Как же влияет скорость полета на работу турбореактивного двигателя? Чтобы выяснить это, проследим за работой двигателя в наших искусственных цветных воздушных океанах. Мы будем интересоваться тем, как изменяется скорость и давление воздуха, поэтому нам понадобятся океаны зеленого и синего цвета.

Перед нами турбореактивный двигатель, установленный на самолете. Мы знаем, что как только двигатель начнет работать, у его входного отверстия образуется воронка засасываемого в двигатель воздуха.

Как изменится форма воронки и изменится ли она вообще, когда самолет взлетит и начнет свой полет? Для того чтобы проследить за летящим самолетом, поступим так, как поступают при опытах в аэродинамических трубах. Сделаем самолет неподвижным и заставим двигаться окружающий воздух в направлении, противоположном полету, со скоростью, равной скорости полета. Так сделать можно — ведь взаимодействие между воздухом и двигателем зависит только от их относительной скорости, которая при такой замене остается неизменной.

Рис. 45. Что происходит в воздухе перед работающим двигателем реактивного самолета:

а — на стоянке или при полете с малой скоростью; воздух перед двигателем разгоняется, давление его уменьшается, б — при полете со средней скоростью, давление воздуха перед двигателем не меняется; в — при полете с большой (дозвуковой) скоростью; воздух перед двигателем тормозится, давление его растет

Пока скорость полета очень мала, воронка на входе в двигатель почти не будет отличаться от воронки перед двигателем, работающим на неподвижном самолете (рис. 45, а). Но вот скорость увеличилась, и воронка перед двигателем изменила свой внешний вид. Теперь она стала меньше по размерам, да и по цвету уже меньше отличается от окружающего океана. Обратим внимание на то, что цвет самого зеленого океана теперь стал тоже иным, более темным, так как воздух уже не неподвижен, а мчится навстречу самолету со скоростью, равной скорости полета. Цвет же синего океана остался прежним, светлым — давление воздуха не изменилось.

По мере роста скорости полета воронка засасываемого воздуха перед входным отверстием двигателя становится все меньше по размерам, а ее цвет все менее отличается от цвета окружающего океана. Наконец, при некоторой скорости полета воронка перед двигателем исчезает вовсе. Только что перед этим, при чуть меньшей скорости, еще была заметна слегка расширяющаяся вперед по направлению полета воронка, а теперь перед двигателем расстилается однотонный зеленый или синий океан.

Но двигатель работает, он все время засасывает воздух. Почему же эта засасываемая струя не видна? Оказывается, потому, что она не отличается от всего воздушного потока, мчащегося навстречу двигателю. Чтобы выделить струю засасываемого в двигатель воздуха, мы можем лишь мысленно провести в воздушном океане цилиндрическую поверхность, уходящую далеко вперед от входного отверстия двигателя. Это и будет поверхность цилиндрического «столба» воздуха, поступающего в двигатель. Воздух входит внутрь двигателя со скоростью, равной скорости полета. Давление этого воздуха равно давлению окружающей атмосферы (рис. 45, б).

Что же произойдет, если продолжать увеличивать скорость полета? Увидим ли мы тогда засасываемый в двигатель воздух, или он так и останется неразличимым? Оказывается, что при дальнейшем увеличении скорости полета со всасываемым в двигатель воздухом произойдут интересные изменения. В зеленом океане перед двигателем снова возникнет воронка засасываемого воздуха, но теперь перевернутая, обращенная к двигателю своим широким концом, и к тому же не темнее, а светлее окружающего океана, и тем светлее, чем ближе к входному отверстию двигателя. Все наоборот по сравнению с картиной, которую мы видели при малых скоростях полета.

Но что же означает эта новая картина?

Разобраться в этом нетрудно. Воздух, засасываемый в двигатель, теперь не разгоняется перед ним, а тормозится, его скорость не увеличивается, а уменьшается (рис. 45, в). Потому и воронка обращена к двигателю своим широким концом: для того чтобы пропустить то же количество воздуха при меньшей скорости, сечение воронки должно увеличиваться. Это и неудивительно. Ведь через двигатель независимо от скорости полета протекает постоянный объем воздуха, допустим, 50 м 3 /сек. Поэтому скорость воздуха, поступающего в двигатель, также должна оставаться постоянной, допустим, равной 100 м/сек. Пока скорость полета меньше этой скорости, перед двигателем образуется воронка, сужающаяся к входному отверстию. В этой воронке воздух разгоняется от скорости полета до той скорости, которую он должен иметь при поступлении в двигатель. Когда скорость полета и скорость засасываемого воздуха выравниваются, т. е. скорость полета становится в нашем случае равной 100 м/сек, воронка приобретает цилиндрическую форму. Это значит, что скорость протекающего через эту воронку воздуха не меняется. Если же скорость полета станет больше 100 м/сек, т. е. превысит скорость воздуха, поступающего в двигатель, то перед двигателем воздух будет тормозиться; воронка в этом случае будет обращена к двигателю своим широким основанием.

Поэтому и в синем океане при большой скорости полета мы увидим расширяющуюся к двигателю воронку, причем ее цвет будет темнее окружающего океана, так как воздух в ней имеет повышенное давление. Наиболее темной эта воронка будет у самого входа в двигатель. Это значит, что у входа в двигатель воздух будет иметь наибольшее давление.

Таким образом, мы можем сделать очень важный для нас вывод: когда самолет летит с большой скоростью, то в двигатель поступает уже предварительно сжатый воздух, давление засасываемого воздуха повышается.

Как же происходит это сжатие воздуха без компрессора? Откуда берется необходимая для этого энергия?

Здесь мы имеем дело с очень важным для всей скоростной авиации понятием скоростного напора. Впрочем с этим понятием мы встречаемся не только в авиации, но и в окружающей нас природе.

Чем объясняется, например, страшная сила урагана, вырывающего с корнем вековые деревья, срывающего крыши с домов? Эта сила — скоростной напор бешено мчащегося воздуха; она возникает в то мгновение, когда воздух останавливается неожиданным препятствием. При этом вся кинетическая, скоростная энергия воздуха затрачивается на его сжатие, сопровождающееся повышением давления. Давление бесчисленного множества молекул воздуха, бомбардирующих поверхность прервавшего их бег препятствия, и есть скоростной напор, приобретающий страшную силу во время урагана. Для характеристики этой силы достаточно сказать, что только во время одного из 15 тайфунов, пронесшихся в 1954 г. над Японией, около 150 человек погибло, 500 человек было ранено и около 10 000 домов разрушено. А ведь скорость этого тайфуна достигла «всего» 27 м/сек.

Воздушный же поток, обрушившийся на поверхность быстро летящего на небольшой высоте самолета, страшнее самого сильного урагана, его скоростной напор во много раз больше. Это и понятно, так как скоростной напор пропорционален квадрату скорости полета: он порождается кинетической энергией воздуха, величина которой, как известно, также пропорциональна квадрату скорости движения. А скорость полета реактивного самолета значительно больше скорости движения воздуха при самом страшном урагане.

Вот почему сжатие воздуха перед всасывающим отверстием турбореактивного двигателя в результате скоростного напора в полете может быть весьма значительным. Скоростной напор в этом случае помогает компрессору сильнее сжать воздух. Неудивительно, что давление воздуха за компрессором, в камере сгорания, оказывается в полете значительно большим, чем при стоянке самолета. Ведь всякое повышение давления воздуха перед компрессором создает в 6—7 раз большее повышение давления за компрессором в зависимости от того, какова степень повышения давления в самом компрессоре.

Значит, скоростной напор и есть то средство, которое позволяет предельно упростить турбореактивный двигатель, освободив его от самых сложных агрегатов — компрессора и турбины?

Да, это так. Но тут нужно иметь в виду следующее. Пока скорость полета меньше скорости звука, давление воздуха, создаваемое скоростным напором, не превышает практически нескольких десятых атмосферы, т е. нескольких десятых килограмма на квадратный сантиметр. Этого достаточно для того, чтобы двигатель работал, но совершенно недостаточно для того, чтобы его работа была выгодной, чтобы он развивал большую тягу и расходовал мало топлива. Поэтому при дозвуковой скорости полета прямоточный двигатель несравненно хуже турбореактивного.

При сверхзвуковых же скоростях полета один только скоростной напор может создать внутри двигателя давление в несколько атмосфер, как в современных турбореактивных двигателях, и даже в несколько десятков атмосфер. Так, например, при полете со скоростью, в 2 раза превышающей скорость звука, т. е. примерно со скоростью, равной 2400 км/час, скоростной напор теоретически увеличивает давление в 7 с лишним раз, при полете со скоростью, превышающей скорость звука втрое, т. е. около 3600 км/час, — в 36 раз, а при полете со скоростью, превышающей скорость звука вчетверо, т. е. более 4800 км/час,— в 150 раз!

Конечно, при этих условиях никакой нужды в компрессоре для сжатия воздуха нет. Но что же останется от турбореактивного двигателя, если выбросить компрессор и приводящую его газовую турбину? Одна только камера сгорания в средней части длинной трубы. И вот эта примитивная топка превращается в замечательный двигатель, если она движется с огромной, сверхзвуковой скоростью. Такая «летающая топка» способна развивать колоссальную тягу, необходимую для осуществления скоростного полета, и расходовать при этом меньше топлива на 1 кг тяги, чем любой другой известный реактивный двигатель. Да и по весу вряд ли найдется другой двигатель, способный конкурировать с прямоточным — что может быть легче простой тонкостенной трубы!

Однако в действительности прямоточный двигатель не так прост, как это может показаться из рассмотрения его принципиальной схемы, хотя все же его конструктивная простота поразительна.

Вот как, например, выглядит прямоточный двигатель, предназначенный для полета со скоростью, меньшей скорости звука. Конечно, интересней было бы познакомиться с двигателем, рассчитанным на сверхзвуковой полет, но двигатель для дозвуковых скоростей полета проще и поэтому знакомство лучше начать с него.

Рис. 43. Прямоточный воздушно-реактивный двигатель, предназначенный для полета со скоростью, меньшей скорости звука: а — двигатель, установленный на самолете (в полете); б — общий вид двигателя (схема); в — кольцо топливных форсунок

Внешне прямоточный воздушно-реактивный двигатель очень похож на турбореактивный — такая же удлиненная сигара. Иногда, правда, он имеет более простую форму длинной цилиндрической трубы, к которой спереди и сзади присоединены усеченные конусы (рис. 46). Но стоит заглянуть внутрь двигателя через одно из его торцовых отверстии чтобы стало очевидно принципиальное различие обоих двигателей.

Рис. 47. Так выглядит турбореактивный двигатель, если смотреть на него спереди и сзади:

а — вид спереди на двигатель с осевым компрессором; б — сзади на двигатель с центробежным компрессором

Если мы посмотрим на турбореактивный двигатель спереди, предположим, на двигатель с осевым компрессором (рис. 47), то увидим, что его входное отверстие настолько загромождено, что даже трудно понять сначала, куда входит воздух, поступающий в двигатель. В центре входного отверстия мы увидим большого размера колпак, который иногда довольно далеко выступает вперед, — это закрытый обтекателем вал компрессора. Часто под этим обтекателем скрыт и стартер, служащий для запуска двигателя, и другие агрегаты. По радиусам от вала направлены многочисленные лопатки компрессора. За лопатками первой ступени компрессора видны неподвижные лопатки, затем лопатки следующей ступени, за ними опять лопатки и т. д.

Рис. 48. Вид спереди на прямоточный двигатель круглого сечения (в отличие от турбореактивного прямоточный двигатель может иметь и не круглое, а эллипсовидное или прямоугольное сечение)

Почти такая же картина откроется перед нами и при взгляде на двигатель сзади через реактивное сопло, Мы опять увидим колесо, на этот раз турбинное, с радиальными лопатками. Создается впечатление, что весь двигатель изнутри имеет одни лопатки. Действительно, в современном турбореактивном двигателе с осевым компрессором иной раз насчитывается более 2000 лопаток. Неудивительно, что на изготовление лопаток компрессора и турбины приходится большая часть труда, затрачиваемого на изготовление всего турбореактивного двигателя.

Следует учесть, что каждая лопатка имеет сложный криволинейный контур и требует точной и тщательной обработки. Вместе с тем часто лопатки, в особенности лопатки турбины, изготовляются из твердого, трудно обрабатываемого сплава.

Совсем иная картина предстанет перед нами, если мы заглянем внутрь прямоточного воздушно-реактивного двигателя. Заглянув в него спереди, мы увидим только где-то внутри ажурные горелки камеры сгорания (рис. 48). Те же горелки мы увидим, когда заглянем в выходное отверстие двигателя. Весь двигатель внутри «пуст», и ничто не мешает воздуху течь через него, что и иллюстрируется шуточным рисунком (рис. 49). Поэтому через прямоточный воздушно-реактивный двигатель может протекать большее количество воздуха, чем через двигатель турбореактивный, что очень важно, так как тяга двигателя при прочих равных условиях прямо пропорциональна секундному количеству протекающего через него воздуха.

Рис. 49. Прямоточный воздушно-реактивный двигатель внутри «пуст». На этом шуточном рисунке изображено, как механик «чистит» двигатель артиллерийским банником

Понятно, что «пустой» прямоточный воздушно-реактивный двигатель несравненно легче, чем турбореактивный двигатель того же диаметра. Это имеет огромное значение, ибо если в авиации вес всегда был злом, то вдесятеро большим злом он становится при сверхзвуковых скоростях полета, когда каждый лишний грамм веса приводит к ощутительному увеличению мощности, потребной для осуществления полета.

Чтобы познакомиться с тем, как работает прямоточный двигатель, воспользуемся знакомым нам приемом — поместим двигатель, имеющий прозрачные стенки, в искусственные цветные воздушные океаны — зеленый и синий. Напомним еще раз, что воздух этих океанов имеет свойство менять свою окраску при изменении скорости движения и давления: с их увеличением цвет воздуха темнеет. При этом снова сделаем двигатель неподвижным, а воздух движущимся относительно него со скоростью, равной скорости полета. Так как мы знакомимся с дозвуковым двигателем, то предполагается, что скорость полета не превосходит скорости звука.

Мы, конечно, будем отмечать только основные явления в работающем двигателе, Конструктивно прямоточный двигатель относительно прост, но совсем не так просты протекающие в нем рабочие процессы. При их изучении ученым приходится преодолевать немало трудностей.

Представим себе прямоточный воздушно-реактивный двигатель в зеленом океане. Сначала проследим за изменением скорости воздуха, протекающего через двигатель. Пока скорость полета невелика, воздушный океан, набегающий на двигатель, имеет светлозеленый цвет. Воздух входит внутрь двигателя через передний конус и выходит из нею через задний конус. Какова роль этих конусов? Что изменится в работе двигателя, если мы станем менять их форму, делая их то более длинными, то короткими, т. е. изменяя площадь сечения для прохода воздуха? А нельзя ли вовсе обойтись без конусов?

Чтобы дать ответ на эти вопросы, очень важные для понимания самой сути работы прямоточного воздушно-реактивного двигателя, займемся исследовательской работой. Будем проводить эксперименты в наших цветных океанах, благо эти «эксперименты» не связаны с такими трудностями, какие встречаются в действительных условиях исследования двигателей.

Для успешного проведения испытаний соорудим специальную установку, показанную на рис. 50. Из трубы большого диаметра вытекает воздух, который затем поступает в наш испытуемый двигатель. Скорость движения воздуха, подаваемого мощным вентилятором, можно менять путем изменения числа оборотов вентилятора; этим мы можем имитировать изменение скорости полета. Чтобы можно было измерить тягу, развиваемую двигателем, укрепим его на испытательном станке, устройство которого легко понять из рисунка.

Рис. 50. На этой установке мы будем проводить наши «исследования» прямоточного воздушно-реактивного двигателя

Для того чтобы не произошло ошибки при измерении тяги, нам придется пойти еще на одно ухищрение.

Поток воздуха, обтекающего двигатель снаружи, естественно, действует на его внешнюю поверхность и создает силу, направленную против полета. Вследствие этого измеренная тяга окажется меньше действительной. Чтобы избавиться от вредного влияния внешнего потока, поставим перед двигателем щиток, который отклонит воздушный поток, так что он не будет обтекать двигатель снаружи.

Теперь, когда все подготовительные работы закончены, можно начинать наш эксперимент. Не запуская двигатель (не включая подачу топлива), запустим вентилятор. Из трубы начнет вытекать струя воздуха — она будет иметь более темный цвет, чем окружающий нашу испытательную установку светлозеленый океан; это понятно — океан неподвижен, а воздух в струе движется.

Как только струя воздуха поступит внутрь двигателя, с ней сейчас же начнут происходить изменения. Чем дальше продвигается воздушный поток по переднему расходящемуся конусу двигателя, тем светлее становится его цвет; это свидетельствует о том, что скорость потока уменьшается. В синем океане мы увидели бы противоположную картину: в нем по мере движения внутри переднего конуса цвет воздуха становится все более темным; следовательно, давление его увеличивается. Так оно и должно быть, ибо когда скорость воздуха в потоке уменьшается, то давление его увеличивается — таков вывод закона Бернулли.

В этом и заключается назначение входного конуса двигателя — в нем осуществляется торможение воздушного потока и сжатие воздуха. Следовательно, именно эта часть прямоточного воздушно-реактивного двигателя, называющаяся диффузором, и выполняет функции компрессора. Чтобы сжатие воздуха происходило без больших потерь, угол конусности диффузора должен быть возможно меньшим; поэтому диффузор обычно имеет большую длину.

В цилиндрической средней части двигателя состояние воздуха не изменяется, так как сгорания пока не происходит и воздух движется здесь с постоянной скоростью, при неизменном давлении.

Изменения начнутся снова, как только воздух поступит в выходной конус двигателя. В зеленом океане цвет потока в этом конусе будет темнеть, а в синем, очевидно, светлеть. Это значит, что в выходном конусе скорость движения воздуха увеличивается, а давление его падает. Значит, в этой части двигателя воздух расширяется; работа расширения затрачивается на разгон потока. Именно таково назначение этой важной части двигателя, называющейся реактивным соплом. Без сопла скорость истечения и, следовательно, тяга двигателя будут небольшими.

Пока внутри двигателя не происходит сгорания топлива, он, конечно, не будет развивать тяги. Действительно, скорость истечения воздуха из двигателя будет в этом случае такой же, как и скорость входящего в него воздуха. А ведь тяга прямоточного двигателя, как известно, зависит от разности скоростей движения воздуха на выходе из двигателя и на входе в него; когда эта разность равна нулю, то и тяга также равна нулю. Это понятно — нет ускорения воздуха в двигателе, нет и силы реакции.

Если мы увеличим скорость полета, что равносильно увеличению скорости воздушного потока, вытекающего из трубы в нашем эксперименте, то зеленая струя, втекающая в двигатель, приобретет более темный цвет. Более темной станет и струя, вытекающая из двигателя. Потемнеет поток и в средней части двигателя — там воздух также будет двигаться с большей скоростью.

Но можно заставить воздух протекать с большей скоростью по средней части двигателя и не увеличивая скорости полета. Легко сообразить, что для этого достаточно укоротить входной и выходной конусы двигателя — диффузор и сопло, т. е. обрезать их так, чтобы сечения входного и выходного отверстий двигателя стали большими. В результате этого торможение и сжатие воздуха в диффузоре уменьшатся и скорость воздушного потока в средней части двигателя увеличится, станет ближе к скорости полета. Конечно, и при этом двигатель еще не будет развивать тяги.

Так, уменьшая или увеличивая площади входного и выходного отверстий, можно воздействовать на воздушный поток, протекающий внутри двигателя, изменять скорость и количество протекающего через двигатель воздуха.

Но продолжим наши эксперименты. Что случится, если площади входного и выходного отверстий двигателя не будут равны между собой?

Пусть, например, площадь входного отверстия будет больше площади выходного. Тогда очевидно, что воздух, который мог бы войти внутрь двигателя через входное отверстие, не сможет выйти из него через суженное выходное отверстие. В этом случае с воздушным потоком происходит то же, что и с воздушным потоком, поступающим в турбореактивный двигатель при увеличении скорости полета. Перед входным отверстием двигателя образуется воздушная воронка, которая своей широкой стороной обращена к двигателю. Мы увидим эту воронку в зеленом океане — она будет светлее окружающей среды, следовательно, здесь происходит торможение, и скорость движения воздуха в воронке уменьшается. В синем же океане эта воронка, очевидно, будет более темной, так как давление воздуха в ней растет. Следовательно, если мы для увеличения входного отверстия укоротим диффузор, обрезав его переднюю часть, то отрезанная часть как бы восстановится в воздушном потоке непосредственно перед двигателем. Сечение же воздушной струи, входящей в двигатель, будет попрежнему равным сечению выходного отверстия двигателя.

Можно стать свидетелями красивой картины, если снабдить двигатель устройством, изменяющим площадь его выходного сечения. Попробуем уменьшать это отверстие, и в зеленом океане перед двигателем появится светлая воронка; чем меньше отверстие, тем светлее эта воронка, тем уже ее горлышко. Если снова увеличивать выходное отверстие, то воронка перед входным отверстием станет темнеть и исчезнет вовсе, когда площадь выходного отверстия станет равной площади входного. При дальнейшем увеличении выходного отверстия воронка появится опять, но теперь она будет обращена к двигателю своим меньшим сечением. Цвет же воронки, наоборот, будет теперь становиться более темным, чем цвет окружающего зеленого океана; это значит, что движение воздуха в ней будет не тормозиться, а ускоряться.

Так при помощи регулируемого сопла можно изменять количество протекающего через двигатель воздуха: чем меньше выходное отверстие сопла, тем меньшее количество воздуха протекает через двигатель. Таким регулируемым соплом иногда снабжаются как турбореактивные, так и прямоточные воздушно-реактивные двигатели.

Теперь, когда мы познакомились с особенностями течения воздуха через неработающий двигатель, давайте запустим его, включив подачу топлива и электрическое зажигание. Из топливных форсунок, установленных в начале средней, цилиндрической части двигателя, начнут под давлением вытекать струи топлива. В стремительно текущем воздухе произойдет распыление струи топлива на миллионы мельчайших капелек, в результате чего оно быстро испарится, образуя с воздухом горючую смесь. Электрическая искра свечи зажигания, установленной в стенке двигателя, воспламенит эту смесь, а затем сгорание, раз начавшись, будет поддерживаться автоматически; новые порции смеси будут воспламеняться раскаленными газами — продуктами сгорания предыдущих порций.

Как только начнется сгорание, ранее неподвижно стоявшая на нуле стрелка динамометра дрогнет и сдвинется с места — это значит, что двигатель начнет развивать тягу. Чем больше будет подаваться топлива, тем горячее будут газы — продукты сгорания и, следовательно, тем больше будет тяга двигателя.

Как же изменится картина протекания воздуха через двигатель, когда начнется сгорание?

Пусть двигатель, имеющий одинаковые входное и выходное отверстия, находится в зеленом воздушном океане. Пока сгорания не происходит, струи воздуха, входящего в двигатель, неразличимы в этом океане, так как они имеют такой же цвет. Но как только сгорание начнется, воздух, входящий в двигатель, станет видимым. Перед двигателем образуется такая же светлая воронка, расширяющаяся по направлению к входному отверстию, какую мы видели, когда уменьшали выходное отверстие. Значит, сгорание топлива действует на поток так же, как уменьшение выходного отверстия: он при этом начинает тормозиться еще перед двигателем. Скорость воздуха, входящего в двигатель, равно как и его количество при этом уменьшаются. Чем больше сгорает топлива, тем меньше воздуха входит в двигатель. Создается такое впечатление, будто какая-то огневая плотина встает на пути входящего воздуха. Это явление так обычно и называется тепловым подпором.

Образование теплового подпора объясняется следующим.

Когда происходит сгорание топлива, то за счет выделяющегося при этом тепла температура воздуха, протекающего через двигатель, повышается (для простоты мы считаем здесь, как и выше, что сгорание есть простой подогрев воздуха). Но объем горячего воздуха больше, чем холодного, поэтому для прохода того же количества горячего воздуха нужны и большие проходные сечения. Правда, скорость горячего воздуха тоже увеличивается, однако увеличение скорости не компенсирует роста объема воздуха, и потребные проходные сечения с ростом температуры воздуха растут. Так как в действительности площадь выходного отверстия двигателя остается неизменной, то при сгорании оно не может пропускать прежнего количества воздуха. Поэтому при увеличении температуры продуктов сгорания количество воздуха, протекающего через двигатель, уменьшается.

Подвод тепла к потоку воздуха в двигателе вызывает еще одно интересное и важное явление. Так как средняя часть двигателя — камера сгорания — представляет собой цилиндрическую трубу и ее проходное сечение по длине остается неизменным, то по мере увеличения температуры воздуха и, следовательно, его объема скорость движения воздуха вдоль камеры сгорания растет. Но если растет скорость и, следовательно, кинетическая энергия воздушного потока, то должна уменьшаться его потенциальная энергия, т. е. давление воздуха при подводе тепла должно падать (рис. 51). Так и происходит в действительности в двигателе — давление в камере сгорания не остается постоянным, оно уменьшается тем сильнее, чем больше увеличение температуры воздуха (газов) в результате сгорания. Если бы мы хотели сохранить давление в камере сгорания постоянным, то следовало бы сделать ее не цилиндрической, а в виде расширяющейся трубы (рис. 52).

С явлением теплового подпора связан один интересный парадокс, относящийся к прямоточным двигателям. Мы говорили выше о той роли, которую играет в двигателе диффузор — он обеспечивает сжатие воздуха. Но вместе с тем мы знаем, что в результате теплового подпора давление воздуха вследствие его торможения перед двигателем увеличивается. Может быть, это позволит обойтись вообще без диффузора? А может быть, и сопло не нужно — ведь в результате сгорания увеличивается и скорость воздуха, текущего по камере сгорания? Но во что же превратится прямоточный воздушно-реактивный двигатель, если мы лишим его диффузора и сопла? В простую тонкостенную цилиндрическую трубу — камеру сгорания. Может ли такая труба развивать тягу?

Рис. 51. Так меняется давление в работающем (в полете) прямоточном воздушно-реактивном двигателе при разных величинах площади выходного сечения. Кривые показывают отношение избыточного давления в двигателе к скоростному напору набегающего потока воздуха (избыточное давление соответствует знаку +, разрежение — знаку —). Здесь показана и форма потока перед двигателем:

а — сечение входного отверстия таково, что давление воздуха перед двигателем не меняется, б — входное отверстие уменьшено, воздух перед двигателем тормозится! его давление увеличивается, в — входное отверстие увеличено, воздух перед двигателем разгоняется, давление его уменьшается

Конечно, не может.

В самом деле, представьте себе такую трубу. В нее с большой скоростью втекает воздух и с еще большей скоростью, получающейся в результате подогрева, вытекает из нее. Следовательно, в двигателе воздух ускоряется, а это неизбежно связано с образованием реактивной силы Но тогда выходит, что такая труба все-таки может быть двигателем, так как она как будто должна развивать тягу. Однако на самом деле этого не получается. Чтобы со стороны воздуха (газов) на двигатель действовала какая-либо сила, внутри него должна быть такая поверхность, на которую действовало бы избыточное давление воздуха (силами трения воздуха о внутреннюю поверхность двигателя пренебрегаем). В прямоточном воздушно-реактивном двигателе сила тяги создается давлением воздуха, протекающего через двигатель, на внутреннюю поверхность стенки диффузора, именно здесь «приложена» сила тяги этого двигателя. Но в цилиндрической трубе такой поверхности нет. Понятно, что давление на стенки цилиндра не может дать силу тяги, которая должна быть направлена по оси двигателя, т. е. параллельно этим стенкам. Значит, действительно, такая труба не может развивать силу тяги. Где же мы ошибаемся?

Рис. 52. Таким должен быть прямоточный двигатель, чтобы давление в его камере сгорания не менялось. Сверху показано изменение давления в двигателе, снизу — изменение скорости

Ошибка эта на первый взгляд незаметна, и надо сказать, что описанный здесь парадокс нередко ставил в тупик начинающих знакомиться с прямоточным двигателем. Разгадка заключается в том, что, оказывается, не весь воздух, поступающий в двигатель спереди, вытекает из него через выходное отверстие. Часть воздуха, попав в двигатель, меняет направление на обратное и вытекает из него вперед через входное отверстие (рис. 53). Соотношение количеств воздуха, вытекающего через входное и выходное отверстия, получается таким, что результирующее воздействие воздуха на двигатель, представляющий собой цилиндрическую трубу, равняется нулю.

Рис. 53. Двигатель без диффузора тяги не создает, так как часть воздуха, попав в двигатель, меняет свое направление на обратное и вытекает вперед, в результате чего результирующее воздействие воздуха на двигатель равно нулю

Проведенное выше рассмотрение даже простейших процессов, протекающих в дозвуковом прямоточном воздушно-реактивном двигателе, показывает, что эти процессы, несмотря на чрезвычайную конструктивную простоту двигателя, оказываются далеко не такими простыми. Поэтому неудивительно, что теория прямоточных воздушно-реактивных двигателей считается исключительно сложной.

Но еще большую сложность представляет изучение процессов, происходящих в прямоточном воздушно-реактивном двигателе, рассчитанном на сверхзвуковой полет.

Конечно, принципиально процессы в сверхзвуковом прямоточном воздушно-реактивном двигателе должны быть такими же, как и в дозвуковом: сначала происходит сжатие воздуха в диффузоре, затем сгорание и, наконец, расширение нагретого воздуха (газов) в сопле. Особых осложнений не было бы, если бы торможение сверхзвукового потока в диффузоре можно было бы осуществить так же просто, как и дозвукового. На самом деле торможение сверхзвукового потока имеет принципиально отличный характер по сравнению с торможением потока дозвукового.

Можно ли осуществить постепенное, плавное торможение воздушного потока, имеющего сверхзвуковую скорость, подобно тому, как в обычном дозвуковом диффузоре, о котором шла речь выше, осуществляется торможение дозвукового потока? Теоретически — да, возможно. Правда, по форме такой сверхзвуковой диффузор должен был бы отличаться от дозвукового. Первая часть сверхзвукового диффузора должна представлять собой в противоположность дозвуковому не расширяющуюся, а, наоборот, суживающуюся трубу (рис. 54).

Рис. 54. Теоретическая схема сверхзвукового прямоточного двигателя. Показан характер изменения давления и скорости воздуха в двигателе такой схемы

Это объясняется тем, что при торможении сверхзвукового потока сильно проявляется сжимаемость воздуха. Плотность воздуха в результате сжатия начинает по мере его торможения быстро увеличиваться, причем рост плотности происходит даже быстрее, чем уменьшается скорость течения. Поэтому для протекания одного и того же количества воздуха по мере торможения потока требуются все меньшие проходные сечения.

Другое дело, когда скорость потока меньше скорости звука; плотность воздуха при торможении растет в этом случае медленнее, чем уменьшается скорость течения воздуха. Вот почему при этом воздух часто считают вообще несжимаемым. Вследствие этого дозвуковой диффузор представляет собой расширяющуюся трубу. Очевидно, что в сверхзвуковом диффузоре такая расширяющаяся труба должна быть во второй его части. Действительно, когда скорость воздуха в первой, сужающейся части сверхзвукового диффузора, постепенно уменьшаясь, сравняется со скоростью звука в воздухе, то для дальнейшего торможения воздуха понадобится дозвуковой диффузор. Поэтому сверхзвуковой диффузор представляет собой трубу, как бы составленную из двух труб: сначала сужающейся, а потом расширяющейся. В самой узкой части трубы, называемой горловиной диффузора, скорость движения воздуха должна в точности равняться скорости звука в этом воздухе.

Легко видеть, что такую же форму должна иметь труба, в которой мы захотели бы осуществить обратный процесс — разогнать дозвуковой поток до сверхзвуковой скорости. Такое сверхзвуковое сопло (соплом называют устройство для увеличения скорости течения газа) тоже должно было бы иметь вначале сужающуюся часть, а затем расширяющуюся. В сужающейся части скорость потока постепенно будет расти, пока в самой узкой части — горловине сопла — не станет в точности равной скорости звука. Дальнейшее увеличение скорости выше скорости звука будет происходить в расширяющейся части. Такие сверхзвуковые сопла — их называют обычно соплами Лаваля по имени известного шведского конструктора паровых турбин — широко применяются в технике. Находят они применение и в реактивной технике, где часто встречаются сверхзвуковые скорости течения газов. В частности, таким должно быть, очевидно, и сопло сверхзвукового прямоточного двигателя. Поэтому сверхзвуковой прямоточный воздушно-реактивный двигатель иногда и рисуют схематически в виде цилиндрической трубы, имеющей спереди сверхзвуковой диффузор в виде двух конусов (сужающегося и расширяющегося), а сзади — сверхзвуковое сопло такой же формы (см, рис. 54).

Однако в действительности таких двигателей не существует. Объясняется это тем, что осуществить постепенное, плавное торможение сверхзвукового потока с помощью сверхзвукового диффузора пока еще не удалось. Опыт показывает, что сверхзвуковую струю не удается «заманить» в такой диффузор. Оказывается, что в сверхзвуковой струе еще перед диффузором возникает так называемый скачок уплотнения, или ударная волна, в которой происходит резкое, скачкообразное торможение потока и переход от сверхзвуковой к дозвуковой скорости. В результате этого в диффузор входит воздух, имеющий уже дозвуковую скорость.

Образование скачка уплотнения перед входом в сверхзвуковой прямоточный воздушно-реактивный двигатель играет такую большую роль в теории этих двигателей, так сильно сказывается на их характеристиках, что стоит подробнее рассмотреть физические явления, происходящие в скачке.

Физическая природа скачка уплотнения связана с особенностями распространения возмущений, т. е. изменений давления в воздухе или в любом другом газе. Представьте себе снова, что нас окружает синий воздушный океан, окраска которого меняется в зависимости от изменения давления. Если в этом океане нет источников возмущений, в результате которых изменяется давление воздуха, то цвет океана всюду ровный, светлый, давление везде одинаково. Но вот внезапно в этом океане появилось небольшое темное пятно. Это значит, что в этом месте внезапно повысилось давление, например, в результате сгорания ничтожной крупинки пороха. И тотчас же во все стороны от этого пятна начнет распространяться по ранее невозмущенному океану темная волна повышающегося давления. Точно в очаге возмущения вдруг забил синий фонтан, заливающий все вокруг. Даже в местах, далеко отстоящих от этого «фонтана», цвет океана потемнеет, когда туда дойдет возмущение в виде волны повышенного давления.

Мы на каждом шагу в повседневной жизни встречаемся с этими волнами возмущения в воздухе, только мы их не видим, а... слышим. В самом деле, если бы в окружающем нас воздухе не распространялись возмущения, то мы лишились бы всего царства звуков, мир стал бы безмолвным. Звук — это и есть возмущение, очень небольшое по величине. Когда это возмущение доходит до нашего уха, то оно действует на барабанную перепонку и воспринимается нами как звук. На высоте в сотни километров, где воздух крайне разрежен, мы не услышали бы артиллерийского выстрела даже в том случае, если бы пушка стреляла на расстоянии одного метра от нашего уха — там не по чему распространяться возмущениям.

Скорость звука, т. е. скорость распространения небольших возмущений в воздухе, зависит только от температуры воздуха — летом она больше, чем зимой, на большой высоте меньше, чем у уровня моря. За одну секунду звуковая волна проходит путь в 330—350 м. Вот почему, зная скорость звука, можно установить, например, как далеко от нас бушует гроза: свет от молнии доходит до глаза практически сразу, а громовой раскат доносится лишь через некоторое время, в зависимости от расстояния.

Теперь представьте себе, что источник звука, допустим самолет, сам начал двигаться. Пусть, например, он движется издалека по направлению к нам со скоростью, меньшей скорости звука. Услышим ли мы звук приближающегося самолета? Безусловно, услышим, это каждому известно. Чем ближе к нам самолет, тем громче звук. Наконец, самолет с ревом промчался над нами. Но вот показался другой самолет. Он стремительно приближается к нам, но на этот раз мы его не слышим, он мчится к нам совершенно бесшумно. Все ближе к нам таинственный «бесшумный» самолет, вот он уже над нашей головой, еще мгновение — и мы оглушены мощным ревом. Почему же мы не слышали приближения этого самолета, хотя звук, издаваемый им, сильнее, чем звук, которым сопровождался полет первого самолета?

Объясняется это просто. Когда скорость движения источника звука больше, чем скорость распространения самого звука в воздухе, то звук не обгоняет источника, он движется вместе с ним. Вот почему так неожиданно и бесшумно обычно появляются у нас над головой реактивные самолеты — их скорость близка к скорости звука.

Поэтому и англичане, жители Лондона, до сих пор вспоминают «бесшумные» ракеты Фау-2, которыми немцы бомбили Лондон в конце минувшей войны: эти ракеты летали со скоростью, значительно большей скорости звука.

Какая же картина предстанет перед нами в этом случае в нашем искусственном синем воздушном океане? Чтобы упростить эту картину, представим себе, что мы наблюдаем движение небольшой звучащей частицы, «звучащей точки» (рис. 55). Вот частица излучила звуковую волну: возникло темное кольцо в светлосинем океане. Это кольцо стало расти, как мыльный пузырь. Но в это время сама частица передвинулась и, так как ее скорость больше скорости звука, то она обогнала это расширяющееся кольцо. В новом положении частица испустила следующую звуковую волну, и так дальше. Конечно, частица может звучать непрерывно, но мы в данном случае фиксируем ее положение через определенные промежутки времени. Через некоторое время мы увидим в светлосинем океане резко очерченный темный конус, в вершине которого будет находиться стремительно движущаяся частица — источник звука. Внутри этого конуса будут заключены все излученные «звучащей точкой» звуковые волны, снаружи же воздушный океан останется совершенно спокойным, невозмущенным. Темная поверхность конуса разделила весь океан на две области — возмущенную и невозмущенную. Внутри конуса нас оглушает рев самолета, вне его царит абсолютное безмолвие.

Рис. 55. Так образуется конус возмущения при движении в воздухе какой-нибудь частицы со сверхзвуковой скоростью

Для появления этой картины в нашем синем океане не обязательно, конечно, чтобы двигалась именно звучащая частица. Мы увидим ту же картину и в том случае, если движущаяся частица будет «молчать». Перед движущимся телом, а значит и перед нашей частицей, воздух немного сжимается, давление его несколько повышается. Это повышение давления, небольшое по величине, будет распространяться во все стороны по тем же законам, что и звук, ибо звук тоже есть небольшое повышение давления. Судя по самой картине, мы даже не сможем сказать, звучит движущаяся частица или она безмолвна. При сверхзвуковом движении «безмолвной» частицы в синем океане появится тот же конус «возмущения». Вне этого конуса воздушный океан не получает никаких сигналов о движении частицы — все возмущения скрыты внутри этого конуса.

Оказывается, чтобы увидеть конус возмущения, вызываемого телом, движущимся со сверхзвуковой скоростью, вовсе не обязательно пользоваться искусственным «синим» воздухом, чувствительным к малейшему изменению давления. С помощью специальных методов можно сфотографировать такой конус и в обычном воздухе, пользуясь тем, что при уплотнении воздуха в волне возмущения меняются его оптические свойства. Эти методы позволяют сделать видимыми невидимые простым глазом явления в реальном прозрачном воздушном океане.

Можно увидеть подобный «сверхзвуковой» конус и простым глазом, но только не в воздухе, а на поверхности воды. Физические причины возникновения конуса возмущения в этом случае оказываются другими, они не связаны со скоростью звука, но сама по себе картина получается в точности такой же. Этой аналогией мы обязаны тем, что по поверхности воды волны тоже движутся с вполне определенной скоростью, как и звук в воздухе. Если по водной глади скользит какая-нибудь букашка со скоростью большей, чем скорость распространения волн, то эта букашка также окажется в вершине конуса возмущения. Все круговые волны, вызванные движением букашки, окажутся заключенными внутри этого конуса, а снаружи его поверхность воды будет попрежнему совершенно гладкой, невозмущенной. Да кто из нас не наблюдал расходящихся по воде в обе стороны «усов», возникающих при быстром движении катера или глиссера?

Но эта аналогия с движением по воде может быть продлена и дальше. Если по воде движется не букашка, а быстроходный катер, то он, рассекая воду, поднимает перед собой мощную волну, водяной вал. По обе стороны от носа катера встают высокие водяные буруны, два водяных вала, которые постепенно, на сравнительно большом расстоянии от катера, превращаются в упомянутые выше обычные «усы».

Нечто похожее происходит и при движении со сверхзвуковой скоростью в воздухе не «точки», а какого-нибудь большого тела. Перед ним возникает мощный воздушный «вал», волна уплотненного воздуха, переходящая в два воздушных «буруна» по обе стороны от тела, и уже только на значительном расстоянии эти «буруны» превращаются в обычный конус возмущения. В синем воздушном океане мы увидим резко очерченную, темную-темную переднюю, или головную, как ее называют, волну, постепенно светлеющую по обе стороны и переходящую в светлую, а значит, слабую коническую волну возмущения.

Вот такая же головная волна возникает и перед движущимся со сверхзвуковой скоростью прямоточным двигателем (рис. 56). Струи воздуха, мчащегося со сверхзвуковой скоростью, наталкиваются на эту волну, на стену уплотненного воздуха. Происходит удар, как о всякую преграду, — не зря эта волна носит название ударной волны. Почти внезапно, на ничтожно коротком расстоянии, давление воздуха резко увеличивается, воздух сжимается, уплотняется. Поэтому ударную волну и называют часто скачком уплотнения. Скорость воздуха в скачке резко уменьшается, и по другую сторону скачка она становится дозвуковой. В зеленом воздушном океане, чувствительном к скорости движения воздуха, цвет невозмущенного океана перед скачком темный-темный, а затем знакомая нам резко очерченная граница отделяет его от светлозеленого воздуха — за скачком воздух движется со скоростью, меньшей скорости звука. Чем больше была скорость до скачка, тем меньше она становится после него, значит, тем резче, сильнее, или, как говорят, интенсивнее, этот скачок.

Какое же влияние оказывает образование скачка уплотнения перед диффузором на работу прямоточного воздушно-реактивного двигателя?

Рис. 56. Перед диффузором двигателя, летящего со сверхзвуковой скоростью, образуется головная волна:

а — схема волны; б — фотоснимок волны, полученный в сверхзвуковой аэродинамической трубе

Оказывается, образование скачка уплотнения воздуха перед диффузором приводит к значительному ухудшению характеристик прямоточного (как и любого другого) воздушно-реактивного двигателя. Это объясняется тем, что сжатие в скачке очень невыгодно, оно связано с большими потерями энергии, так как струя воздуха, проходящая через скачок, претерпевает удар. Всякий же удар, как известно, все равно, твердых тел или жидких и газообразных веществ, представляет собой резкое, мгновенное уменьшение скорости движения. При ударе часть кинетической энергии движущегося тела переходит в тепло и, таким образом, теряется, так как не может быть использована для совершения механической работы. Это тепло, например, расплавляет свинцовую пулю, ударившуюся о стальную броню, или испаряет ворвавшийся с огромной скоростью в земную атмосферу небесный камень, в результате чего образуется метеор — падающая звезда. То же происходит и с воздушной струей, проходящей через скачок уплотнения. Чем интенсивнее скачок, т. е. чем сильнее уменьшается в нем скорость потока, тем больше эта потеря энергии в скачке.

Так как часть кинетической энергии воздушного потока в скачке уплотнения переходит в тепло, то давление в струе за скачком будет меньше, чем было бы при условии постепенного торможения до этой же скорости, т. е. в случае, когда вся кинетическая энергия затрачивается на сжатие воздуха.

Особенно велики потери в так называемом прямом скачке уплотнения, т. е. в таком, который располагается перпендикулярно направлению струи. А такой скачок и возникает перед диффузором движущегося со сверхзвуковой скоростью воздушно-реактивного двигателя, в передней части головной волны. Насколько велики эти потери, видно из того, что при скорости полета, вдвое превосходящей скорость звука, давление за скачком будет примерно на 30% меньше, чем при плавном торможении до той же скорости. А при скорости полета, равной четырем скоростям звука, давление в скачке увеличится в 20 раз, тогда как при плавном, постепенном торможении без потерь оно выросло бы в 150 раз, т. е. в 7,5 раза сильнее!

Мы видим, что особенно велики потери в скачке в тех случаях, когда велика скорость потока перед скачком, т. е. при больших скоростях полета. А ведь именно для этих скоростей, как указывалось выше, и предназначены главным образом прямоточные двигатели. Поэтому проблема уменьшения потерь при сжатии воздуха приобретает для прямоточных воздушно-реактивных двигателей первостепенное значение — от решения этой проблемы в большой степени зависит будущее этих двигателей. Ведь уменьшение давления внутри прямоточного двигателя означает уменьшение его тяги и увеличение расхода топлива. Достаточно указать, например, что при скорости полета, равной утроенной скорости звука, потери в скачке уменьшают тягу двигателя в четыре раза и увеличивают удельный расход топлива на 1 кг тяги более чем на 70%.

Но как можно уменьшить эти потери, если нельзя устранить их причину, т. е. скачок перед двигателем?

Ключ к такому уменьшению потерь при сжатии воздуха, поступающего в двигатель при сверхзвуковой скорости полета, был найден советскими учеными — академиком С. А. Христиановичем, членом-корреспондентом Академии наук СССР Г. И. Петровым и другими. Он заключается в замене прямого скачка перед двигателем косым скачком, т. е. таким скачком, который располагается под углом к направлению потока.

Теория и опыт показывают, что потери энергии в косом скачке оказываются меньшими, чем в прямом. Это связано с особенностями течения воздуха через косой скачок. Для того чтобы понять эти особенности, используем следующий прием (рис. 57). Разложим скорость потока на две составляющие, используя правило параллелограмма скоростей. Одна из этих составляющих будет направлена перпендикулярно плоскости скачка, а другая — параллельно ей. И вот оказывается, что при течении воздуха через косой скачок этот скачок скажется лишь на той составляющей истинной скорости потока, для которой он является, прямым, т. е. на составляющей, перпендикулярной скачку. Вторая составляющая, параллельная скачку, не изменится вовсе. Так бывает и в случае удара твердых тел — прямой удар камня или пули о стенку будет всегда более сильным, чем косой, рикошетирующий.

Это обстоятельство приводит к двум важным следствиям. Во-первых, направление потока при переходе через косой скачок изменится, тогда как прямой скачок направления потока не изменяет, уменьшая лишь величину скорости. Направление же потока за косым скачком изменится так, что угол между потоком и скачком уменьшится. Во-вторых, и это для нас самое главное, интенсивность косого скачка будет меньшей чем прямого. А ведь чем интенсивнее скачок, чем больше разница скоростей до скачка и после него, чем круче получается эта ступенька изменения скорости, тем больше потери в скачке.

Рис. 57. Интенсивность косого скачка меньше, чем прямого:

а — прямой скачок; б—косой скачок; 1 — скорость после скачка сверхзвуковая; 2 — скорость после скачка дозвуковая

Почему же косой скачок менее интенсивен, чем прямой при одинаковой скорости перед скачком? Да именно потому, что косой скачок — это скачок не для всей скорости потока, а только для одной его составляющей, меньшей, чем вся скорость. А когда скорость перед скачком уменьшается, то за скачком она становится больше, чем раньше, т. е. интенсивность скачка уменьшается, уменьшаются и потери.

Рис. 58. Угол косого скачка зависит от скорости движения

Но как можно заменить прямой скачок перед диффузором прямоточного воздушно-реактивного двигателя косым? Ответ на это мы найдем, если внимательно рассмотрим картину сверхзвукового обтекания какого-нибудь тела, хотя бы того же прямоточного двигателя. Об этой картине мы уже говорили выше (см. рис. 56). Непосредственно перед телом возникает головная волна, которая в средней части представляет собой прямой скачок. Далее, с обеих сторон эта головная волна переходит в косой скачок и, наконец, в обычную границу слабых, т. е. звуковых возмущений. Вспомните глиссер на реке: там спереди возникает мощный вал, затем буруны по бокам и только потом образуются обычные «усы».

Как неудачно получается, что именно перед входным отверстием двигателя располагается невыгодный прямой скачок! Если можно было бы заставить воздух, втекающий в двигатель, проходить не через этот прямой скачок, а в стороне от него, где скачок становится уже косым, то потери значительно уменьшились бы. Но как можно это сделать?

Советские ученые нашли правильное решение, открывшее широкие возможности улучшения характеристик прямоточного воздушно-реактивного двигателя. Оказывается, когда в сверхзвуковом потоке движется тело, имеющее спереди острый носок или острую переднюю кромку, то прямого скачка не возникает вовсе. В этом случае на острие носка, как говорят, «садится» косой скачок, тем больше «заостренный», чем больше скорость полета (рис. 58). Что же нужно сделать для того, чтобы и прямоточный двигатель имел впереди такой же острый носок?

Для этого достаточно разместить внутри диффузора двигателя какое-нибудь тело, имеющее длинный, выступающий вперед носок. Так во всех случаях и поступают при проектировании сверхзвукового прямоточного воздушно-реактивного двигателя — внутри его диффузора помещают так называемое «центральное тело». Поэтому сверхзвуковой прямоточный воздушно-реактивный двигатель легко отличить от дозвукового — из диффузора сверхзвукового двигателя всегда выглядывает направленное вперед острие центрального тела. Но, может быть, центральное тело, загораживая проходное сечение двигателя, уменьшает количество протекающего через него воздуха и, значит, тягу? Нет, так не получается: для этого угол конусности диффузора уменьшается, диффузор делается более пологим. Некоторое же увеличение веса двигателя, связанное с установкой центрального тела, вполне окупается выигрышем в тяге и удельном расходе топлива. Кроме того, центральное тело наряду с основным назначением, т. е. созданием косого скачка перед входом в двигатель, служит еще для размещения внутри него различных вспомогательных агрегатов, необходимых для работы двигателя (рис. 59). Как можно судить по рис. 59, прямоточный воздушно-реактивный двигатель прост только по принципиальной схеме, в действительности он является довольно сложной машиной. Все агрегаты — регуляторы, насосы для подачи топлива, агрегаты системы зажигания и другие — удобнее всего размещать внутри двигателя, а не снаружи, где они привели бы к увеличению габаритов двигателя и, следовательно, к увеличению его сопротивления, что особенно недопустимо при сверхзвуковом полете. Имеются даже попытки разместить в центральном теле прямоточного воздушно-реактивного двигателя, установленного на самолете, летчика этого самолета; об этом будет рассказано ниже.

Рис. 59. Конструктивная схема прямоточного воздушно-реактивного двигателя. Центральное тело используется для размещения вспомогательных агрегатов:

1 — центральное тело; 2 — регулятор; 3 — подача топлива; 4 — пневмотурбина; 5 — топливная форсунка; 6 — реактивное сопло; 7 — горелка; 8 — запальная свеча; 9 — воздушный патрубок; 10 — генератор; 11 — насос; 12 — прибор зажигания; 13 — топливный бак

Но простая замена прямого скачка перед входом в двигатель косым, оказывается, не до конца решает задачу уменьшения потерь при торможении и сжатии воздуха, поступающего в двигатель. Если косой скачок мало наклонен по отношению к направлению поступающего в двигатель воздушного потока, т. е. близок к прямому скачку, то и потери в таком скачке будут близкими к потерям в прямом скачке. Если же косой скачок будет сильно наклонен к направлению потока, то потери в нем будут малыми, но такой скачок не решит задачи, так как скорость потока за ним будет все еще очень большой, значительно превышающей скорость звука (см. скачок 1 на рис. 57); поэтому в потоке за этим скачком снова возникнет прямой скачок с большими потерями.

При детальном теоретическом и экспериментальном исследовании задачи о том, как осуществить с наименьшими потерями торможение и сжатие воздуха, поступающего в прямоточный двигатель, оказалось, что наивыгоднейший способ торможения зависит от скорости полета. Если скорость полета превышает скорость звука не более чем в 1,5 раза, то вполне допустим простой прямой скачок: потери в нем в этом случае не так велики. При дальнейшем увеличении скорости полета до скоростей, в два раза превышающих скорость звука, должна быть применена — двухскачковая система, т. е. косой скачок с последующим прямым. Чем больше скорость полета, тем сложнее должна быть система скачков на входе в двигатель — воздушный поток должен пройти через два или три косых скачка, а затем через завершающий прямой скачок. Поэтому выступающий вперед носок центрального тела снабжают специальными уступами, от которых берут свое начало последующие косые скачки, возникающие вслед за первым косым скачком, «садящимся» на самое острие носка (рис. 60). Замыкающий слабый прямой скачок располагается обычно на самом входе в диффузор, так что по диффузору воздух течет с дозвуковой скоростью. Вследствие этого диффузор сверхзвукового двигателя имеет обычно такую же форму расширяющейся трубы, как и диффузор дозвукового двигателя.

Описанный выше так называемый многоскачковый диффузор оказывается гораздо более выгодным, чем диффузор с одним прямым скачком перед ним. Вот, например, какое давление будет внутри двигателя, летящего со скоростью, вчетверо превышающей скорость звука (на высоте 20 км):

в случае прямого скачка — 1,2 кг/см2;

в случае одного косого и одного прямого скачка — 2,5 кг/см2;

в случае двух косых и одного прямого скачка — 4,0 кг/см 2 ;

в случае трех косых и одного прямого скачка — 5,0 кг/см2.

В случае же постепенного, плавного торможения без потерь давление в камере сгорания двигателя достигло бы 8,3 кг/см 2 . Мы видим, что при указанной скорости полета система из трех и в особенности четырех скачков обеспечивает достаточно выгодное сжатие.

Такое большое внимание использованию скоростного напора встречного потока воздуха в прямоточном воздушно-реактивном двигателе уделяется неслучайно. Ведь в этом двигателе сжатие воздуха за счет использования скоростного напора, или динамическое сжатие, как его называют, заменяет сжатие с помощью компрессора в турбореактивном двигателе. От степени же повышения давления при сжатии воздуха прямо зависит и величина тяги, и экономичность двигателя, т. е. расход топлива.

Рис. 60. Так устраивается диффузор сверхзвукового прямоточного двигателя. Сверху — двухскачковая система (для скорости полета, в 1,5 раза превышающей скорость звука), снизу — трехскачковая система (для скорости полета, в 2—3 раза превышающей скорость звука)

На рис. 61 показано, как меняется коэффициент полезного действия различных авиационных двигателей в зависимости от скорости полета. Кривые, помещенные на этом рисунке, интересны не только тем, что по ним можно определить значения к. п. д. авиационных двигателей при разных скоростях полета. Пользуясь этими кривыми, можно сравнить экономичность двигателей различного типа и установить, когда выгодно применять тот или иной двигатель. Судя по рис. 61, прямоточные воздушно-реактивные двигатели имеют превосходство в отношении к. п. д. при скорости полета, от 2 до 8 раз превышающей скорость звука. В этом диапазоне скоростей нет ни одного авиационного двигателя, обладающего экономичностью прямоточного.

Рис. 61. Сравнение коэффициентов полезного действия различных авиационных двигателей при разных скоростях полета

Значит ли это, что тем самым устанавливается область возможного и целесообразного применения прямоточных двигателей?

Нет, такое заключение было бы поспешным. Экономичность является далеко не единственным критерием качества авиационного двигателя; решающими могут оказаться другие факторы. Так именно и обстоит дело в данном случае. Оказывается, с ростом скорости полета тяга, развиваемая прямоточным двигателем, начиная с некоторой скорости, уменьшается и, наконец, становится равной нулю.

Разумеется, даже самый высокоэкономичный двигатель никому не нужен, если он развивает ничтожную тягу. В чем же здесь дело?

Секрет этого ухудшения характеристик прямоточного двигателя при очень больших скоростях полета связан с увеличением температуры воздуха, сжимаемого под действием скоростного напора. Сам по себе этот нагрев при сжатии совершенно естественен — вспомните, как нагревается даже простой велосипедный насос, когда им энергично накачивают шину. Но при тех огромных скоростях полета, о которых в данном случае идет речь, воздух, поступающий в двигатель, может оказаться нагретым на многие сотни и даже тысячи градусов. Так, если температура атмосферного воздуха равна 15° С, то при полете со скоростью 50 м/сек заторможенный воздух окажется нагретым до 17° С, т. е. всего на 2° С. Если же скорость полета будет вдвое превышать скорость звука, то температура заторможенного воздуха достигнет 245° С. При полете со скоростью, в 10 раз превышающей скорость звука, воздух, поступающий внутрь двигателя, будет иметь температуру выше 5000° С.

Совершенно очевидно, что из-за этого нагрева воздуха существует какая-то предельно допустимая скорость полета; при большей скорости прямоточный двигатель работать не сможет, так как его стенки расплавятся. Какова же эта предельная скорость, при которой наступит «тепловая смерть» двигателя?

Естественно, она определяется жаропрочностью материала, из которого изготовлен двигатель. При сгорании топлива в атмосферном воздухе температура газов достигает 2000—2100° абс. Эту температуру можно считать предельно допустимой для двигателя. Но значит ли это, что такая температура допустима для воздуха, поступающего в двигатель? Нет, конечно, ибо при сгорании топлива температура воздуха должна повышаться, иначе двигатель не будет развивать тяги.

Следовательно, по мере увеличения скорости полета и соответственно температуры воздуха, поступающего в двигатель, нагрев воздуха при сгорании топлива должен становиться все меньшим и меньшим, если мы хотим, чтобы максимальная температура в двигателе не превосходила определенного значения. Но это значит, что по мере роста скорости полета в двигателе можно сжигать все меньше топлива. В конце концов, очевидно, будет достигнута такая предельная скорость полета, при которой вообще сжигание топлива будет исключено, так как уже сам воздух, поступающий в двигатель, будет иметь максимально допустимую температуру. Очевидно, что при этой предельной скорости двигатель уже не сможет развивать никакой тяги.

Рис. 62. Так тяга прямоточного воздушно-реактивного двигателя зависит от скорости полета (предельно допустимая температура газов в камере сгорания принята равной 2000° абс.)

На рис. 62 показано, как изменяется величина тяги прямоточного двигателя в зависимости от скорости полета у земли при максимально допустимой температуре газов 2000° абс. Размеры этого двигателя определяются тем, что площадь горловины его сопла равна 0,5 м 2 . Как видно из рис. 62, чем больше потери при торможении воздуха, поступающего в двигатель, тем меньше максимальная тяга, развиваемая двигателем, и тем меньше предельная скорость полета, при которой тяга становится равной нулю. Конечно, если предельно допустимая температура воздуха увеличивается, то растет и тяга двигателя и диапазон возможных скоростей полета.

Из этого рисунка видно также, что предельной скоростью полета, при которой возможно применение прямоточного двигателя, является скорость, в 4—5,5 раз превосходящая скорость звука. Это и определяет область наивыгоднейшего использования прямоточных двигателей. Можно считать, что этой областью является диапазон изменения скорости полета от 2—3 до 4—5 скоростей звука.

Кстати сказать, по рис. 62 можно судить и о величине мощности, которую в состоянии развивать прямоточные двигатели — ведь мощность есть произведение тяги на скорость полета. Так двигатель, для которого подсчитаны кривые, показанные на рис. 62, при полете со скоростью, в 4 раза превышающей скорость звука, может развить тягу более 100 т. Этому соответствует мощность около 2 миллионов лошадиных сил!