждая из которых надувается по-своему: давление воздуха в них разное, чтобы больному было удобнее лежать.

Каких только не бывает надувных матрацев! В США появилась мода на «водяные постели» — своеобразные «родственники» надувных матрацев. Наполняются они не воздухом, а нагретой водой. Говорят, что на подобной постели чувствуешь себя, как на морских волнах. По мнению других, появляется ощущение невесомости, как в космическом полете. Но уж если оболочка разорвется, то в доме произойдет настоящее наводнение.

На Олимпиаде в Мюнхене в 1968 году огромный надувной матрац помогал здоровым, но очень уставшим людям, спортсменам-многоборцам. После соревнований они отдыхали на матраце, отлеживались, дышали кислородом.

Надувной матрац — верный друг туристов, путешественников, рыбаков, всех, кто не ночует дома. Есть матрац — есть и ночлег!

Отличную службу служат надувные матрацы отдыхающим на воде — на море, реке, озере. И на пляже лежать удобно, и в воде матрац доставляет большую радость. Взгляните на какой-нибудь пляж: сколько разноцветных надувных матрацев расцвечивает золотой песок и синюю воду! Есть матрацы и посложнее, например с пластмассовым прозрачным окошечком снизу, чтобы можно было разглядывать подводных обитателей.

 

Флибустьеры надувают корпуса

«Плыви, подушка!» — воскликнули ученые, когда для изучения морских течений вблизи Эфиопии выпустили в воды Красного моря пятьдесят тысяч небольших надутых пластмассовых мешочков.

Самые распространенные плавающие воздушные подушки — обычные надувные лодки. Они, пожалуй, и самые древние: в Британском музее есть наскальный рисунок давностью более двух с половиной тысяч лет, он изображает переправу через реку на надувных шкурах животных.

Впрочем, этот способ передвижения по воде не совсем потерял своего значения и теперь. В Средней Азии, например, до сих пор используют так называемый сал — своеобразный плот из специально выделанных надутых бычьих шкур. Сравнительно недавно, в годы первых пятилеток, основные грузы вниз по бурной реке Вахш сплавлялись на салах. Автомобильных дорог тогда не было. И в наше время некоторые грузы перевозят именно так, хотя профессия плотогонов (салчи) становится редкой, и скоро уже никто не будет знать, как делают сал.

Надувные лодки вызывают в последнее время все больший интерес, происходит своеобразный лодочный бум… Для хранения надувной лодки, вроде наших «Дельфина» или «Ветерка», не нужно никакого гаража или ангара, подойдет и обычный домашний шкаф или багажник автомобиля. Надувные лодки доступны поистине всем, их плавные, гладкие формы не грозят ушибами, порезами, занозами. В общем, удобны!

При желании можно установить на лодке и движок, тогда она сможет мчаться по водной глади со скоростью в десятки километров в час.

По данным нашей печати, каждый пятый советский турист имеет надувную лодку. А ведь число туристов теперь исчисляется у нас миллионами. Все больше людей предпочитает отдыхать именно так, активно, на природе. И правильно предпочитает. В общем, теперь шутят: «Флибустьеры надувают корпуса».

Надувные лодки нужны не только туристам и рыбакам, но и спортсменам, ученым, геологам, да мало ли еще кому. И плавают они вовсе не по одним лишь рекам и озерам.

В 1952 году на резиновой надувной лодке молодой врач француз Ален Бомбар пересек Атлантический океан от Канарских островов до Антил. Он плыл шестьдесят пять суток! Потом появилась книга Бомбара «За бортом по своей воле». Действительно, это было добровольное и очень тяжелое испытание с целью показать, что в самых, казалось, безнадежных ситуациях человек все же может победить. А уж куда хуже — оказаться в океане после кораблекрушения в спасательной надувной лодке, без запасов пищи и воды. Обычно именно так случается, когда пассажиры в панике покидают тонущий корабль.

Смелые, мужественные люди сумеют спастись и тут, а трус, нытик, паникер погибнет.

Бомбару пришлось нелегко, он похудел на двадцать пять килограммов, у него выпали ногти, ослабло зрение. Питался он только планктоном — микроскопической живностью моря, пил дождевую воду и жидкость, высасываемую из рыб. Но все же достиг берега! А ведь здоровье у него было весьма неважное. «Конечно, я немало сбавил в весе, но в живых-то остался!» — заявил отважный путешественник. Не зря он назвал свою лодчонку «Еретик» — его подвиг казался явным вызовом существовавшим представлениям.

У Бомбара нашлись последователи. В 1969 году трое смельчаков-итальянцев на надувной лодке «Челеуста» пересекли за семьдесят дней Тихий океан от Перу до архипелага Туамоту.

В 1972 году шестеро японцев на надувной лодке отправились с острова Окинава на остров Кюсю с намерением пройти за четырнадцать ходовых дней примерно тысячу километров. И здесь цель похода была научной — установить, сколько дней человек может утолять жажду одной лишь горько-соленой морской водой.

В 1973 году четырнадцать советских исследователей на семи надувных лодках за шесть дней пересекли с севера на юг Аральское море. Каждый из участников этого эксперимента получал в сутки только сорок девять небольших конфеток и пол-литра воды.

Есть надувные суда и побольше, предназначенные для открытого моря. В Англии, например, катамаран на двух больших надувных поплавках «Сиклир» имеет длину около шестнадцати метров. Это уже «деловой» корабль, он используется для контроля за чистотой моря и борьбы с его загрязнением.

В минувшую войну армии воюющих стран использовали много различных надувных судов, и сейчас они широко применяются.

Используются надувные суда, и весьма успешно, многими научными экспедициями. Например, когда путешественник и кинорежиссер Анри Берни возглавил научную экспедицию по исследованию реки Комоэ в Западной Африке, то было решено отправиться вниз по реке на надувных лодках. Экспедиции не повезло. Однажды, когда лодки, до предела нагруженные имуществом экспедиции, быстро плыли по реке, неожиданно раздался страшный рев. Лодки были атакованы… бегемотами! Их добычей стали две лодки, кинофотоаппаратура, другое снаряжение. К счастью, из путешественников никто не пострадал. На последней уцелевшей лодке экспедиция двинулась дальше, к устью Комоэ.

Когда настоящей надувной лодки, байдарки или плота нет, изобретательные путешественники могут выйти из положения с помощью известной доли находчивости. Часто помогают, например, надутые камеры от баскетбольных и других мячей или автомобильных шин.

Вот как поступили некоторое время назад географы Московского университета, чтобы отправиться в недалекое водное путешествие. Они придумали оригинальное судно — шароплав, — что-то вроде складного треножного стула, укрепленного на нескольких надутых баскетбольных камерах[Как самому построить шароплав, рассказано в журнале «Техника — молодежи», 1955, № 6].

Иногда водные туристы, плывущие на обычных байдарках, легко превращают их в непотопляемые: для этого они набивают нос и корму байдарки надутыми баскетбольными камерами.

С помощью камер можно построить и оригинальный водный велосипед на поплавках, который получил название «велоласт»[Как это сделать, можно прочесть в журнале «Юный техник», 1957, № 6.]. Велосипедная рама устанавливается на площадке-настиле, укрепленном на двух поплавках, а педали приводят в движение два ласта, которые и движут велоласт. Поплавки представляют собой набитые баскетбольными камерами чехлы-мешки.

В Японии водный велосипед (его там называют «аквапед») сделали из обычного велосипеда и четырех автомобильных камер. Даже из одной автомобильной камеры и то можно соорудить своеобразную лодку для рыболовов, только удить в ней придется стоя.

В общем, если вы попробуете летом соорудить себе какой-нибудь оригинальный водный экипаж с помощью простейших воздушных подушек, то получите огромное удовольствие [Еще один совет — как построить небольшой катамаран, лодку на двух поплавках, заполненных баскетбольными камерами, — можно найти в журнале «Техника — молодежи», 1973, № 8.].

Поплавки, несущие на себе более «серьезные» экипажи, вроде упоминавшегося английского «Сиклира», устраиваются, конечно, иначе. Широко применяются поплавки для вертолетов, садящихся как на сушу, так и на воду. Снабжен ими и советский одноместный вертолет Ка-10, его поплавки — два прорезиненных надувных баллона.

 

Отчего они не тонут?

Уместно задать каверзный вопрос: отчего все-таки плавают, а не тонут все эти надувные матрацы, лодки, камеры, поплавки?

Наверное, большинство ответит: потому, что они легче воды. И будут совершенно правы. А кто постарше, вспомнит при этом закон Архимеда, и будет еще более прав.

Жаль, конечно, что закон Архимеда уже открыт, иначе, пожалуй, его мог открыть и кто-нибудь из нас. Но только пытливому уму дано увидеть скрытый смысл явлений. По легенде, купание в ванне привело Архимеда к открытию его закона.

Разумеется, плавали в воде и до Архимеда, но вот объяснить, почему тела плавают и, главное, рассчитать возможную величину груза на лодке или корабле без закона Архимеда нельзя. Теперь любой старший школьник знает, что тело, погруженное в жидкость, теряет в своем весе ровно столько, сколько весит вытесненная им жидкость. Тело становится легче. Если оно и без того мало весит, как надувная лодка, то стоит совсем немного погрузить его в воду, чтобы вес вытесненной телом жидкости стал равным весу самого тела. Оно окажется как бы невесомым! Лодка поплывет, а не пойдет ко дну.

А если попытаться погрузить лодку глубже? С лодкой, правда, это трудно, но вот рядом с ней плавает надутая баскетбольная камера, попробуем надавить на нее. Чтобы удержать камеру под водой, нужна немалая сила. Вырвалась! И сразу же пулей вылетела из воды.

Ясно, почему. Вес вытесненной воды стал больше веса камеры. Она «потеряла» в весе больше, чем весит сама. Значит, на камеру стала действовать подъемная сила. Величину силы, которую называют архимедовой, найти просто — она есть разница в весе вытесненной воды и камеры. Чем больше камера и чем она легче, тем значительней подъемная сила.

Как поднимают со дна моря затонувшее судно? Сначала под него подводят металлические понтоны — тонкостенные бочки. Потом сверху по шлангам подают в них сжатый воздух. Он вытесняет воду и образующиеся таким образом воздушные подушки (на этот раз — в металлической оболочке) выталкивают корабль на поверхность воды.

Понтоны не обязательно должны быть металлическими, их можно сделать и надувными. В ФРГ применяется аварийный понтон в виде огромного надувного матраца длиной тридцать метров. В Англии надувные шары используют для подъема со дна морского затонувших… сокровищ, поиски которых стали в последнее время страстью многих искателей счастья. Поиски сокровищ знаменитой «Непобедимой армады» — погибшей в бурю у берегов Ирландии в 1588 году большой эскадры испанских кораблей, направленной против Англии Филиппом 11 Испанским, — ведутся не только с помощью подобных шаров, но и с борта нескольких надувных лодок.

В Венгрии изобрели хитрый способ подъема судов, затонувших на особенно большой глубине. Подавать сильно сжатый воздух в понтоны на такую глубину сложно, поэтому авторы нового способа предложили заполнять их водородом (очень легким и потому выгодным в данном случае газом), получаемым на дне. Если подействовать на морскую воду электрическим током (провода-то спустить на дно куда проще!), она разлагается на газообразные водород и кислород. Они и заполняют воздушные подушки для подъема корабля.

В последнее время в США аналогичным способом пытаются поднимать затонувшие учебные торпеды. К торпеде прикрепляются надувной баллон и прибор, носящий название газогенератора — он образует (генерирует) в результате химической реакции газы для заполнения баллона. Но как прикрепить это хитроумное устройство к торпеде, лежащей на большой глубине? Американцы пытаются приспособить для этой цели… китов. Утверждают, что наиболее подходящими оказываются киты-гринды. Остается только их дрессировать…

Начинают применять воздушные подушки и для более важной цели — в строительстве магистральных трубопроводов. В наше время нефть и газ стали важнейшим сырьем промышленности. Если хотите представить себе ужасную картину полной катастрофы на Земле, вообразите на мгновение, что нефти и газа больше нет, все израсходовано. Как для живого организма необходима непрерывная циркуляция крови, так нужна подобная система промышленности — по ней должны транспортироваться нефть и газ.

Тысячи судов-танкеров, сотни тысяч железнодорожных цистерн служат для перевозки нефти и газа. Но потребность в них быстро возрастает, и в помощь обычному транспорту их стали перекачивать по огромным трубам, диаметром в человеческий рост. Магистральные нефте- и газопроводы опутали весь земной шар, пересекая реки и пустыни, ущелья и горы, проходя по дну морей и океанов. Строятся все новые, и не без помощи воздушной подушки.

Часто бывает нужно поднять со дна требующий ремонта участок трубопровода. Как и в случае затонувших судов, это могут с успехом сделать воздушные подушки. Такие случаи бывали.

Когда нужно проложить трубопровод по дну реки, обычно сначала его протягивают через реку на плаву, а потом опускают на дно. Как правило, плавучесть трубопровода создается с помощью металлических тонкостенных барабанов, но можно применить и надувные подушки. В Англии для этого используются мешки диаметром полметра. Плавно меняя давление в мешках, можно регулировать скорость опускания трубопровода на дно и даже, при необходимости, снова поднять его.

Во время маневров или военных действий нужно, например, переправить автомашину через реку. Наводить понтонный мост долго, да и для одной машины дорого. Поэтому за рубежом иногда используют специальный «колокол» из аэростатной ткани. Сложенный, он занимает мало места, а при необходимости его быстро надувают, внутри него автомашину подвешивают на тросах и переправляют на противоположный берег.

Можно переправить машину и иначе — не внутри воздушной подушки, а снаружи. Надувной паром может быть подготовлен к использованию за считанные минуты.

 

Зачем рыбе пузырь?

В Латвии есть озеро Илзиня, ничем, кажется, не выделяющееся из множества прибалтийских озер, если бы не расположенный на нем остров. Озерными островами тоже удивить трудно, но этот небольшой остров действительно особенный: он движется. Почему покрытый кустарником и травой остров не тонет? Что превращает его в своеобразный корабль? Воздушная подушка. Остров состоит из торфяного грунта, некогда оторвавшегося от дна, и воздух, а также метан и другие газы, образующиеся при гниении, создают подушку.

Плавающие острова есть на Оби, в Рыбинском море и в других местах.

Как и следовало ожидать, исключительно велика роль плавающей воздушной подушки в живой природе. Ведь столько разнообразных существ живет в воде или так или иначе связаны с ней.

Воздушная подушка рыб — плавательный пузырь — доставляет им немало хлопот: то накачивай пузырь воздухом, то выпускай его. Но зато сколько пользы он приносит!

Пузырь нужен рыбе главным образом для того, чтобы она могла плавать на разных глубинах — ведь давление воды с увеличением глубины увеличивается. Держаться в толще воды без дополнительных движений рыбе и помогает плавательный пузырь. Меняя количество газов в нем, рыба выравнивает давление в пузыре при изменении давления окружающей воды.

Плавательный пузырь рыбы при ее подъеме и спуске то автоматически пополняется газами, которые рыба извлекает из воды или из собственных тканей, то освобождается от них. Эти газы обычно близки по составу к воздуху, но иногда довольно сильно отличаются от него.

Если пузырь соединен с кишечником (например, у щуки, сельди, лосося, сома), то газы выходят через рот в воду. Когда всплывает стая подобных рыб, то сначала из глубины появляется множество пузырьков воздуха. Рыбаки в Адриатическом море говорят: «Пена появилась — сейчас появятся и сардины!»

В случае герметичного пузыря (например, у кефали, наваги, трески) газы сначала поступают в кровь, а уж потом через жабры выводятся в воду. Это, конечно, происходит медленнее, и такие рыбы всплывают не столь быстро. Если вытащить кефаль с большой глубины, то пузырь, давление в котором еще велико, распирает тело рыбы, она раздувается и сама становится вроде пузыря. У акул, которым приходится часто и резко менять глубину плавания, например, в погоне за добычей, плавательного пузыря вообще нет — им он мешал бы.

Есть у плавательного пузыря еще одна важная работа — он измеряет давление окружающей воды. Рыбе нужно знать, на какой глубине она находится — у каждого вида рыб свои излюбленные глубины, где больше пищи и приятнее условия. С помощью пузыря рыба воспринимает самые незначительные колебания давления, например изменение атмосферного давления перед грозой.

Большинство рыб использует плавательный пузырь и как орган слуха. Они слушают сначала животом: пузырь усиливает даже слабые звуки, распространяющиеся в воде, и уже потом они передаются во внутреннее ухо, в голову рыбы.

И пузырем же многие рыбы разговаривают. Старая поговорка «Нем как рыба» уже давно опровергнута наукой: рыбы весьма болтливы. Большинство рыб, оказывается, чревовещатели: они «разговаривают», не открывая рта! Пузырь служит как бы барабаном — рыба ударяет по нему то особыми мышцами, то плавниками, а то и специальной косточкой, вроде палочки барабанщика.

Чем больше барабан, тем басовитей его «голос». Маленькие рыбки попискивают, а большие-басят. И вот что странно: рыбы-самки обычно «беседуют» реже и тише, у них барабанные мышцы развиты слабее. Так что, по одному остроумному замечанию, в отличие от людей, у судаков «судачат» в основном отцы семейства…

Не все издаваемые рыбами звуки исходят из пузыря. У некоторых рыб пузыря вообще нет, а «разговаривают» они вовсю.

Пока никто не знает, почему и как эти рыбы издают звуки: бычки рычат и квакают, белуги ревут…

И еще одно важное свойство пузыря не так для самой рыбы — хозяйки пузыря, как для других рыб. Когда рыба гибнет — попадает в зубы хищнику, в сеть или на крючок рыболова, то она извивается, трепещет, и ее пузырь, сильно сжимаясь, издает как бы крик боли, предупреждающий других рыб об опасности. Рыба горбыль, например, кричит так, что за двести метров слышно.

Пузырь служит для издавания звуков не только у рыб. Есть подобный пузырь — он так и называется «голосовым» — у самцов лягушек. Если это наземная лягушка, то пузырь находится внутри тела, если водяная, то снаружи, по бокам головы. Ну и страшилищем выглядит лягушка, когда эти пузыри надуваются!

Пузырь некоторым рыбам служит и для дыхания: они заглатывают в него атмосферный воздух, хотя, как и все остальные рыбы, они жабрами извлекают кислород, растворенный в воде. И если такая рыба не успеет наполнить свой пузырь воздухом, когда высунет голову из воды (она делает это регулярно, обычно через один — три часа), то она утонет.

«Запасенным» воздухом дышат не только рыбы, но и некоторые насекомые. Например, жук-плавунец запасает атмосферный воздух в дыхательных трахеях и специальных пузырьках под надкрыльями и дышит этим воздухом под водой. Природа позаботилась и о том, чтобы жук мог жить под водой долго — например, зимой подо льдом. Запасенный жуком пузырек воздуха, покрывающий его дыхальца, служит своеобразными жабрами: по мере расходования кислород поступает в пузырек из окружающей воды, а углекислый газ, наоборот, отводится в воду — ведь он растворяется в воде в тридцать раз лучше, чем кислород.

 

Подушка спасает утопающих

Частенько случается, что люди оказываются в воде против своей воли. Или залезают в воду добровольно, а выбраться из нее собственными силами как-то не могут. И тонут.

Бывает некому даже бросить спасательный круг, так что остается надежда на собственные силы или на технику.

От тонущего многого требовать нельзя, ему не до сложных операций и процедур, так что на помощь должна прийти автоматика в союзе с воздушной подушкой. Создано множество автоматических и полуавтоматических воздушных подушек, призванных спасти жизнь тонущим.

Есть, например, спасательный круг, легко умещающийся в кармане: надувающаяся оболочка из пленки и баллончик с углекислым газом общим весом всего сто пятьдесят граммов. Стоит проколоть свинцовый колпачок баллона имеющейся в комплекте иголкой — и круг надувается.

Есть купальный костюм, вполне заменяющий при необходимости спасательный круг: нажатие на кнопку — и костюм раздувается газом из баллончика так, что может удержать человека на плаву. Если даже тонущий потеряет сознание, не успев нажать на спасительную кнопку, за него это сделает автомат — он срабатывает под действием давления воды.

Самое широкое применение получили надувные спасательные жилеты. Эта архаическая и, в общем, не очень-то нужная деталь мужского туалета стала совершенно обязательной для всех яхтсменов и других спортсменов, которым каждый миг грозит неожиданным купанием. Жилеты делаются кричаще яркими, обычно оранжевого цвета, чтобы легче было их заметить на воде.

Спасательные жилеты, которыми снабжают пассажиров трансокеанских воздушных и морских лайнеров (для этого они и были впервые применены), надуваются не ртом, а нажатием на кнопку или рычажок. Сжатый газ, обычно углекислый, из небольшого баллончика за считанные секунды наполняет жилет, имеющий несколько отдельных секций-камер, так что прокол одной из них не страшен.

Есть жилеты, надувающиеся автоматически при попадании в воду.

Чтобы пловец держал голову высоко над водой и не захлебнулся при потере сознания, некоторые жилеты снабжаются своеобразным стоячим воротником — жабо. Еще одна ненужная старинная деталь туалета оказалась полезной. Странное сочетание жилета с жабо однажды сослужило службу дельфину. Когда в американском городе Галвестоне (в штате Техас) любимец публики дельфин Пегги заболел воспалением легких, то ветеринарный врач надел на него такой спасательный жилет, чтобы дельфин мог держать голову над водой.

Существуют и другие приспособления для спасения утопающих, некоторые из них занимают совсем мало места, например браслет — он весит всего сто двадцать граммов, а при необходимости автоматически надувается и может поддерживать человека на воде до двух суток; или шарик, который легко бросить тонущему на расстояние до шестидесяти метров, предварительно потянув за шнур, и уже за три секунды он автоматически надувается в спасательный круг диаметром более полуметра и даже выбрасывает якорек, чтобы избежать сильного дрейфа.

У нас в стране работает Лаборатория новых видов спасания на водах. Ею, в числе других средств, создана спасательная перчатка, которую бросают тонущему (так что выражение «бросить перчатку» приобретает совсем иной смысл!). Она мгновенно надувается, заполняясь парами фреона — легкокипящей жидкости, применяющейся в обычных домашних холодильниках, — и удерживает человека на плаву. Фреон лучше для надувных спасательных средств, чем воздух или углекислый газ: при его испарении объем возрастает в шесть тысяч раз, так что крохотной ампулы достаточно для заполнения большого спасательного круга.

Разработан лабораторией и миниатюрный надувной спасательный плотик, который сам стремглав мчится к утопающему. Для этого он снабжается небольшим реактивным двигателем и превращается в реактивный мини-катер. Плотик соединяется двумя тонкими, длиной по сто метров, резиновыми шлангами с баллоном сжатого воздуха, находящимся на берегу. Стоит открыть доступ воздуха из баллона в плот, как давление в нем повышается, и воздух устремляется из плота наружу через отверстия в корме, подобно газам из настоящего реактивного двигателя толкая плотик вперед. Управление им производится с берега подачей воздуха то по одному, то по другому шлангу. И вот уже плотик прибыл к месту назначения, тонущий спасен!

Спасательный пояс или жилет не очень-то помогут в холодной воде, поэтому изобретают более сложные спасательные костюмы, плоты, палатки.

Шесть часов провел в ледяной воде шведский журналист Рольф Андерссон, испытывая новый надувной спасательный костюм. Шел снег, дул сильный ветер, но он не замерз — костюм сделан из толстой резины и подбит нейлоновым мехом.

В надувных плотах-палатках[Как сделать самому плот-палатку, можно прочесть в журнале «Знание — сила», 1958, № 5.] человеку не холодно в самую мерзкую погоду и лаже довольно уютно. Есть плоты-палатки, рассчитанные на нескольких, иногда до двадцати, человек. Обычно такой плот при сбрасывании с борта, а сбросить его легко может один человек, надувается углекислым газом за считанные минуты, а то и секунды. Плоты могут быть снабжены радиостанцией, автоматически сообщающей о местонахождении плота, чтобы поскорее организовать поиск и спасение, электрогенератором для питания рации и освещения, краскометами, окрашивающими воду в красный цвет для обнаружения с воздуха, опреснителями морской воды и еще многим другим.

На таком плоту в испытательном дрейфе в течение пяти дней в Черном море находилась группа моряков специальной экспедиции «Грот». Их задачей было доказать скептикам, а недостатка в них, признаться, не было, что надувные спасательные плоты, выпускаемые нашими заводами (это был именно серийный, а не специальный плот), великолепно служат при кораблекрушениях. А заодно и проверить состояние людей при вынужденном путешествии на плоту.

В марте 1972 года раздалась команда: «Плот за борт!» — и в воду полетел тугой сверток. Едва коснувшись поверхности воды, сверток развернулся и, надуваясь, автоматически стал превращаться в плот-палатку. В нее спустились шесть испытателей. Вскоре ярко-оранжевая палатка удалилась от экспедиционного корабля, люди остались одни в штормующем море. Но палатка, снабженная наружным электрическим освещением и радиолокационным отражателем, чтобы ее легче было обнаружить, не испугалась шторма — волны не способны ее перевернуть, они перекатываются через тент. В палатке сухо и тепло, прорезиненные полотнища плотно закрывают вход.

Для маленьких пассажиров есть спасательный плот-люлька, надувающийся углекислым газом из баллончика и защищающий ребенка и от удара о воду, и от холода. В люльке имеются ремни для подвешивания маленького пассажира, вентиляция, электрическое освещение от батареи, действующей при контакте с водой, и даже небольшое наблюдательное окошечко.

В общем, все удобства!

 

Со слона на салазках

В современных реактивных лайнерах двери для входа и выхода пассажиров находятся на высоте нескольких метров от земли. Вы никогда не бывали в аэропорту, не видели, как подъезжает к самолету трап? Этакая махина высотой в дом. А если вынужденная посадка? Придется обходиться без трапа и выпрыгивать из самолета кто как умеет, и как можно быстрее.

Опыт гражданской авиации свидетельствует, что большая часть всех аварий самолетов происходит не в воздухе, а на земле. Бывает, люди гибнут только потому, что не сумели вовремя выбраться из горящего самолета. Особенно опасен взрыв топлива, а он может произойти вскоре после падения. Здесь дороги мгновения. Но даже если двери не заклинило и их удалось открыть, как справиться с эвакуацией десятков, а то и сотней пассажиров из самолета за эти самые мгновения?

Не всякий решится спрыгнуть с высоты второго-третьего этажа.

А раздумывать и готовиться долго не приходится.

Теперь на каждом пассажирском самолете обязательно есть аварийный надувной трап. Сложенный и покрытый чехлом, он лежит в специальном отсеке вместе с баллоном, в котором находится сжатый углекислый газ или воздух. Когда нужно, трап выбрасывают из люка, надувают, и по нему, как с ледяной горки на салазках, один за другим скатываются пассажиры.

Для удаления пассажиров из самолета с помощью надувного трапа требуется всего одна-две минуты. Но увы, обычно больше времени приходится тратить, чтобы подготовить трап. Ведь нужно выхватить его из отсека, где он хранится, прикрепить его лямки к самолету, броситься назад к баллону с газом, открыть его вентиль, и только тогда трап надувается и путь из самолета открыт.

При аварии сэкономленные секунды могут спасти жизнь многим людям.

Особенно сложно эвакуировать пассажиров из новейших гигантских воздушных лайнеров, на борту которых сотни пассажиров. За рубежом эти самолеты часто называют «джамбо», что может быть переведено как «большой слон». Для них разработаны специальные сдвоенные надувные трапы, чтобы скатываться могли сразу двое. Есть усовершенствованные трапы — с встроенным освещением на случай ночной эвакуации, трап в виде лестницы — он сделан полностью закрытым и огнеупорным, чтобы не был страшен пожар. Этот трап может служить и спасательным плотом.

С успехом применяются надувные трапы и для экстренного удаления рабочих с морских нефтяных буровых вышек, иной раз с высоты тридцати метров.

Воздушная подушка успешно спасает пассажиров, но в состоянии ли она спасти сам летательный аппарат?

Случается, что вертолет, не снабженный поплавками, все же вынужден совершить посадку на воду. Его ждет печальная участь — за считанные мгновения вертолет утонет. Если не поможет воздушная подушка. Специальное автоматическое аварийное устройство на шасси вертолета при первом же контакте с водой мгновенно, менее чем за секунду, надувает большие шары-поплавки. И вот уже вертолет качается на волнах.

Сложнее дело с самолетом, его спасти обычно не удается, но жизнь летчиков — обязательно. На некоторых военных самолетах в случае необходимости покинуть самолет катапультируется не летчик, как обычно, а вся кабина с экипажем. Может быть, в будущем это станет правилом не для одних лишь военных самолетов. Отделившаяся от самолета кабина опускается на парашюте.

Если катастрофа происходит над океаном, то гибель людей неизбежна — кабина утонет.

На одном из новых американских истребителей кабина снабжена целым набором надувных спасательных камер. Одни из них смягчают, амортизируют удар о воду, другие создают плавучесть, третьи обеспечивают нужное положение в воде, чтобы кабина не плавала «вверх ногами». Много часов сна может качаться на волнах, пока не прибудет вызванная по радио спасательная экспедиция. Самая большая из всех аварийных подушек, та, что служит для смягчения удара о воду, в надутом состоянии имеет объем почти два кубических метра, а в сложенном представляет собой небольшой пакет вроде книги.

Не обойтись без воздушной подушки и космонавтике. О том, как она помогает добраться из космоса до Земли, речь пойдет в третьей части книги, а сейчас — о последних мгновениях, когда спускаемый аппарат с космонавтами, снижаясь на парашюте, падает в море. Утонуть он, правда, не может, конструкцией обеспечена его плавучесть. Но может случиться, что он окажется в воде дном вверх, так что его радиоантенны будут под водой и связь станет невозможной. Так и случилось в полете американского космического корабля «Аполлон-7» в октябре 1968 года. Но и тут помогла воздушная подушка. Три специальных баллона-поплавка автоматически надуваются и ставят корабль с «головы на ноги». У «Аполлона-7» это «сальто» длилось пятнадцать минут. Позднее корабль «Аполлон-16» совершил такой же переворот всего за четыре секунды.

Миллионы телезрителей видели, как в июле 1975 года приводнился «Аполлон» после завершения исторического совместного полета с советским кораблем «Союз». «Аполлон» тоже оказался в воде не в нужном положении, и надувшиеся розовые шары поставили его «на ноги».

А потом космонавты могут воспользоваться аварийным надувным спасательным плотом или лодками. Ими обязательно снабжаются и советские и американские космические корабли.

В феврале 1972 года совершил успешную посадку возвращаемый аппарат советской автоматической межпланетной станции «Луна-20», доставивший на Землю образцы лунных пород. Два оранжевых эластичных надувных баллона обеспечили нужное положение аппарата на Земле, чтобы его радиоантенны не были повреждены и их радиосигнал был вовремя принят поисковой группой. Найти аппарат зимой, в буран, в заснеженной степи не очень-то просто.

В США испытывается приспособление, служащее для защиты космонавтов, совершивших посадку на воду, от акул. Предполагается вооружить космонавтов небольшим самострелом со стальной стрелой и патроном с углекислым газом, который укреплен на ее наконечнике. Раненая акула раздувается газом и, разумеется, становится безопасной. Подобным оружием уже снабжают аквалангистов.

 

Подушка — рессора и домкрат

Надувные поплавки вертолетов могут служить амортизаторами и при посадке на сушу. Есть попытки создать аналогичные посадочные шасси и для космических аппаратов. По одному из проектов, например, предполагалось использовать для посадки автоматической станции на Луну надувной «многогранник», по другому — полезный груз размещать внутри большого надутого шара.

У нас в стране изобретен надувной амортизатор, позволяющий сбрасывать с самолета на землю самые хрупкие грузы (в опытах был сброшен даже живой кролик) без парашюта! Немало жизней было спасено этой подушкой, когда больным с неба доставлялись с ее помощью необходимые лекарства.

На гладком асфальте обычные стальные пружинящие рессоры делают езду автомобиля плавной и мягкой. Но стоит выбраться с магистрали на проселок, толчки и тряска заставляют резко сбавить скорость — по ухабам и рытвинам ехать приходится не намного быстрее пешехода. Как добиться, чтобы и по плохим дорогам можно было ехать со скоростью сорок-пятьдесят километров в час без чрезмерной тряски?

Кто из бывалых шоферов не думал об этом как о несбыточной мечте!

Чтобы стальная рессора решила подобную задачу, нужно сделать ее в несколько раз мягче, менее жесткой, а также сильно увеличить ход колес относительно рамы автомобиля. Сделать это невозможно, и положение было бы безвыходным, если бы не воздушная подушка. Испытания, проведенные у нас в стране, показали, что при сочетании обычных пружинных рессор с пневматическими, «подушечными», скорость автомобиля по плохой дороге может быть увеличена по крайней мере вдвое. Значит, может быть перевезено вдвое больше грузов при том же числе машин! Вот что такое воздушная подушка! Минский самосвал-гигант БелАЗ с пневматическими рессорами был удостоен ряда золотых медалей на международных выставках.

Пневматическая подвеска автобусов, например наших львовских, не только увеличила скорость движения, но и намного улучшила самочувствие пассажиров. Воздушные рессоры, изготовляемые из резины с нейлоном, все шире применяются на транспорте. И не только на автомобилях. Пожалуй, легче сказать, где их нет. На троллейбусах, пассажирских тепловозах, вагонах пассажирских поездов, новых вагонах московского метро — всюду между кузовом и колесной тележкой появляется резиновая надувная воздушная подушка. Она делает ход более плавным и бесшумным.

Воздушные амортизаторы незаменимы, когда приходится бороться с тряской, всевозможными вибрациями, а случается это в технике нередко. Часто нужно надежно изолировать от внешних вибраций какой-нибудь точный станок или измерительный прибор — о какой уж точности может идти речь, если все трясется, как в лихорадке! В других случаях, наоборот, сам станок или установка рождают сильные вибрации. Так бывает, например, при испытаниях авиационных реактивных двигателей или в многочисленных виброустановках, применяющихся в промышленности. Тут уж приходится защищать от вибраций все, что окружает трясущуюся установку, прежде всего работающих на ней людей.

Все более широкое применение находит и родной брат пневматической рессоры — надувной домкрат, служащий для подъема разных тяжестей, когда собственных сил человека не хватает.

Чтобы воздушная подушка подняла груз, нужно увеличить давление в ней — она раздуется, и лежащий на ней груз приподнимется. Домкраты-подушки нужны, когда приходится поднимать тяжелый груз в полевых условиях, например самолет, совершивший вынужденную посадку вдалеке от населенных центров. Достаточно уложить под крылом и фюзеляжем самолета друг на друга несколько надувных мешков из прочной ткани (доставить такие мешки легко, они мало весят и в сложенном состоянии занимают мало места), а затем надуть их воздухом, выхлопными газами двигателя или газами из баллона.

А что случится, если поместить воздушную подушку в топливный бак двигателя и начать ее надувать? Она станет вытеснять топливо из бака и подавать в двигатель. Такой способ особенно важен в космосе, где подавать жидкости, в том числе и топливо, не так-то просто из-за невесомости.

На заводах и стройках тоже применяются подушки-домкраты, они могут поднять, например, угол осевшего дома всего за полчаса! Применяются и надувные рабочие перчатки, особенно удобные в случае сильных вибраций, например при работе отбойным молотком.

 

Подушка «взрывается»

Уж если говорить о воздушной подушке, защищающей человека от ударов, то прежде всего в связи с автомобилем. Езда в автомобиле с каждым днем становится все более опасным занятием: автомобилей больше, их водители менее опытны, условия движения усложняются, скорость растет.

Учащаются столкновения автомобилей, часто приводящие к тяжелым ранениям и даже гибели людей, находящихся в машине.

В США, где эксплуатируется около девяти миллионов автомобилей, смертельных исходов в автомобильных авариях бывает несколько тысяч в год, а тяжелых ранений несравненно больше.

Конструкторы стремятся создать «безопасный» автомобиль. Это относится к внутреннему устройству, конструкции рулевой колонки, подвеске двигателя. Предлагаются также привязные ремни, которыми должны затягиваться пассажиры, или раскрывающиеся при ударе пологи, вроде больших газетных листов, которые должны амортизировать удар. Но особенно большие надежды возлагаются снова на подушку. В США по решению правительства, начиная с 1976 года, все легковые автомобили должны выпускаться только с «подушками безопасности». Экспериментальных автомобилей такого рода уже немало.

Подушки хранятся сложенными внутри салона автомобиля в разных местах — верхней части рулевой колонки перед водителем, в щитке перед пассажиром, сидящим спереди, в спинке переднего сиденья — перед пассажиром, сидящим сзади. В упакованном виде они занимают мало места и практически невидимы.

Но вот произошел неожиданный сильный удар автомобиля о препятствие. Дальнейшее происходит мгновенно. Специальный прибор — акселерометр, срабатывающий при определенной силе удара, открывает баллон со сжатым под большим давлением инертным газом или воспламеняет пиропатрон — заряд с несколькими десятками граммов пороха. За сотые доли секунды (!), все равно, как при выстреле, нейлоновые подушки надуваются до объема двухсот-трехсот литров и превращаются в мягкий, податливый барьер перед пассажирами. Есть конструкции, где одна большая подушка заменена множеством малых, соединенных наподобие пчелиных сот, — считается, что это даст ряд преимуществ.

Идея защитных подушек проста, но практическая ее реализация связана со многими сложными проблемами. Газы, заполняющие подушки, не должны быть очень горячими или ядовитыми — подушка может ведь и лопнуть. Надувать подушки нужно быстро, но плавно, чтобы это не напоминало взрыв с сильным опасным ударом и шумом, способным жестоко повредить уши. После надувания газы из подушки нужно сейчас же начать выпускать наружу, иначе она лопнет или станет слишком твердой, жесткой. Нужно исключить возможность ложных сигналов датчика и срабатываний подушки без необходимости.

А как обеспечить постоянную готовность подушек к действию в течение всего большого срока службы автомобиля? Как избежать чрезмерного повышения давления в салоне автомобиля, когда внутри него внезапно надуется много защитных подушек? В одном из американских автомобилей в салоне размещено двадцать подушек. Можно защититься от одной беды и пострадать от другой — повышения давления в салоне. В этом автомобиле при надувании подушек специальная петарда выбивает заднее стекло машины!

Забот хоть отбавляй. И все же, вероятно, через несколько лет автомобилей без воздушных подушек не станет. Слишком уж важна их роль. В США было официально заявлено, что если бы «подушки безопасности» были установлены на автомобилях, выпущенных там в одном лишь 1970 году, то это спасло бы шесть тысяч жизней, предотвратило ранения четырехсот тысяч человек и сберегло почти полмиллиарда долларов!

Интересно, что и для обычных привязных ремней тоже пытаются применить принцип воздушной подушки. За рубежом появились полые ремни, которые при столкновении автомобиля автоматически надуваются и превращаются в своеобразную защитную подушку.

В настоящее время ведутся испытания защитных подушек на специальных тележках-салазках, скользящих по рельсовой трассе (кстати, тоже на воздушной подушке, об этом будет идти речь в последней части книги) и позволяющих имитировать удар. Пока, как правило, место человека при подобных испытаниях занимают манекены. Но уже проведены успешные испытания и с людьми.

«Взрывающаяся» воздушная подушка может служить на автомобиле и для того, чтобы зажать дверь. Часто именно открывшаяся при столкновении дверь оказывалась причиной гибели или тяжелого ранения пассажиров. Резиновый надувной шарик в выемке между дверцей и кузовом мгновенно надувается воздухом при аварии и надежно заклинивает дверцу.

 

Все четыре колеса…

Ни защитная надувная подушка, ни надувные резиновые бамперы для смягчения удара при столкновении, ни надувное запасное ветровое стекло (тоже полезная вещь!) не могут считаться главным применением воздушной подушки на автомобиле. На первое место нужно поставить совсем другую воздушную подушку, без которой современного автомобиля просто не существовало бы. Эта подушка — шина, катящаяся по земле и увлекающая за собой автомобиль.

Шина не единственная катящаяся воздушная подушка. А разве детский резиновый мяч и множество его спортивных «сородичей» не воздушная подушка?

В Швеции даже создан «звуковой» мяч для игры в футбол слепых. «Игровых» воздушных подушек изобрели множество: например, прозрачный, но летящий при броске со скоростью до ста километров в час шар для игры в кегли или метровый мяч с седлом для модного в Европе «кенгуроболла» — скачки наездников на этих мячах действительно напоминают прыжки кенгуру.

Надувные шары могут применяться и для дела. Когда в Москве в 1971 году была выставка механизации производства, на ней было показано интересное устройство для передвижения тяжестей. Стальная плита весом четыреста килограммов лежала на шарах, надутых воздухом. Легкое движение руки заставляло плиту перемещаться.

За рубежом самые тяжелые грузы в сотни тонн, вроде землесосного снаряда и даже целых кораблей, удавалось транспортировать на значительное расстояние на своеобразных воздушных катках — надутых нейлоновых шлангах диаметром метр и больше.

На воздушных подушках — пневматических шинах в наше время, можно сказать, катится все человечество. Одних автомобилей в мире насчитывается триста миллионов и более тридцати миллионов ежегодно добавляется новых, а на каждом автомобиле по крайней мере пять шин, четыре — на колесах и пятая — запасная. Множество автомобилей имеет не четыре, а шесть, восемь, иногда десятки колес. В Чехословакии для перевозки части нового прокатного стана был создан автопоезд-платформа с буксирами с общим числом колес — сто девяносто шесть!

Вероятно, миллиарда полтора-два шин приходится только на автомобили, находящиеся в эксплуатации, не считая хранящихся на складах и в магазинах.

Если же подсчитать шины бесчисленного множества самолетов, мотоциклов, тракторов, велосипедов, самокатов, гужевых повозок и всяких других экипажей, не обходящихся без «дутиков», как раньше называли пневматические шины (лихачи-извозчики зазывали: «Промчим на дутиках!»), окажется, что на долю каждого человека на Земле приходятся, вероятно, десятки и сотни надутых шин разных калибров. Чем не шинный век! Исчезни внезапно все шины, произойдет катастрофа хуже любого землетрясения…

В СССР и других развитых странах имеется мощная шинная промышленность, специальные конструкторские бюро создают новые типы шин, ученые в институтах настойчиво исследуют шины с целью повышения их качества. Строятся новые шинные заводы, в частности один из них, в городе Белая Церковь, недалеко от Киева, являлся одной из крупнейших новостроек девятой пятилетки.

Автомобильная шина состоит, как правило, из двух основных частей — тонкостенной (толщина стенки два-четыре миллиметра) надутой резиновой камеры, которая, собственно, и является воздушной подушкой в виде бублика, и обнимающей ее тоже резиновой покрышки. В последнее время встречаются и бескамерные шины — в них камеры нет, и воздушной подушкой является сама покрышка.

Современной автомобильной шине примерно сто лет. Первый патент на изобретение пневматической шины был взят еще раньше, в 1845 году, но почти полвека лежал без движения. В самом конце прошлого века началось массовое увлечение велосипедом, своеобразная «велосипедная лихорадка», которая, кстати, в наши годы как бы повторяется. Во многих странах число велосипедистов бурно возрастает, очевидно, а пику автомобилям, армады которых закупоривают улицы городов и отравляют воздух выхлопными газами.

В 1888 году пневматическая шина была открыта заново, ее случайно изобрел шотландский ветеринарный врач Данлоп. Сначала он сделал своему сынишке для его велосипеда шину из садового шланга, заполненного водой, но вскоре заменил эту неудобную шину пневматической, заполнив ее воздухом через специальный, так называемый обратный клапан — он свободно впускает воздух в камеру, но не выпускает обратно. А через год в разных странах на пневматическую шину было взято уже шестьсот патентов! Да и теперь, несмотря на все совершенство существующих шин, конструкция которых в основном сложилась полвека назад, в каждой из ведущих промышленных стран выдается около сотни патентов в год на их дальнейшее улучшение.

Первый автомобиль с пневматическими шинами появился в Европе в 1891 году. Использование шин сразу вдвое уменьшило вес автомобиля — вследствие ослабления ударов о неровности дороги части автомобиля стали легкими, скорость движения возросла, расход топлива на поездку снизился. Вот что означала помощь воздушной подушки!

Каких только шин не изготовляют теперь в мире! Тысячи и тысячи. Один только Воронежский завод выпускает четыреста видов. От настоящих гигантов диаметром в несколько метров и весом в тонны для сверхтяжелых грузовиков до крохотных для малолитражек, мотороллеров, картов — этих миниавтомобилей.

Если вам приходилось бывать в павильоне «Химия» ВДНХ в Москве, то вы наверняка обратили внимание на выставку автомобильных шин. Уж очень поражает она посетителей. Но при чем тут химия? Ведь шины резиновые, а каучук дают тропические деревья — секвойи. Однако уже давно химики научились получать каучук искусственно, и первое слово здесь принадлежит нашей стране. Не зря в московском Политехническом музее, столетний юбилей которого недавно отметили любители техники, бесценным историческим экспонатом считают лабораторную печь знаменитого советского ученого С. В. Лебедева, в которой был «сварен» первый искусственный каучук.

На шинах из первого каучука советские автомобили в начале июля 1933 года отправились в пробег по пустыне Каракумы. Они прошли шестнадцать тысяч километров и возвратились в Москву в конце сентября. Шины оказались столь надежными, что некоторые из них привезли внутри московский воздух, которым их накачали перед стартом!

Но вернемся в павильон ВДНХ. Сколько самых разных шин тут выставлено! Мал мала меньше… Диаметры шин возрастают по мере того, как растет грузоподъемность автомобилей. Правда, по сравнению с первыми шинами полувековой давности современные шины при той же грузоподъемности стали почти вдвое меньше по диаметру, но зато шире — таков закон их развития.

Особенно впечатляют шины-гиганты, как будто предназначенные для личной машины Гулливера. Например, шина для стодвадцатитонного самосвала БелАЗ-549 имеет диаметр около двух с половиной метров и ширину шестьсот сорок миллиметров! Двигатель гиганта весит семьдесят восемь тонн, его длина — четырнадцать метров.

Рекордный диаметр шин двухсоттонного американского грузовика равен четырем метрам!

При столь большом диаметре шины автомобилю уже не нужна обычная подвеска — своеобразными рессорами служат сами шины, так велик в них объем воздуха. Зато уж если лопнет такая шина, звук, очевидно, будет похож на взрыв бомбы!

На севере Канады, похожем на наш Север, много природных богатств, но велики трудности на пути к овладению ими — болота, топи, вечная мерзлота. Чтобы преодолеть их, канадские инженеры спроектировали гигантскую самоходную машину «Мамонт». Поражают в машине четыре огромных колеса на пневматических шинах. Диаметр каждого из них — семнадцать метров. Высотой с четырехэтажный дом, они сообщают необыкновенному экипажу невиданные свойства — его ничто не в состоянии остановить!

Кузов под стать колесам: настоящий движущийся остров. Его длина сорок два метра, в нем — жилые помещения, столовая, мастерские и даже буровая вышка со всеми необходимыми устройствами. Вес его — пятьсот сорок тонн. Шестнадцать двигателей общей мощностью двенадцать тысяч лошадиных сил способны перемещать его со скоростью шестидесяти километров в час, как у легкового автомобиля. «Мамонт» будет легко переходить через трещины и рвы шириной три метра. Запас топлива позволит совершать рейсы дальностью больше полутора тысяч километров. Поистине фантастический экипаж!

 

Прокол!

Когда хотят сказать о постигшей кого-то неудаче, часто говорят: «У него прокол!» Действительно, куда уж хуже, когда в дороге случается прокол шины, запасной, к несчастью, тоже нет, на улице ночь, жгучий мороз…

На дорогах Европы происходит примерно двадцать пять миллионов проколов шин в год. Четверть всех автомобильных аварий вызвана именно проколом. Создатели автомобильных шин прилагают огромные усилия, чтобы проколы случались как можно реже, шина была бы надежнее и служила дольше. А если прокол произошел, чтобы он не приводил к катастрофе — при езде с большой скоростью машину при проколе заносит в сторону. И чтобы поврежденную шину было легче отремонтировать, а еще лучше, чтобы она сама автоматически «отремонтировалась»…

Требования надежности и долгой службы предъявляются ко всяким шинам. Весьма в этом заинтересованы и велосипедисты: сколько раз именно с шинами были связаны их неудачи в длительных, многосуточных велогонках вроде Велогонки Мира. Наверное, и индусу Р. Сингху, начавшему в 1968 году на велосипеде… кругосветное путешествие, которое он завершил в 1973 году, преодолев почти четверть миллиона километров, было бы приятно, если бы шины его велосипеда не приходилось менять так часто — за четыре первых года путешествия он сменил их сто пятьдесят раз!

Но во сто крат важней эта проблема для автомобильных шин: роль и значение автотранспорта колоссальны, скорости движения и связанные с ними нагрузки в шинах велики. При скорости сто километров в час шина деформируется — сплющивается, изгибается, скручивается — примерно восемьсот пятьдесят раз в минуту и «устает». Велик и нагрев шины: в случае быстрого торможения он достигает нескольких сот градусов. Из-за больших скоростей даже небольшой ухаб создает в покрышке огромные напряжения. Да и без ухаба шине нелегко — одни лишь центробежные усилия в быстро вращающейся покрышке в сотни раз превышают ее собственный вес!

Все нагрузки шины достаются на долю бедной покрышки — она опирается на дорогу, защищает камеру, воспринимает усилия при движении. Конструкция покрышки должна быть весьма сложной — это совсем не простая резиновая оболочка для камеры. И именно от нее зависят надежность и долговечность шины, ее ходовые качества, шум при движении (очень существенный фактор!) и расход топлива.

Основная часть покрышки, воспринимающая нагрузки, — каркас. Он состоит из нескольких, иногда десятков, слоев корда — прочных волокон из хлопчатобумажных, вискозных, капроновых или нейлоновых нитей, а иногда и из стекловолокна или тонких металлических проволок. В обычных покрышках волокна в слоях корда идут наискосок, от одного борта покрышки к другому, крест-накрест в соседних слоях. Беговая часть покрышки, непосредственно катящаяся по дороге, носит название протектор, на нем наносится так называемый рисунок — узор из разнообразных выступов — грунтозацепов, которые и создают сцепление с дорогой. Имеет покрышка и другие части.

Лет пятнадцать назад впервые появились шины с покрышками новой конструкции. У них волокна в слоях корда расположены радиально, поперек направления движения. Обычные шины уступают им по надежности, они проходят за весь срок своей жизни менее ста тысяч километров, а радиальные — вдвое больше. Да и топлива на езду с большой скоростью расходуют меньше.

Чтобы испытать шину, не обязательно накатывать сотни тысяч километров по дорогам. Существуют испытательные установки, которые называют «вечной дорогой», в них шина «бежит» по искусственной «дороге», например окружности большого вращающегося колеса. Используются и специальные бетонные треки с заделанными кусками рельсов и другими препятствиями высотой до пятнадцати сантиметров.

Часто на заводах шины подвергают рентгеновскому исследованию, просвечивают, подобно тому, как это делают с людьми в поликлинике. Так важно, чтобы шина была «здоровой»!

В специальной литературе недавно появилось выражение: шины «третьего поколения». Имеется в виду, что обычная шина с камерой — это шина первого поколения, бескамерная — второго. Что же представляет собой шина третьего поколения?

Ее главная задача — уменьшить опасность прокола. Вот как пытается решить эту задачу ведущая английская фирма Данлоп (вспоминаете фамилию? Шотландский ветеринар сумел, видно, извлечь выгоды из своего изобретения). Внутри надутой камеры помещается небольшой пакетик со специальной жидкостью. Как только случается прокол, пакетик лопается и заполняющая его маслянистая жидкость испаряется, надувая шину и обеспечивая смазку и охлаждение ее внутренних поверхностей. Одновременно жидкость, загустевая в проколе, заклинивает, блокирует его, автоматически ремонтируя таким образом шину — подушка восстанавливается.

Если на спущенной после прокола шине езда невозможна — шина либо соскакивает с обода колеса, либо за короткое время полностью разрушается от перегрева, то с повой шиной дело обстоит иначе. Как показали испытания, автомобиль может пройти после прокола километров сто пятьдесят-двести при скорости шестьдесят-восемьдесят километров в час. Однако только опыт эксплуатации покажет истинную пригодность таких шин.

Для безопасности езды нужно, чтобы шофер мог во время движения постоянно следить за состоянием шины. Ему важно знать, не понизилось ли давление воздуха в шине ниже допустимого и не превышена ли рабочая температура. В обоих случаях шина быстро выйдет из строя.

Сигнализация о чрезмерном снижении давления воздуха в шине может производиться, например, устройством, в котором используется еще одна, миниатюрная воздушная подушка — надувной баллончик, соединенный с внутренним пространством шины. Когда давление воздуха в шине и баллончике снижается ниже допустимого, баллончик, сжимаясь, освобождает рычажок. Тот ударяет по пистону, и раздается характерный щелчок, привлекающий внимание шофера. По другому проекту сигнализация производится с помощью миниатюрного радиопередатчика, включающего лампочку на щитке управления. Предложены системы непрерывного контроля и за температурой шины. В будущем, вероятно, подобная сигнализация получит широкое применение.

Предлагаются не боящиеся прокола бескамерные шины, в которых воздушная подушка заменена… пеной. Эксперименты с такими шинами довольно успешны. Внутрь обычной бескамерной шины с помощью специального пистолета через боковое отверстие нагнетается пенопласт, пена синтетической смолы — полиуретана. Из-за огромного числа микроскопических пузырьков воздуха в пене она превращается в эластичную подушку.

Делаются попытки борьбы с проколами и с помощью шин, состоящих из нескольких, до двенадцати, отдельных секций: проколол одну — заменил ее. Секции могут монтироваться на колесе и под углом к ободу — это улучшает сцепление с грунтом.

Если прокол произошел, то спасает запасное колесо — обязательная принадлежность любого автомобиля (тут уж «пятое колесо» никак не назовешь лишним!). К сожалению, оно занимает много места в багажнике, немало весит и дороговато. В США предложена сверхтонкая запаска — вместе с шиной она имеет толщину всего два сантиметра! Это тонкий стальной лист, к которому наглухо прикреплена плоская, пока не надута, бескамерная шина. Чтобы ее надуть, есть небольшой патрон со сжатым воздухом или углекислым газом. Километров восемьсот с такой запаской вполне проедешь.

 

По дорогам и без дорог

Автомобильная шина должна катиться не только по хорошим, но и по скверным дорогам. Лишь когда уже совсем невмоготу, на смену шине приходит гусеница.

Чтобы шина прошла по мягкому, вязкому или сыпучему грунту, нужно уменьшить силу, с которой она давит на грунт. Для этого можно увеличить диаметр шины, число колес, ширину шины, снизить давление воздуха в ней, применить протектор с более подходящим рисунком. И использовать с десяток других средств. Одно это показывает, как велики возможности катящейся воздушной подушки — шины, какой универсальностью и гибкостью применения она отличается.

На большинстве новых грузовых автомобилей используется переменное давление воздуха в шинах. Когда под колеса машины стелется бетонка или асфальт шоссе — давление максимально, оно достигает пяти атмосфер, иногда больше.

При этом шина опирается на дорогу наименьшей поверхностью, трение невелико, скорость может быть большой. Грузовик свернул на проселок — шофер из кабины уменьшил давление в шинах, они как бы осели, сплющились, соприкасаются с дорогой большей поверхностью, давление на грунт уменьшилось.

Как показывает опыт, давление воздуха в шинах приходится снижать значительно, а это сильно сокращает срок службы шины, ее хватает ненадолго. Поэтому при частой езде по мягкому грунту иногда используют арочные шины — широченные, особого «плоского» профиля, с давлением воздуха менее атмосферы.

Для езды по очень неровным дорогам с разными препятствиями ширину шины еще увеличили — она превратилась в пневматический каток, внешне похожий на обычные катки, которыми утрамбовывают дорогу или разглаживают асфальт. Ширина катка, как правило, превышает диаметр раза в полтора, а то и больше, давление в нем в десятки раз меньше, чем в обычных шинах.

Если шина выдавливает грунт в стороны, то каток сам продавливается внутрь и уплотняет грунт под собой. Машина с пневмокатками хорошо пройдет по болоту, снегу, рыхлому песку, не заметит какой-нибудь кочки или камня на дороге.

В отличие от шины каток сделан не из многих слоев прочного и жесткого корда, а из двух-четырех слоев прорезиненной капроновой или нейлоновой ткани, и крепится не на ободе колеса (обычных колес здесь нет), а зажимается с торцов металлическими шайбами и тонким валом по оси «бочонка».

Шины с пониженным давлением и пневматические катки применяются не только на автомобилях-вездеходах, но и в самолетных шасси. Это позволяет посадить самолет в такую грязь, что в ней и грузовик застрянет, или же на неровную, разбитую полосу — попадется камень на пути, самолет промчится, не заметив.

Особенно важна высокая проходимость, вездеходность для тракторов. Ведь им приходится трудиться в поле и весной, и осенью, и зимой. Для них и болотная топь, и глинистое поле, и набухшие грязью, разбитые проселки — все дорога. Трактор не только должен пройти сам, но и тащить за собой разный тяжелый груз — сельскохозяйственное орудие или нагруженный прицеп. Никакой самый мощный двигатель не поможет, если плохи шины, недостаточно сцепление их с грунтом или слишком велико давление на него.

В сельском хозяйстве высоко ценятся силачи — гусеничные тракторы. Стальная гусеница может вывезти там, где колесо уже пасует. Но даже гусеницы не всегда обеспечивают нужную проходимость. И главное — давление гусеницы на грунт часто оказывается чрезмерно большим, настолько, что они разрушают строение, структуру почвы. А ведь на ней сеют, это — поле, портить его нельзя. При движении же по хорошей дороге гусеницы повреждают дорожное покрытие. Наверное, многим приходилось видеть оставляемые ими глубокие рубцы на асфальте.

Так появилась идея гусеницы на… воздушной подушке. Спасительная воздушная подушка! Легкая, быстроходная, дешевая, бесшумная.

Мысль о возможности применения своеобразной «бесконечной» воздушной подушки (ведь и гусеница — бесконечный тракт, стелющийся перед движущимся экипажем и перевозимый им с собой) родилась у нас в стране. В 1899 году впервые в мире изобретатель В. Черепанов получил патент (тогда говорили — привилегию) на «велосипед с канатным ремнем». Это и была первая пневматическая гусеница — бесконечный полый надутый резиновый шланг.

Немало конструкций пневматических гусениц появилось в последние годы за рубежом. Но они обычно недостаточно надежны. Пожалуй, впервые успешно решена эта задача советским изобретением — модель трактора «Эврика» с новыми пневматическими гусеницами демонстрировалась на международной выставке в Монреале. Эти гусеницы состоят из двух частей — армированной металлом плоской резиновой ленты и прикрепленных к ней надутых резиновых подушек в виде прямоугольных «кирпичей». Давление воздуха в подушках низкое, они слабо давят на грунт и служат хорошими амортизаторами.

Не сказало своего последнего слова и колесо, — это замечательное изобретение неведомого гения древности. Оригинальная идея пришла в голову чешским ученым. Если можно сделать гусеницу из ряда отдельных воздушных подушек, то почему нельзя создать из этих же подушек… колесо?

Оказывается, подобное колесо-подушка обладает новыми интересными возможностями. Если несколько воздушных подушек укрепить на ободе колеса, то, поочередно выпуская из них воздух и снова надувая, можно заставить колесо… катиться! Катиться самому, хотя никакой двигатель колесо не вращает. Получается совершенно необыкновенное «двигатель-колесо». Нужен лишь воздушный компрессор для накачивания подушек. Собственно, колесо даже не катится, а как бы переступает с одной подушки на другую, имитируя ходьбу человека.

Экипаж с «шагающими» колесами будет обладать, вероятно, необычными свойствами. Помимо того, что он станет отличным вездеходом, ему окажутся нипочем и такие крутые горки, которые не под силу другим транспортным средствам. Судя по тому, что после многих лет экспериментов в Чехословакии недавно появилась новая модель экипажа, с двенадцатью воздушными подушками на каждом из четырех колес (модель, показавшая буквально чудеса маневренности), «шагающему» колесу предстоит большое будущее. Может быть, на его основе будет создан когда-нибудь гигантский транспустынный лайнер?

Воздушная подушка помогает ездить но самым скверным дорогам. Но оказывается, она пригодна и для самых лучших — железных дорог. Ровнее и глаже рельсов, кажется, дороги нет, и они всегда были областью, куда пневматическим шинам входа не было. А теперь есть.

Преимущества шины перед обычным железнодорожным скатом, в бесшумности, плавности хода, очевидны. Но как заставить шину катиться по рельсу? Ведь у нее нет реборд — выступов, направляющих колесо на стрелках и не позволяющих ему соскочить с рельса. И вот появляются конструкции автомобильного колеса на пневматической шине с дополнительной ребордой, как бы облегченным обычным железнодорожным скатом. Теперь можно быстро превращать автомобиль или трактор в дрезину для поездки по железнодорожному пути. Бесперегрузочные перевозки, когда не требуется перекладывать грузы из автомобиля в вагон, а потом снова в автомобиль, дают значительную экономию.

Появилась уже нужда и в шинах космических. Они должны работать в необычных условиях — почти абсолютный вакуум, смена небывалого мороза и столь же небывалой жары, вредная радиация. На советских луноходах использованы ажурные металлические колеса. Лунный электромобиль «Скиталец» («Роувер»), на котором ездили по Луне американские космонавты, имел шины из стальной проволочной сетки с приклепанным к ней рисунком протектора из титана. А на двухколесной тележке для перевозки грузов корабля «Аполлон-14» были надувные шины из резины. Давление азота в них составляло всего примерно одну десятую атмосферы, надуть на земле их было невозможно, для этого приходилось помещать шину в вакуум.