Остров знаний. Пределы досягаемости большой науки

Глейзер Марсело

Часть I. Происхождение мира и природа рая

 

 

Глава 1. Желание верить

в которой автор исследует роль веры и экстраполяции в религии и науке

Возможно ли понять мир, не имея веры? Этот вопрос лежит в основе раздвоения науки и религии, определяющей взаимоотношения человека и окружающей реальности. Сравнив мифологические и научные концепции, можно сказать, что религиозные мифы пытаются описать непонятное с помощью непонятного, в то время как наука стремится объяснить непознанное с помощью знаний. Противостояние этих двух подходов усиливается из-за веры в существование двух не соответствующих друг другу реальностей – нашего мира (познаваемого с помощью правильно применяемых научных методов) и мира потустороннего (а значит, недоступного, нематериального, традиционно относимого к области религии).

В мифах неизвестное отражает священную природу божеств, чье существование не ограничено временем и пространством. Историк религии Мирча Элиаде писал об этом так:

Для австралийца, равно как и для китайца, индуиста или европейского крестьянина, мифы являются достоверными, потому что они священны и рассказывают о божественных существах и событиях. Соответственно, пересказывая миф или слушая его, человек вступает в контакт со священным и выходит за пределы привычного состояния, своей «исторической ситуации». [8]

В течение многих веков религиозные мифы позволяли верующим подниматься над своим «мирским состоянием», то есть осознанием того, что каждый человек живет во времени и имеет свою историю, которая неизбежно движется к концу. На более практическом уровне мифические объяснения природных явлений представляли собой донаучные попытки понять то, что находилось вне человеческого контроля, и ответить на вопросы, которые казались вечными. Почему Солнце каждый день движется по небу? Греки считали, что это Аполлон провозит его в своей огненной колеснице. Племя навахо, проживавшее на юго-востоке Америки, верило, что существо по имени Джохонааэи (оригинал: Johonaa’ei) каждый день переносит светило через небо на своей спине. У египтян эта роль отводилась Ра, который вез Солнце с востока на запад на лодке. В строго натуралистическом смысле мотивы, что прячутся за этими мифами, не так уж далеки от научных, – выявить скрытые механизмы, стоящие за природными явлениями. В конце концов, Солнце движется по небу вне зависимости от того, считаем мы ответственными за это богов или физические явления.

По сути, и ученые, и адепты религий верят в существование необъяснимых причинно-следственных связей, то есть в вещи, происходящие по неизвестным причинам, пускай характер таких причин и различается. В науке эта вера оказывается особенно очевидной, когда теоретики пытаются экстраполировать гипотезу или модель за пределы, установленные на практике (например, заявляют, что законы гравитации одинаковы во всей Вселенной или что теория эволюции путем естественного отбора применима ко всем формам жизни, включая инопланетные). Такие экстраполяции имеют огромное значение для изучения неизведанных территорий. Ученые же чувствуют себя удовлетворенными, так как их теории позволяют описать значительную часть реальности. Немного погрешив против истины, мы можем сказать, что в данном случае вера ученых имеет эмпирическое подтверждение.

К примеру, ньютоновскую теорию всемирного тяготения, описанную в книге III его революционного труда «Математические начала натуральной философии», следовало бы назвать теорией тяготения Солнечной системы, так как за ее пределами никакие испытания еще не были возможны к концу XVII века. Тем не менее Ньютон назвал третью книгу «Начал» «О системе мира», предположив, что его описание гравитационного притяжения как силы, пропорциональной массе двух тел и обратно пропорциональной квадрату расстояния между ними, применимо ко всей Вселенной. Это подтверждается его собственными словами из книги III:

Наконец, как опытами, так и астрономическими наблюдениями устанавливается, что все тела по соседству с Землей тяготеют к Земле, и притом пропорционально количеству материи каждого из них; так, Луна тяготеет к Земле пропорционально своей массе, и взаимно наши моря тяготеют к Луне; подобно этому и тяготение комет к Солнцу. На основании этого правила надо утверждать, что все тела тяготеют друг к другу. [10]

Ньютон проявляет хитрость и не говорит о причинах возникновения гравитации («я не изобретаю гипотез»), но предполагает, что они воздействуют на все тела, имеющие массу. «Для нас достаточно того, что притяжение существует, действует в соответствии с законами, которые были нами объяснены, и отвечает за все движения небесных тел и наших морей», – пишет Ньютон в «Общем поучении», своего рода заключении к «Началам». Он не понимал, почему объекты, обладающие массой, притягиваются друг к другу, но знал, как именно они это делают. «Математические начала натуральной философии» отвечали на вопрос «Как?», а не «Почему?».

Позднее, 10 декабря 1692 года, в письме к теологу из Кембриджа Ричарду Бентли Ньютон использовал свои рассуждения о природе силы притяжения, чтобы подкрепить свою идею о бесконечности Вселенной. Эта мысль стала поворотной точкой для всей космологии. Бентли задавался вопросом: если гравитация подчиняется одним и тем же законам во всей (конечной) Вселенной, почему же вся материя в итоге не окажется сжатой в комок в ее центре. Ньютон соглашался, что все было бы именно так, если бы Вселенная имела границы. Однако, писал он, «если бы материя была равномерно распределена по бесконечному пространству, она бы никогда не слилась в единую массу. Часть ее образовала бы одну массу, часть – другую, и в итоге бесконечное количество масс оказалось бы расположено на огромных расстояниях друг от друга в пространстве, не имеющем конца». Ньютон настолько верил в универсальную природу гравитации, что мог с уверенностью рассуждать о бесконечности всего космоса.

Через несколько веков после него Эйнштейн сделал примерно то же самое. Он окончательно сформулировал свою общую теорию относительности в 1915 году. Для этого ему пришлось пойти на шаг дальше Ньютона и объяснить гравитацию искривлением пространства рядом с массивным объектом (на самом деле время тоже искривляется, но об этом мы поговорим позже). Чем больше масса объекта, тем больше пространства искривляется вокруг него, как батут по-разному прогибается под людьми с разным весом. Для объяснения того, как притягиваются друг к другу массивные объекты, больше не требовалось выдумывать загадочных сил, действующих на расстоянии. В искривленном пространстве траектории не могут быть прямыми. Разумеется, Эйнштейн не объяснял, почему масса оказывает такое воздействие на геометрию пространства. Я подозреваю, что, если бы его спросили об этом, он ответил бы, как Ньютон: «Я не изобретаю гипотез». Его теория прекрасно работала, объясняя те вещи, которые ставили в тупик ньютоновскую физику. И эффективность данной теории подтверждалась наблюдениями за динамикой объектов в Солнечной системе. Этого было достаточно.

В 1917 году, меньше чем через два года после публикации своей теории, Эйнштейн написал любопытную работу «Вопросы космологии и общая теория относительности». Как и Ньютон, Эйнштейн экстраполировал свою теорию за пределы Солнечной системы, в которой она подтверждалась экспериментально, – на всю Вселенную. В данной работе Эйнштейн рассуждает о форме космоса и, как истинный платоник, придает ему самую совершенную форму – форму шара. Для удобства, а также в связи с отсутствием наблюдений, подтверждающих противоположную точку зрения, он также делает Вселенную статичной. Его уравнения дают ему желаемый результат, но при этом преподносят небольшой сюрприз. Эйнштейн отказывается признавать Вселенную бесконечной и, чтобы избежать коллапса всей материи в одной центральной точке (о котором Бентли писал Ньютону), вводит так называемую универсальную постоянную. Это новый элемент его уравнений, описывающих искривление пространства. Эйнштейн обращает внимание, что при достаточно небольшом значении такая постоянная будет совместима «с эмпирическими фактами, полученными на основании наблюдений за Солнечной системой». Эта константа, которая, по словам Эйнштейна, «не основывалась на наших фактических знаниях о гравитации», сегодня называется космологической постоянной и, вполне возможно, действительно играет ключевую роль в динамике космоса, пускай и не такую, которую приписывал ей Эйнштейн. Эйнштейну нужно было убедиться, что его статистическая шарообразная Вселенная не сколлапсирует. Демонстрируя полную уверенность в своей теории, он не только экстраполировал свои расчеты с Солнечной системы на всю Вселенную, но и учел в своем описании космоса результаты непонятных ему колебаний, удерживавших небесный свод на своем месте.

Для того чтобы покинуть пределы известного, Ньютону и Эйнштейну приходилось идти на интеллектуальные риски, делать предположения на основании интуиции и личных убеждений. Они пошли на это, зная, что их теории наверняка являются неверными и неполными, и это показывает, насколько два величайших ученых всех времен верили в силу творческого процесса. В той или иной степени каждый человек, занимающийся наукой, делает то же самое.

 

Глава 2. За пределами времени и пространства

в которой мы рассмотрим, как разные религии объясняют происхождение мира

Давайте вернемся на 10 тысяч лет в прошлое, к моменту зарождения первой великой цивилизации между реками Тигр и Евфрат (сейчас там находится Ирак). Обожествление природы было попыткой контролировать неконтролируемое. Наводнения, засухи, землетрясения, извержения вулканов, цунами (то есть все то, что и сегодня называется в англоязычных страховых полисах act of God – «стихийное явление», «действие непреодолимой силы») считались действиями разозленных богов, которых следовало умилостивить. Для этого необходимо было разработать язык общения между человечеством и божествами, своего рода мост между людьми и силами Природы. Таким языком стали ритуальные практики и мифические сказания. Угрозы выживанию человечества исходили отовсюду: из глубин Земли, с ее поверхности и с небес, а значит, и боги должны были быть вездесущими. Религия родилась из нужды и почитания. Вполне вероятно, что любое мыслящее существо с широкими, но ограниченными возможностями должно на каком-то этапе предположить, что есть и другие существа, обладающие большими силами, например боги или инопланетяне. Альтернатива (то есть объяснение природных катаклизмов волей случая) была слишком страшной, ведь она означала бы принятие беспомощности и полного одиночества человечества перед лицом неизвестного. Для того чтобы хоть как-то контролировать свою судьбу, людям необходимо было верить.

Но страх был не единственным (хотя, видимо, главным) движущим фактором веры. Жизнь людей не состояла из сплошных неудач. Случалось и что-то хорошее – богатый урожай, удачная охота, благоприятная погода или спокойное море. Природа не только забирала, но и многое давала, не только убивала людей, но и поддерживала в них жизнь. Некоторые явления, отражавшие дуалистичный характер Природы, могли быть регулярными и безопасными (например, смена дня и ночи или времен года, фазы Луны или приливы и отливы), а некоторые – внезапными и пугающими (солнечные затмения, кометы, лавины и лесные пожары). Неудивительно, что регулярность ассоциировалась (и продолжает ассоциироваться) с добром, а нерегулярность – со злом. Природные явления приобрели моральный аспект, который, в связи с обожествлением Природы, напрямую отражал капризы богов.

Древние культуры по всему миру возводили монументы и храмы для фиксирования и прославления регулярных природных явлений. В качестве примера можно рассмотреть английский Стоунхендж, который использовался как место захоронения. Скорее всего, эта функция была связана с тем, что каждый год в день летнего солнцестояния Солнце всходит ровно над его Пяточным камнем. Таким образом, создается связь между периодическим возвращением Солнца и циклом жизни и смерти человека. Даже если механизмы движения светил были неизвестны и у строителей Стоунхенджа не было желания узнавать их, они все равно внимательно фиксировались и измерялись. К примеру, три тысячи лет назад в Вавилоне уже существовала развитая астрономическая система, отраженная в эпосе о сотворении мира «Энума Элиш» («Когда наверху»). Вавилоняне составляли подробные таблицы движения планет и Луны по небу и отмечали все наблюдаемые циклы. К примеру, в табличку Аммисадука внесены данные о восходе и заходе Венеры за 21 год.

Повторения успокаивают. Если Природа задает ритм, нам ничего не остается, как следовать ему. Цикличность времен обещает нам перерождение, устанавливает глубокую связь между человеком и космосом. Неудивительно, что миф о многократном перерождении есть во множестве культур. Что может быть лучше, чем верить: мы из раза в раз возвращаемся в этот мир, а смерть – не конец, а новое начало?

У меня пятеро детей, и, глядя на них, я вижу, как им сложно примириться с конечностью бытия. Когда я пишу эти строки, моему сыну Луциану шесть лет, и тема смерти интересует его уже два года. Смерть кажется ему абсурдом, а время – бесконечным. Каждому родителю доводилось услышать вопрос «Что происходит, когда люди умирают?», и каждый затруднялся дать на него ответ. Луциан уверен, что все мы возвращаемся, но сомневается – теми же, кем были, или другими. Конечно же, ему хочется вернуться таким же, какой он есть, с теми же родителями, братьями и сестрами и прожить свою жизнь дважды, а еще лучше – бесконечное количество раз. Что может быть безопаснее, чем отсутствие потерь? Мне больно говорить ему, что с нами происходит то же самое, что и с муравьем, которого он нечаянно давит ногой. Разумеется, Луциану не нравится такой ответ: «Откуда ты знаешь, папа?» «Я не знаю наверняка, сынок. Одни люди считают, что мы возвращаемся, другие верят, что мы уходим в место, называемое раем, и встречаем там всех, кто умер до нас. Проблема в том, что никто из умерших не может ничего рассказать нам о конце пути», – говорю я. Обычно такой разговор заканчивается крепкими объятиями и многочисленными «я тебя люблю». Может ли быть что-то ужаснее, чем осознание, что я не смогу любить его вечно? И что однажды ему придется столкнуться с моей смертью?

С появлением авраамических религий возникло совершенно новое видение Природы. Вместо постоянных циклов создания и разрушения, жизни и смерти время превратилось в линию с началом и концом. «Профанная история», как ее называет Элиаде, – это все то, что происходит с нами между рождением и смертью. Внезапно ставки становятся гораздо выше, потому что одна жизнь означает единственный шанс на счастье. Христиан и мусульман от этого осознания спасает вера в загробную жизнь. Таким образом, время начинает выглядеть дуалистично: при жизни оно линейно, а после смерти его границы размываются.

Линейное или цикличное, время всегда было мерилом трансформации. Если следовать за ним в будущее, оно приведет к концу, а если в прошлое – к началу. В мифах люди всегда сталкиваются с изменениями, которые приносит время, а боги живут вне его, в том месте, где не существует ни старости, ни болезней. Поскольку жизнь порождает жизнь и поколения следуют друг за другом, то, продвинувшись во времени назад достаточно глубоко, можно обнаружить первую жизнь – первый живой организм, будь то бактерия, человек или животное. И здесь возникает ключевой вопрос: как появилась первая жизнь, если до нее не существовало ничего живого? Мифы в большинстве своем дают четкий ответ: боги сотворили этот мир, а затем населили его жизнью. Только то, что существует вне времени, может создать что-то, подвластное его законам. Некоторые мифы о сотворении мира, в частности предания новозеландских маори, рассказывают о том, что первый акт творения мог произойти и без вмешательства богов, но в большинстве из них говорится о возникновении самого времени одновременно с появлением мира. Блаженный Августин пишет об этом в своей «Исповеди» (книга 11, глава 13): «А так как делатель всякого времени – Ты, то, если до сотворения неба и земли было какое-то время, то почему можно говорить, что Ты пребывал в бездействии? Это самое время создал Ты, и не могло проходить время, пока Ты не создал времени. Если же раньше неба и земли вовсе не было времени, зачем спрашивать, что Ты делал тогда. Когда не было времени, не было и “тогда”».

Таким образом, происхождение мира и начало времени прочно связаны с природой невидимого божественного мира. Эта связь сохраняется и сейчас, когда появление Вселенной пытаются объяснить современными космологическими моделями, а происхождение звезд и планет изучают астрофизики. Как я уже писал в своей книге «Танцующая Вселенная», понятия цикличного и линейного времени заново возникают в современной космологии. Еще более удивительно то, что важнейшая характеристика древних мифов о сотворении – глубокая связь между человеком и космосом – также присуща современной астрономической мысли. Эта связь повторно возникла в ней лишь после долгого перерыва, спустя годы после главных открытий Коперника. В течение этого периода наше собственное существование казалось нам чем-то вторичным по сравнению с великолепием Вселенной. Когда Коперник, Иоганн Кеплер и Галилео Галилей в XVI–XVII веках показали, что Земля не является центром творения, мы утратили свой особый статус и превратились всего лишь в обитателей одного из бесчисленного множества миров. Но 400 лет спустя мы занялись поиском жизни во Вселенной и выяснили, что планеты, похожие на Землю, встречаются крайне редко. Жизнь и, что еще важнее, уникальность человечества снова приобрели космическое значение. Мы важны потому, что уникальны. Множество шагов, которые мы сделали от неживых молекул к живой клетке, а затем от нее – к сложным многоклеточным организмам, будет непросто повторить. Кроме того, многие детали этого процесса зависели от истории нашей планеты. Однако даже при нынешнем отсутствии доказательств мы не можем быть окончательно уверенными в том, что во Вселенной больше нет разумной жизни. Может быть, это так, а может быть, и нет. С уверенностью можно лишь сказать, что если разумные инопланетяне существуют, то они живут очень далеко от нас и встречаются крайне редко (конечно, есть вероятность, что они просто очень хорошо умеют прятаться, но об этом мы поговорим ближе к концу книги). Итак, мы одиноки во Вселенной и должны научиться с этим жить.

Желание понять свое происхождение и свое место во Вселенной – одно из определяющих свойств человека. Древнейшие космологические мифы задают практически те же вопросы, что и современные ученые, рассматривающие гипотезы квантового создания Вселенной «из ничего» или множественности вселенных. Эти вопросы и ответы на них различаются по многим пунктам, кроме мотивации – понять, откуда мы пришли и какова наша космическая роль (если она вообще существует). Для создателей мифов ответы на эти вечные вопросы находились в области священного, ведь только существа вне времени могли создать наш временный мир. Тем, кто не верит в мифические объяснения, остается лишь тщательно проверять наши рациональные объяснения мира и определять, насколько далеко они могут зайти в описании реальности, а значит, и в ответе на вечные вопросы творения.

 

Глава 3. Быть или стать? Вот в чем вопрос

в которой мы знакомимся с первыми философами античной Греции и их представлениями о сути реальности

Значительные перемены в человеческом сознании произошли между VI и V веками до н. э. в Древней Греции. Несмотря на то что важные новые идеи о социальной и духовной сторонах человеческой жизни появлялись в разных регионах планеты (в Китае их авторами были Конфуций и Лао-Цзы, а в Индии – Сиддхартха Гаутама, или Будда), именно Греция стала колыбелью западной философии – новой формы понимания, основанной на вопросах и аргументах, созданных для изучения фундаментальной природы бытия и познания. Первых греческих философов интересовали не мифы о сотворении мира и священные знания, построенные на божественном откровении. Досократики (так называют философов, живших ранее Сократа) пытались познать реальность с помощью логики и гипотез. Этот переход к вере в силу разума, способного ответить на ключевые вопросы существования, полностью изменил взаимоотношения между человеком и непознанным. Теперь человек не просто пассивно надеялся на судьбу и сверхъестественное вмешательство, а активно подходил к знаниям и личной свободе.

Первую группу досократиков, ионийцев, занимала материальная составляющая окружающего мира. Они задавались вопросом: «Из чего сделано все сущее?» Его значимость показывает тот факт, что на этот вопрос до сих пор пытается ответить современная физика частиц. Мы постоянно даем на него все новые и новые ответы, которые, в свою очередь, изменяют наши методы исследования. Представители ионийской школы предлагали разные варианты ответа, но все их объединяла одна фундаментальная характеристика – вера в «единство сущего», то есть в то, что материальная составляющая реальности заключена в едином объекте или веществе. Эта концепция централизованного единства резко контрастировала с пантеистической мифологией, в которой разные боги отвечали за различные природные явления. Для ионийцев все, что человек видел вокруг себя, являлось проявлением единого материального начала, переживающего различные физические трансформации.

Фалес, которого не кто иной, как Аристотель, считал первым философом, заявлял, что «основой всех вещей является вода, ведь из воды выходит все сущее и в воду превращается». Эта цитата из труда византийского врача Аэция Амидского является типичным примером мировоззрения, приписываемого Фалесу. К сожалению, ни одна из его работ не сохранилась, и для того, чтобы разобраться в его идеях, нам приходится полагаться на промежуточные источники. Читая литературу на эту тему, можно понять, что Фалес полагал воду источником всего и подчеркивал ее роль как дарительницы жизни. Для него вода символизировала постоянно изменяющуюся Природу, находящуюся в вечном движении даже под маской спокойствия. Чтобы объяснить источник этого движения, Фалес вводит понятие силы, чем-то схожей с душой. «Некоторые также утверждают, что душа разлита во всем; быть может, исходя из этого, и Фалес думал, что все полно богов», – писал Аристотель в своем трактате «О душе». Однако эти боги не были антропоморфными, как в древних мифах, а обозначали необъяснимые силы, стоящие за изменениями физической реальности. Фалес и ионийцы проповедовали философию становления, постоянной трансформации, происходящей из единого материального источника. Все выходит из него, и в него все возвращается.

Удивительно, что первые западные философы жили в мире, привыкшем объяснять различные явления действиями многочисленных богов, но при этом искали единого объяснения реальности, абсолютный принцип существования. Они явно стремились к созданию общей теории Природы, античной «теории всего». Историк идей Исайя Берлин назвал эту сохранившуюся до наших дней веру в единство ионийским заблуждением и заявил, что она не имеет смысла: «Предложение, которое начинается со слов “Все состоит из…”, или “Все является…”, или “Ничего не…”, если только оно не является эмпирическим… не говорит ни о чем, ведь заявление, которое нельзя опровергнуть или в котором нельзя усомниться, не несет никакой информации». Иными словами, авторитетные всеобъемлющие заявления, которые нельзя сравнить друг с другом и измерить, неинформативны. Это не рассуждения, а постулаты веры. Я расскажу об этом более подробно чуть позже, когда мы будем говорить о поисках всеобъемлющих объяснений в науке. А сейчас я хотел бы обратить ваше внимание на протонаучные идеи наследника Фалеса Анаксимандра Милетского, которого по праву считают первым философом науки за описание Природы в терминах механики.

Анаксимандр не верил в существование конкретного материального вещества, объединяющего все сущее, и предполагал, что все происходит из некой древней среды, «безграничного» (apeiron). «Из этого вышло все, и все в это вернется. Вот почему бесконечные системы мироустройства то возникают, то растворяются в том, откуда они появились», – пишет Аэций, резюмируя идеи Анаксимандра. Безграничное – это нечто, что не было создано и что нельзя разрушить, это первичный материальный принцип, существующий в вечности и безграничном пространстве космоса.

Анаксимандр видел мир как цепочку событий, вызываемых естественными причинами. Согласно многим источникам, в своем утраченном трактате «О природе», который считается первым известным текстом по натуральной философии, Анаксимандр пытался объяснить различные явления – от молнии (возникающей при движении воздуха в облаках) до происхождения человека (который, как и вся жизнь, сначала зародился в море, а затем вышел на сушу). Дэниэл У. Грэм писал: «Сколь многому бы мы ни научились от Фалеса, Анаксимандр был настоящим революционером. Организовав свои идеи в единую космологическую теорию и записав ее на папирусе, он создал основу для рассмотрения Природы как автономного царства со своими базовыми элементами и законами взаимодействия. Насколько можно судить, он был основателем натуральной философии».

Анаксимандр не верил, что Аполлон каждый день перевозит Солнце по небу на своей колеснице. Вместо этого он предполагал, что Солнце – это отверстие в огненном колесе, вращающемся вокруг Земли. Какой бы простой эта идея ни казалась нам сегодня, ее историческую важность трудно переоценить. Это была первая механическая модель неба, попытка объяснить наблюдаемое движение небесных объектов причинно-следственной связью без вмешательства божественных сил. Такой же механистической и фантастической была идея Анаксимандра о происхождении космоса. Плутарх пишет в своих «Моралиях»: «[Анаксимандр] говорит, что горячая и холодная части [безграничного] разделились в начале создания миропорядка, и огненная сфера выросла вокруг воздуха, как кора вокруг ствола дерева. Затем эта сфера разделилась и сформировала отдельные круги – Солнце, Луну и звезды». Итак, не только Солнце, но и Луна и звезды оказались отверстиями в огненных колесах, вращающихся вокруг Земли. Космос превратился в упорядоченный механизм, подчиняющийся законам причины и следствия.

Идеи Анаксимандра, равно как и все представления досократиков и последующих греческих философов, основывались исключительно на интуиции и силе аргументации, а значит, никак не были связаны с понятием экспериментального подтверждения. Тем не менее они полны потрясающей интеллектуальной смелости и воображения. Греки были далеко не первыми, кто задался вопросом о происхождении космоса или природе реальности. Но в отличие от своих предшественников они дали людям новую систему существования, в которой свобода задавать подобные вопросы являлась неотъемлемым правом человека и единственным путем к интеллектуальной независимости и личному счастью. Лукреций писал в своей знаменитой поэме «О природе вещей» (50 год до н. э.), посвященной философии атомистов-досократиков Левкиппа и Демокрита:

Значит, изгнать этот страх из души и потемки рассеять Должны не солнца лучи и не света сиянье дневного, Но природа сама своим видом и внутренним строем. За основание тут мы берем положенье такое: Из ничего не творится ничто по божественной воле. И оттого только страх всех смертных объемлет, что много Видят явлений они на земле и на небе нередко, Коих причины никак усмотреть и понять не умеют И полагают, что все это божьим веленьем творится. Если же будем мы знать, что ничто не способно возникнуть Из ничего, то тогда мы гораздо яснее увидим Наших заданий предмет: и откуда являются вещи, И каким образом все происходит без помощи свыше. [19]

Эти строки можно считать самым ярким произведением в защиту атеизма, когда-либо написанным в истории человечества.

Четкое разделение между верой и рациональным подходом к пониманию мира, за которое ратовал Лукреций, не было широко распространено в античном мире. Наоборот, для многих досократиков, а также, очевидно, для живших после них Платона и Аристотеля между этими двумя аспектами существовала связь. Вселенная имела смысл только в присутствии божества. Из всех досократических школ наиболее активно эту идею поддерживали пифагорейцы – секта мистиков, полагавших, что суть Природы зашифрована в комбинациях (сочетаниях) цифр. Центр пифагорейства располагался на юге Италии, то есть географически был удален от западной Турции – места действия ионийцев. Пифагорейцы верили, что путь к просвещению лежит через понимание математики и геометрии – инструментов, которые Божественный Архитектор использовал для строительства всего космоса.

Согласно трудам Филолая Кротонского, выдающегося последователя Пифагора, жившего около 470 – после 400 года до н. э., сердцем космоса являлись не Земля и не Солнце, но «центральный огонь» – дворец Зевса. Это смещение Земли с центральных позиций, произошедшее задолго до Коперника, обосновывалось теологическими аргументами – ведь только Бог мог занимать подобное место посреди творения. Как писал Аристотель в своем труде «О небе», «большинство считает, что [Земля] находится в центре <…>. Италийские же философы, известные как пифагорейцы, держатся противоположного взгляда: в центре, утверждают они, находится огонь, а Земля – одна из звезд – движется по кругу вокруг центра, вызывая смену дня и ночи». Эта выдающаяся идея могла иметь влияние на более поздних мыслителей, также не ставивших Землю в центр Вселенной, к примеру на Аристарха Самосского, жившего в 280 году до н. э., или на знаменитого ученого XVI века Николая Коперника. Коперник сам пишет об этом в своей работе «О вращении небесных сфер»:

Сначала нашел я у Цицерона, что Гикет высказывал мнение о движении Земли, затем я встретил у Плутарха, что этого взгляда держались и некоторые другие. Чтобы это было всем ясно, я решил привести здесь слова Плутарха: «Другие считают Землю неподвижной, но пифагореец Филолай считал, что она вращается вокруг центрального огня по косому кругу, как Солнце и Луна». Побуждаемый этим, я тоже начал размышлять относительно подвижности Земли. [21]

Итак, корни так называемого коперниковского вращения уходят куда глубже в прошлое, чем мы предполагали.

Большинство из нас знакомо с теоремой Пифагора о трех сторонах треугольника еще со школы. Доказательство теоремы приписывают легендарному мудрецу Пифагору, но существует вероятность, что это открытие совершил кто-то из его учеников, просто вся слава досталась учителю. Как бы там ни было, Пифагор точно открыл явление, которое можно назвать первым математическим законом Природы – соотношение между музыкальным звуком и длиной струны, которая его издает. Он понял, что звуки, кажущиеся нам гармоничными, производятся струнами, длины которых соотносятся как первые четыре целых числа (1, 2, 3 и 4). Именно эти числа составляли священную тетраду (tetractys) пифагорейцев, «источник и корень постоянно изменяющейся Природы», как писал о ней позднее Секст Эмпирик. К примеру, если длина струны равна L, то в два раза более короткая струна (L/2) будет давать звук на октаву выше; струна длиной, равной двум третьим первоначальной (2L/3) – на квинту, а при (3L/4) – на кварту выше. То, что кажется нам гармоничным, открывает доступ к нашей душе, поэтому Пифагор и его последователи полагали, что обнаружили мост, соединяющий внешний мир и его восприятие через органы чувств. Этот мост был построен на математических зависимостях, из чего пифагорейцы делали вывод: чтобы познать мир, его нужно описать в терминах математики. Более того, раз гармоничное означает прекрасное, то и красоту мира можно выразить математически. Таким образом зарождается новая эстетика, в которой математические законы приравниваются к красоте, а красота – к истине.

Помимо выделения роли математики в описании окружающего мира и наших взаимодействий с ним, пифагорейцы также внесли большой вклад в космологию. Они не просто переместили Землю из центра Вселенной на периферию, заменив ее «центральным огнем». Экстраполировав музыкальную гармонию на небесные сферы, пифагорейцы заключили, что расстояния между планетами соотносятся между собой так же, как расстояния между нотами в гамме. Двигаясь по небу, планеты играли «музыку сфер», которую, по легенде, мог слышать только сам Пифагор. Мировое устройство (от чувственного удовольствия от музыки до расстояния между планетами) представляло собой строгие и гармоничные пропорции. Красота творения была математической по своей сути, и можно ли было представить себе более высокую цель, чем познание ее законов?

Перед тем как перейти к Платону и его ученику Аристотелю, давайте кратко резюмируем то, что мы уже знаем. С одной стороны, у нас есть ионийцы, заявляющие, что суть Природы состоит в трансформации и что все сущее представляет собой воплощение единого материального основания. С другой стороны, пифагорейцы полагают, что ключом ко всем природным тайнам и к нашему восприятию реальности является математика. Более того, существуют и другие точки зрения. Парменид и элеаты, также жившие в Италии, противостояли ионийцам и заявляли, что изменения не могут быть сутью вещей и что основа реальности, или «сущее», должна оставаться неизменной. Элеаты полагали, что все перемены – это иллюзии, погрешности, вызываемые в восприятии реальности из-за недостатков наших органов чувств. Они одними из первых на Западе подняли вопрос природы реальности и того, как мы ее воспринимаем. Является ли сутью реальности то, что мы видим, – перемены, которые фиксируют наши органы чувств? Или же основа всего сущего скрыта в области абстракций, воспринимаемой только силой нашей мысли?

Для того чтобы воспринимать изменения, мы должны их чувствовать. Но что, если наши органы чувств передают нам лишь неполную картину сущего? Как нам постичь то, что существует на самом деле? Если следовать логике рассуждений Парменида, то как бы мы вообще пришли к мысли о неизменном сущем? Если что-то не меняется, мы становимся невосприимчивыми к нему, как к низким звукам, которые не слышит наше ухо. А если эта неизменная реальность существует в каком-то другом, более утонченном измерении, как мы можем ее понять или исследовать? Итак, ионийцы обвиняли элеатов в пустом абстрагировании, а элеаты считали ионийцев дураками из-за веры в то, чему верить нельзя. Пифагорейцы же игнорировали и тех и других, продолжая верить в способность математики описать гармонию и красоту окружающего мира.

Разнообразие досократических идей и мнений поражает. Первые западные философы расширяли границы известного во всех направлениях, увеличивая территорию рационального мышления. Идеи о природе реальности вступали в конфликты и сталкивались друг с другом еще 25 веков назад. Какими бы богатыми и сложными они ни были, в их основе лежал вопрос, который мы все еще задаем себе сегодня и который является центральной темой этой книги. До какой степени мы можем понять реальность? Остров знаний продолжал разрастаться, а на берегах Океана неведомого открывалось все больше возможностей.

 

Глава 4. Чему может научить сон Платона

в которой мы узнаем, как Платон и Аристотель отвечали на вопрос Первопричины и относились к границам человеческого знания

И Парменид, и пифагорейцы оказали огромное влияние на Платона, жившего между 428 и 348 годами до н. э. В каком-то смысле Платон объединил их модели мышления. Как и Парменид, он презирал чувственный опыт как источник информации о мире, но при этом, как и Пифагор, считал геометрические понятия мостом между человеческим разумом и миром чистой мысли, в котором и была скрыта вечно ускользающая от человечества истина. Платон жил в эпоху политической нестабильности – в 404 году до н. э. Спарта победила Афины в Пелопоннесской войне, поэтому неизменные истины виделись ему путем к стабильности и мудрости.

Мышление Платона наиболее ярко проявляется в его знаменитой метафоре пещеры, которую он впервые приводит в «Государстве». Эта аллегория также считается одним из первых прямых рассуждений о природе реальности. Представьте себе группу людей, скованных одной цепью в пещере. Они находятся здесь с рождения и не в состоянии ее покинуть. Все, что они могут, – это смотреть на стену пещеры перед собой. Они не знают ничего о мире вокруг себя или за пределами пещеры, и их реальность состоит лишь в тенях, пляшущих на стене. Им неизвестно, что за их спинами горит огонь, к которому ведет узкая тропинка, и что между ними и огнем находится небольшая стена. Другие люди могут пройти по тропинке и поставить на стену статуэтку или любой другой предмет. Скованные люди видят тени таких предметов на стене перед собой и принимают их за реальность. Неспособность повернуться и осознать свое положение мешает им увидеть правду. Их мир – это мир фальшивых иллюзий.

Платон предполагал, что, даже если бы с закованных людей были сняты цепи и они могли бы подойти к костру и статуям, боль и временная слепота от яркого пламени оказались бы настолько сильны, что люди быстро вернулись бы на свое прежнее место. Они бы предпочли верить в истинность теней на стене, а не в открывшуюся им ослепительную правду. У знаний есть цена, и не каждый согласен ее заплатить. Познание требует терпения и храбрости, ведь оно может привести к неприятной смене точки зрения. Платон утверждал, что, если бы закованных людей вытащили из пещеры на солнце, то есть еще ближе к истине, они умоляли бы вернуть их к теням на стене.

Платон сравнивает движение закованных людей к солнцу с «поднятием души в области ума», то есть с просвещением в буквальном смысле слова. Он также говорит, что истина (производное от того, что он называет «базовой Формой Блага») ускользает от нас, так как мы прикованы к нашему чувственному восприятию реальности. Однако, когда мы оказываемся готовыми увидеть ее (настолько, насколько это вообще возможно), это неизбежно толкает нас к новым знаниям:

Итак, вот что мне видится: в том, что познаваемо, идея Блага – это предел, и она с трудом различима, но стоит только ее там различить, как отсюда напрашивается вывод, что именно она – причина всего правильного и прекрасного. В области видимого она порождает свет и его владыку, а в области умопостигаемого она сама – владычица, от которой зависят истина и познание, и на нее должен взирать тот, кто хочет сознательно действовать как в частной, так и в общественной жизни. [22]

В «Государстве» Платон описывает, как следует управлять справедливым и равным обществом и какой человек может стать его правителем. Он предлагал на это место «короля-философа», кого-то, кто проник в абстрактную реальность чистых форм, постоянно имеет перед глазами «Форму Блага» и питается от бесконечного и неисчерпаемого источника мудрости, которую она дает.

Формы Платона часто становятся предметами споров и недопонимания. К счастью, нам не нужно углубляться в детали. Достаточно считать Формы неким идеальным чертежом, базовыми идеями, стоящими за предметами или чувствами. Например, Форма стула содержит в себе все возможные стулья, а любой стул является лишь тенью истинной Формы. Формы – это универсальное содержание того, что потенциально может существовать, но сами они при этом не существуют ни во времени, ни в пространстве. Из-за нашей ограниченности мы можем лишь туманно представлять себе, из чего они состоят, так как все попытки познать их через воспринимаемую нами реальность выглядят неуклюжими. Таким образом, идея круга, которая возникает в нашем мозгу, когда мы думаем о круге, и является единственным настоящим кругом, а рисунки или иные формы ее представления никогда не могут быть идеальными, а значит, и реальными.

В «Тимее» Платон экстраполирует эти идеи на космологию. Вселенная, по его словам, – это результат работы божественного существа, Демиурга, который использует Формы как чертежи своего творения. Космос сферичен, а все движения в нем единообразны и идут по кругу, так как «такая система наиболее приемлема для сознания и разума». Платон описывает эстетику космоса, в которой наиболее идеальные и симметричные формы являются единственно возможными для небесных тел и траекторий их движения. Сознание задает путь, по которому движется материя. Мир происходит из идеи, и его физическая структура должна отражать ее суть. Такой подход к строению космоса называется телеологическим и предполагает, что Вселенная имеет собственную цель или отражает замысел Творца. Он напрямую противоречит теории атомистов о космической бессмысленности, которая отрицает всякие намерения и заранее заложенные смыслы и утверждает, что все сущее происходит благодаря случайным движениям и сочетаниям в Пустоте. Лукреций писал об этом в своей поэме «О природе вещей»:

Если к тому ж этот мир природою создан и если Сами собою вещей семена в столкновеньях случайных, Всячески втуне, вотще, понапрасну сходяся друг с другом, Слились затем наконец в сочетанья такие, что сразу Всяких великих вещей постоянно рождают зачатки: Моря, земли и небес и племени тварей живущих. [23]

Большинство философских споров о природе Вселенной от Платона до наших дней противопоставляют две гипотезы: существование Мультивселенной, крошечной частью которой является наш мир, и вероятность того, что наше существование имеет некую космическую цель. Эта дихотомия возникла еще в античные времена.

С научной точки зрения основная проблема телеологических теорий состоит в том, что мы не можем доказать или опровергнуть их правоту. Научный метод основывается на эмпирическом подтверждении, а научная гипотеза должна быть фальсифицируемой (то есть ученые должны быть способны доказать ее неправоту). Если мы не можем этого сделать (или, скорее, пока, ведь каждая гипотеза рано или поздно опровергается), мы считаем ее верной. Поэтому, если кто-то заявляет, что у Вселенной есть цель, мы должны сначала определить эту цель и убедиться в ее существовании. Популярный претендент на такое доказательство – аргумент о существовании разумной жизни: «Вселенная имеет очевидное стремление к созданию сознания». Но Вселенная-Творец почти ничем не отличается от Бога-Творца, она просто превращает сверхъестественную телеологию в телеологию сверхъестественного. Вселенная, обладающая научно доказанными намерениями, – это современный ответ на давление, которое испытывали многие поколения ученых. Она дает цели научную достоверность. Образ Вселенной, которая сознательно порождает разумных существ, отражает наше вечное желание быть не просто особыми существами, но особыми творениями.

Но какой бы привлекательной ни казалась идея существования вселенской цели, она ставит перед нами серьезные вопросы. Каким образом мы можем проверить эту цель? Если мы не получим однозначного ее описания, то такая натуралистическая телеология станет областью непознанного. Если в мире существует вселенская цель и она нам неизвестна, откуда нам знать, что она вообще есть? Мы остаемся в неведении в любом случае, и все, что мы можем сделать, – это поверить в нее или нет, так же как Платон верил в своего Демиурга, но не мог доказать его существование.

Ученик Платона Аристотель придерживался совершенно других целей. Он был во многом прагматиком и поэтому создал для объяснения природных процессов сложную цепочку (или, скорее, башню) взаимосвязанных рациональных аргументов. Эта вертикальная структура в будущем показалась весьма удобной церкви, которая присвоила взгляд Аристотеля на устройство космоса. Аристотель заявлял, что четыре базовых элемента – земля, вода, огонь и воздух – имеют естественную иерархию и располагаются в ней снизу вверх именно в такой последовательности. Вот почему предмет, созданный из любого элемента, а затем перемещенный в другую среду, стремится занять в ней свое предписанное иерархией место: пузырек воздуха в воде поднимается вверх, а камень падает на дно. Аристотель отказывался от идей Платона о Формах и Демиурге, считая их абстракциями, и искал телеологические принципы внутри самих предметов, в их «сути», которой он считал изменения, присущие всем живым существам.

При этом Аристотель продолжал верить в божественное присутствие в мире. Несмотря на то что он считал Вселенную вечной и никем не созданной, он вводит понятие отдельного божества, отвечающего за движение небесных светил – «недвижимых двигателей». Задачей таких нематериальных божественных сущностей было направлять движения небесных объектов, не двигаясь при этом самим, не совершая никаких материальных действий и не подвергаясь им. Управление движением светил осуществлялось таинственным образом, через «вдохновение или желание». Космос Аристотеля был похож на луковицу, состоящую из множества слоев (небесных сфер), в центре которых находилась неподвижная Земля, а на периферии – звезды. Соответственно, «недвижимые двигатели» имели свою иерархию, и тот, что находился ближе всего к краю, назывался перводвигателем. Его задачей было управлять Вселенной снаружи, заводить весь механизм космоса для запуска цепочки причин и следствий.

Перводвигатель и подчиненная ему цепочка «недвижимых двигателей» были необходимы Аристотелю для ответа на два фундаментальных вопроса, с которыми сталкивается человек в попытке объяснить Природу: как предметы переходят из состояния покоя в состояние движения и как это движение сохраняется? Что еще могло вечно поддерживать работу огромной космической машины? Аристотелю не было известно понятие инерции, естественного стремления тела оставаться в состоянии движения, если внешние силы не принудят его к изменению такого состояния. До открытия инерции оставалось еще 18 столетий.

Космос Аристотеля был вечным, что делало его теорию гораздо проще любых других представлений, в которых космос появился в определенный момент времени, – от библейских текстов до современной космологии Большого взрыва. Как мы уже отмечали выше, если у Вселенной есть начало, то этому требуется логическое объяснение. Почему Вселенная вообще существует? Что вызвало ее появление? Религии отвечают на этот вопрос, постулируя существование Божественной Первопричины, на которую не распространяются физические законы. Но объяснить возникновение физической Вселенной с точки зрения науки – это крайне сложная задача, которая все еще преследует современную космологию, даже несмотря на то, что многие верят в квантовую механику как в универсальное объяснение (как мы увидим ниже, это не только плохо с философской точки зрения, но и ошибочно с научной). Заявление о том, что мы знаем все о происхождении Вселенной, не просто неверно – оно искажает общественное понимание науки. Нравится нам это или нет, у каждого острова есть границы, и Остров знаний не исключение.

Но вернемся к Аристотелю. Как мы увидели, он вывел философию из пещеры Платона, устранив различия между миром абстрактных форм и областью чувственного восприятия. Согласно Аристотелю, любые изменения на Земле и вокруг нее объясняются взаимодействием четырех базовых веществ. Поднявшись в небеса, мы перейдем в область небесных сфер, которые ответственны за движение Луны и пяти планет по круглым орбитам (до открытия Урана в 1781 году человечеству были известны лишь Меркурий, Венера, Марс, Юпитер и Сатурн). Все небесные объекты состояли из пятого вещества, идеального и вечного эфира, не подвластного никаким изменениям. Космос Аристотеля имел дуалистичную природу, ведь он устанавливал различия между Землей, миром обычной материи, и идеальным эфиром, недоступным ни для чего материального. Более того, в нем еще оставалось место для телеологии, воплощенной в нематериальных, но активных «недвижимых двигателях», на которые впоследствии сделала ставку христианская теология.

В течение нескольких последующих столетий было разработано несколько моделей для объяснения неравномерного движения небесных объектов вокруг Земли в Аристотелевом космосе. Еще со времен шумеров было известно, что планеты порой ведут себя странно. Если понаблюдать за движением Марса по небу в течение нескольких месяцев, можно заметить, что иногда он поворачивает назад, как если бы он не был уверен, что выбрал правильный путь. Для древнегреческих астрономов, считавших Землю центром космоса, это «ретроградное» движение было настоящей головной болью. Согласно Симпликию Киликийскому, философу VI века и комментатору Аристотеля, Платон потребовал от своих учеников объяснить такую траекторию движения Марса, используя лишь циркулярные орбиты и равные скорости. Эту задачу он назвал спасением факта (хотя обычно ученые как раз занимаются спасением собственных теорий от изменений под влиянием фактов). Симпликий так объяснял задачу Платона: «Это блестящая проблема для астрономов: доказать, с учетом полученных гипотез, что все предметы в космосе движутся по кругу и что кажущиеся несоответствия… порождаются не чем иным, как нашим восприятием, и не имеют отношения к реальности».

На данном примере мы видим, как прочное научное убеждение может одновременно подстегивать мышление и останавливать его, заставляя воображение создавать множество возможных сценариев в рамках строгих ограничений. Несмотря на то что идеи Платона почти две тысячи лет вели астрономию по неверному пути, благодаря им было создано множество сложнейших теорий о движении небесных объектов. Самой известной из них является модель эпициклов Птолемея, предложенная около 150 года н. э. и просуществовавшая (с небольшими изменениями, введенными исламскими астрономами) до конца XVI века.

Вкратце, эпицикл – это малый цикл, являющийся частью большего (деферента). Представьте себе, что Земля – это центр большого цикла. У этого большого цикла имеется эпицикл, и по нему движется Луна. По мере вращения большого цикла эпицикл вращается вместе с ним. Если, помимо этого, эпицикл может вращаться и самостоятельно, то мы получаем сочетание двух круговых движений. Перемещаясь по созданному ими петлеобразному пути, космические тела могут демонстрировать обратное или нестандартное движение. Теперь давайте повторим ту же процедуру для всех известных планет и Солнца. Каждый из этих объектов имеет собственный эпицикл, входящий в деферент. В итоге вся конструкция выглядит как ряд концентрических кругов, в центре которых находится Земля. Если правильно соотнести размеры деферентов и эпициклов, можно получить как раз такие ретроградные движения, которые уже известны астрономам по результатам наблюдений.

Птолемей быстро осознал, что эта конструкция была слишком простой, чтобы оказаться верной. Будучи в состоянии предсказывать положение небесных тел на долгое время вперед, он доработал свою модель, добавив в нее дополнительный фактор. Вместо того чтобы вращаться вокруг центра деферента, как кабинки колеса обозрения, эпициклы движутся вокруг экванта – воображаемой точки, слегка смещенной в сторону. После этой модификации модель Птолемея стала невероятно точным инструментом для предсказания положения планет. Ее точность была примерно равна полной Луне, то есть погрешность Птолемеевых измерений не могла быть больше места, занимаемого на небе полной Луной.

Ни Птолемей, ни большинство его последователей из исламских стран никогда не верили в реальность эпициклов. Для них это были лишь расчетные инструменты, позволявшие предсказать положение различных небесных тел. Моисей Маймонид, средневековый последователь Аристотеля еврейского происхождения, упоминает это в своем труде сразу же после опровержения физической природы эпициклов: «Все это никак не касается астронома. Его цель – не сказать нам, как на самом деле располагаются сферы, но предложить астрономическую систему, в которой движение небесных тел могло бы быть равномерным и циркулярным и соответствовало бы тому, что мы воспринимаем зрением, независимо от того, таково ли положение сфер на самом деле». Иными словами, несмотря на то что размышление о движении небесных сфер могло приблизить человечество к Богу, астрономию интересовала не природа вещей, а описание движения небесных объектов, «воспринимаемых зрением», то есть наблюдаемых. Итак, существуют вещи, которые могут быть поняты (воспринимаемые через органы чувств), и вещи, которые находятся за пределами понимания (и восприятия). Маймонид признает, что истинная природа небес сокрыта от человека:

Ибо невозможно человеку подняться до высот, с которых он сможет делать заключения о небесах, находящихся слишком далеко от нас и слишком высоких как по местоположению, так и по статусу. Даже если мы можем делать на их основании общие выводы, например, о существовании Двигателя, знания о таких материях не могут быть достигнуты человеческим умом. Изнурять свое сознание понятиями, которые недоступны ему или неподвластны его инструментам, – это врожденный дефект характера или соблазн.

Разумеется, со времени Маймонида мы узнали много нового о природе небес. Тем не менее нельзя отбрасывать его слова как бессмысленные или пораженческие. Сам характер человеческих исследований предполагает, что каждая эпоха сталкивается с собственным неизвестным. Вопрос лишь в том, остается это неизвестное с нами навсегда или с течением времени с ним можно справиться. Иными словами, на все ли вопросы существуют ответы?

Пускай эпициклы были лишь плодом воображения, но хрустальные сферы, несущие на себе небесные тела, считались вполне реальными. Кажется, ни одна другая идея в истории астрономии не продержалась так долго. Первое упоминание хрустальных («подобных льду») сфер в космосе приписывают ученику Анаксимандра Анаксимену, еще одному пресократику-ионийцу из Милета. Согласно Аэцию, «Анаксимен утверждал, что звезды вбиты, как гвозди, в подобную льду поверхность, и таким образом формируется их структура». Некоторые историки приписывают идею вращающихся колец, двигающих небесные тела вокруг Земли, Эмпедоклу. Как бы там ни было, очевидно, что во времена Платона вращающиеся сферы стали основным образом космической механики. Особенно четко это проявлялось в модели взаимосвязанных сфер, созданной его учеником Евдоксом Книдским. Даже Коперник 18 веков спустя был уверен, что планеты переносятся по своим орбитам с помощью хрустальных сфер, а его революционный труд, в котором он предположил, что в центре космоса находится не Земля, а Солнце, назывался «О вращении небесных сфер». Разумеется, без этого образа трудно было бы объяснить движение космических тел. Единственную идею, сходную с понятием гравитации, высказывал Аристотель, когда делил космос на две «области» с разными физическими законами. Для того чтобы контролировать движения всех небесных тел, ему требовалось ни много ни мало 59 сфер. Коперник понимал, что эта задача требует решения, но не знал, как к ней подойти.

Сделав Солнце центром Вселенной, Коперник вызывал огромный космический катаклизм, подорвав устои аристотелевского мировоззрения, существовавшего почти два тысячелетия. Новый порядок вещей требовал объяснения, новой науки, которую Коперник не мог ему предоставить. Согласно физике Аристотеля, Земля являлась точкой притяжения для всех движений материи, причиной того, почему подброшенные предметы падали вниз. Небесные сферы переносили Луну, Солнце, планеты и звезды по равномерным круговым (или как минимум эпициркулярным) орбитам. Если Земля – это всего лишь одна из планет, почему любой подброшенный предмет падает на нее? Кроме того, согласно Аристотелю, Солнце и все прочие небесные тела состояли из пятого вещества, эфира, совершенно отличного от четырех земных стихий. Эфир был вечным и непреложным. В небесах никогда ничего не изменялось. Даже астероиды и кометы считались атмосферными или «метеорологическими» явлениями. Как же Земля, не состоящая из эфира, могла быть равной другим планетам? Как физика могла объяснить эту путаницу?

Кроме того, вопросы имелись и у теологов. Новое расположение планет означало нарушение природной вертикальности аристотелевского космоса, которую церковь приняла с большим энтузиазмом. Именно эта вертикальность заставляла людей с благоговейным страхом смотреть снизу вверх на небо – обитель Бога и святых. Кроме того, если Земля вращается вокруг Солнца, то и ад не находится в самом центре всего Сущего, а движется по небу вместе с нашей планетой. Неудивительно, что одним из первых обличителей Коперника был Мартин Лютер: «Рассказывают о новом астрологе, который хочет доказать, будто Земля движется и оборачивается вокруг себя, а не небо… Этот дурак хочет перевернуть все искусство астрономии».

Но Коперник вовсе не хотел революции. Он хотел «спасения факта», как и Платон, и поэтому создал модель космоса, основанную на красоте и симметрии и подчиняющуюся законам равномерного кругового движения. Коперник презирал идею Птолемея об экванте, так как она нарушала всю стройность небесной механики. Коперник был человеком Возрождения, учился в Италии всего за несколько лет до того, как Микеланджело закончил роспись Сикстинской капеллы, и потому верил, что гелиоцентрический космос задавал гармонию, новую космическую эстетику, отсутствующую в древней геоцентрической системе. В своем видении мира он отдавал дань уважения Филолаю и пифагорейским представлениям о центральном огне как основе Вселенной и источнике всего света. Модель Коперника была идеей Платона, облаченной в ценности Ренессанса, – космосом, построенным на красоте и симметрии с небольшой добавкой новых астрономических наблюдений. Разумеется, Копернику принадлежала лишь малая часть из них. Основные используемые им данные были получены Птолемеем и его последователями из исламских стран.

Ключевое различие между Коперником и его предшественниками состояло в представлении о реальности идей. Для Коперника гелиоцентрический космос был не просто инструментом расчета, но истинной формой организации мира. Астрономия не просто занималась описанием космоса, но и отражала физическую реальность, воспринимаемую человеческим сознанием. Внезапно ставки оказались гораздо выше, чем раньше.

Но труд Коперника стал лишь первой ласточкой новой эпохи в науке – в основном благодаря Галилею и Кеплеру. Для них обоих переломные моменты наступили с получением новых эмпирических данных. Жизнь Галилея и будущее всей астрономии изменились в тот момент, когда он впервые взял в руки телескоп, а революционная физическая астрономия Кеплера была бы невозможна, не окажись в его распоряжении результатов исследований Тихо Браге.

 

Глава 5. Преобразующая сила нового инструмента для наблюдений

в которой описывается, как три выдающихся ученых мужа изменили наши представления о мире с помощью новых инструментов и своей творческой мысли

Первый телескоп был сделан в Голландии и попал в руки Галилея только в 1608 году. Предшественник ученого Тихо Браге в течение последних трех десятилетий XVI века тщательно фиксировал движение планет по небу. Браге был достаточно состоятелен, а кроме того, имел поддержку короля Дании Фредерика II, который в 1576 году подарил ему остров Вен «со всеми арендаторами и слугами короны, проживающими на нем, и с правом взимания аренды и иных пошлин… до конца жизни или до тех пор, пока он имеет желание продолжать свои studia mathematices». Благодаря этому Браге удалось создать коллекцию измерительных приборов, равной которой мир еще не видел. Во времена до изобретения телескопа астрономические измерения производились исключительно невооруженным глазом с использованием квадрантов, секстантов, астролябий и иных инструментов, позволявших определять местоположение и отслеживать движение небесных тел. По сути, астрономы проводили угловые измерения небесного свода – воображаемой сферы, на которой были закреплены звезды.

Если посмотреть на небо в ясную ночь, можно увидеть множество звезд (до нескольких тысяч). Расстояние между ними кажется нам неизменным, как если бы они действительно были прибиты к темному небесному своду. С течением ночи звездное небо медленно движется с востока на запад. Из-за этой кажущейся относительной неподвижности звезд древние наблюдатели различали на небосклоне фигуры (созвездия) и придавали им разные значения. Несмотря на то что в различных мифологиях одно и то же созвездие могло иметь разные значения, стремление к поиску смыслов в звездах является общим для всех человеческих культур. В реальности же наши органы чувств нас подводят. Во-первых, звезды не статичны – некоторые из них движутся со скоростью много тысяч километров в секунду. Во-вторых, они не располагаются на одном и том же двухмерном небосводе, а находятся на разных расстояниях от Земли и, следовательно, распределены в трехмерном пространстве. Небосвод – это стена из платоновской пещеры, иллюзия, возникающая вследствие нашего ограниченного восприятия реальности (хотя в данном случае, вероятно, за нашими спинами никто не стоит). Эта иллюзия объясняется огромными расстояниями, отделяющими нас от звезд. Когда мы видим с земли пролетающий над нами самолет, нам кажется, что он движется медленнее, чем на самом деле. Точно так же и звезды, находящиеся в нескольких световых годах (или сотнях световых лет) от нас, выглядят статичными.

Фотографии с длинной экспозицией, сделанные в Северном полушарии, показывают, что звездное небо вращается вокруг одной неподвижной точки – Полярной звезды. На самом деле, движется не небо, а Земля, а Полярная звезда (на сегодняшний день) находится прямо над ее полюсом. В течение следующих нескольких тысяч лет она постепенно сместится из этого положения из-за «предварения равноденствий» – колебаний земной оси.

Предположение о том, что Земля вращается вокруг своей оси, казалось людям настолько необычным, что этот факт ускользал от внимания наблюдателей многие тысячи лет. Если бы мы сказали последователю Аристотеля, что в течение 24 часов именно Земля, а не небеса над ней, делает полный оборот, он бы спросил, почему в таком случае облака и птицы остаются на месте, а подброшенные камни не зависают в воздухе. Нас поддержали бы лишь некоторые греческие мыслители вроде Экфанта и Гераклида, а до Коперника и его теории вращения Земли оставалось бы еще две тысячи лет.

Для того чтобы измерять положение звезд относительно друг друга и отслеживать движущиеся по небу планеты, астрономы делят небесный свод на два полушария, разделенные экватором. В зените (высшей точке) Северного полушария находится Полярная звезда. Положение относительно экватора небесного свода называется склонением (и соответствует долготе на поверхности Земли). Соответственно, склонение Полярной звезды составляет +90°. По аналогии с наземной долготой, которая отсчитывается от выбранной произвольным образом нулевой точки в Гринвиче (Англия), на небесном своде существует прямое восхождение. Прямое восхождение принято отсчитывать от точки весеннего равноденствия, когда Солнце пересекает небесный экватор в начале весны. Ситуацию немного усложняет то, что вместо углов (как в случае с широтой, долготой и склонением) прямое восхождение измеряется в часах, минутах и секундах. Для соединения двух угловых единиц астрономы используют вращение Земли. Поскольку Земля проходит 360º (полный круг) за 24 часа, значит, за один час она проходит 360º/24 = 15º, за минуту – 15º/60 = 0,25º (15 угловых минут, или 15'), а за секунду – 15 /60 = 15' (15 угловых секунд). Таким образом, прямое восхождение с угловым положением 15º относительно нулевой точки равняется одному часу. Например, чтобы найти звезду Бетельгейзе в созвездии Ориона на небесном своде, нужно использовать следующие координаты: 5 часов 52 минуты 0 секунд к востоку от точки весеннего равноденствия (прямое восхождение) и 7º 24 к северу от небесного экватора (склонение).

Но вернемся к Тихо Браге. Его огромные, построенные на заказ инструменты позволяли ему измерять позиции планет с невероятной точностью – восемь угловых минут от градуса. Браге также знал, что для лучшего понимания планетарных орбит требовалась не только точность, но и регулярность. Чем больше данных у него имелось, тем лучше он мог отследить движение планет по небу. А потом, 11 ноября 1572 года, возвращаясь домой из своей алхимической лаборатории, Браге увидел новую звезду в созвездии Кассиопеи. Загадочная гостья была такой яркой, что ее можно было рассмотреть даже днем. Физика Аристотеля отрицала возможность появления новых светил, ведь небеса были незыблемы и все изменения могли происходить лишь в подлунной сфере. Любые новые объекты на звездном небе считались лишь атмосферными явлениями, предметом изучения метеорологии. Вооруженный своими инструментами, Браге тщательно измерял новое небесное тело, пока в марте 1574 года оно не скрылось из виду. Его выводы были революционными: во-первых, новая звезда находилась дальше от Земли, чем Луна, во-вторых, она не была кометой, так как у нее не было хвоста и она не двигалась по небу. Наблюдения Браге впервые бросили вызов установкам Аристотеля. Чтобы заявить, что определенный порядок вещей неверен и грядут перемены, требуется недюжинная интеллектуальная смелость. Современность подхода Браге проявлялась в высочайшей точности его измерений и в понимании, что теории, не подкрепленные фактами, сродни пустым раковинам – их приятно держать в руках, но у них отсутствует живое начало, raison d’etre.

Сегодня мы знаем, что Браге наблюдал взрыв сверхновой. То, что он посчитал рождением новой звезды на небе, на самом деле было смертью старой. Великолепный инструментарий и усердие Тихо Браге позволяли ему видеть мир точнее, чем это делал кто-либо из его предшественников. Тем не менее, как часто случалось в истории науки (и часто упоминается в этой книге), его видение было ограничено имеющимися у него возможностями. Обвиняя тех, кто сомневался в нем, он в сердцах восклицал: «О глупцы! О слепцы, глядящие на небо!» Эту фразу можно отнести к каждому из нас.

Но небеса как будто сами подталкивали науку вперед. В 1577 году еще одна яркая вспышка среди звезд подбросила дров в медленно разгорающийся костер борьбы с аристотелевскими догматами. Речь идет о Великой комете 1577 года, которую видели по всей Западной Европе и которая была зафиксирована многими астрономами. Браге увидел ее 13 ноября перед закатом, возвращаясь с рыбалки, и следил за ее движением 74 дня. Сравнив свои данные с данными пражского коллеги, Браге заключил, что расстояние от кометы до Земли в три раза превышало расстояние между нашей планетой и Луной. Он также отметил, что, хотя Луна для пражского астронома находилась в другом месте, нежели для него, местоположение кометы в обоих наблюдениях оставалось неизменным. Эта техника носит название параллакс и является крайне эффективной для определения расстояния между удаленными объектами. Другие астрономы также подтвердили наблюдения Браге, еще сильнее пошатнув установку Аристотеля о неподвижности небесных сфер.

Учитывая, что Браге делал свои открытия всего через 30 лет после публикации книги Коперника в 1543 году, было бы логично предположить, что он с радостью принял гелиоцентрическую модель. Увы, это было не так. По определенным физическим и теологическим мотивам он отказался ее поддерживать и вместо этого предложил странную гибридную модель с двумя центрами. Земля продолжала быть неподвижным центром всего сущего, Солнце и Луна вращались вокруг нее, а все остальные планеты – вокруг Солнца. Создавая эту запутанную структуру, Браге полагался одновременно и на библейские догматы, и на свою незыблемую веру в силу наблюдений. Он тщательно регистрировал и сравнивал положения звезд в разные времена года, чтобы получить хотя бы малейшее доказательство движения Земли (при этом применялась та же техника параллакса, что и при наблюдении за Великой кометой 1577 года), но не обнаружил ничего, что искал. Если бы Земля двигалась вокруг Солнца, то в разное время года звезды, расположенные к ней ближе, оказывались бы в разных положениях относительно более далеких. Браге не нашел желаемых доказательств, потому что звездный параллакс невозможно увидеть невооруженным глазом, пусть даже с самыми точными измерительными инструментами. Как и все остальные его современники, он смотрел на небо и был слеп, хоть и видел дальше остальных. Кроме того, Браге не мог представить себе новую физику, которая объяснила бы модель Вселенной с Солнцем в центре. Несмотря на то что его собственные наблюдения указывали на неправоту Аристотеля, разделявшего реальность на две отдельные области, Браге не был готов сделать еще один шаг вперед и поверить, что перед ним лежали законы абсолютно новой физики, ждущие, пока их откроют.

Тем не менее у него хватило смелости отойти от идеи существования хрустальных сфер, так как в его модели космоса они неизбежно сталкивались бы между собой. Он предположил, что, если бы сферы существовали, кометы пролетали бы сквозь них, как пули сквозь стекло, оставляя за собой след из осколков, хотя собранные им данные были недостаточно точными для того, чтобы доказать это. Избавившись от священных небесных сфер, Браге столкнулся с проблемой. Как объяснить движение светил по небу, если движущих их сфер на самом деле не существует? Будучи совершенно уверенным в своих наблюдениях, Браге считал, что планеты просто движутся в пустом пространстве, но при этом не мог объяснить их вращение, которое сам же и измерял с такой точностью. Ему нужен был архитектор, человек с достаточным воображением и знаниями в математике, готовый доказать, что его модель правильно описывает положение вещей. Ему нужен был Иоганн Кеплер.

В истории науки найдется немного персонажей, столь же интересных, как этот блестящий, храбрейший и крайне неуравновешенный немецкий астроном, который в самые мрачные моменты своей жизни считал себя самым слабым и безвольным человеком, будучи в реальности гигантом мысли и героем борьбы за свободу вероисповедания. Испытав немало жизненных трагедий, перенеся ужасное детство и множество эмоциональных потрясений в личной жизни, пережив жестокую конфронтацию между католиками и лютеранами в Центральной Европе в первых десятилетиях XVII века, Кеплер обратил свой взгляд к небесам, надеясь найти в них тот порядок, которого ему так не хватало на Земле.

Кеплер стал ассистентом Браге в начале 1600-х годов. К тому моменту состоятельный астроном уже вышел из фавора датской короны и стал придворным математиком Рудольфа II, правителя Священной Римской империи, трон которого находился в Праге. Браге не мог отказаться от привычных ему блеска и роскоши и потому построил в замке Бенатки, примерно в 40 милях от столицы, сложную астрономическую обсерваторию, полную дорогих инструментов и многочисленных ассистентов.

С самого начала Браге и Кеплер преследовали разные цели. Первому нужна была теоретическая помощь для обоснования странной геоцентрической модели, которая, как он полагал, соответствовала не только его собственным наблюдениям, но и Священному Писанию. Второй же, будучи преданным последователем Коперника, хотел использовать данные Браге, чтобы раз и навсегда доказать истинность гелиоцентрической структуры космоса. Несмотря на то что они проработали вместе всего полтора года, это было эпическое столкновение. Браге не соглашался предоставить результаты своего многолетнего упорного труда немецкому последователю Коперника, Кеплеру же не терпелось начать собственную работу. После многочисленных споров Браге наконец дал Кеплеру доступ к своим записям о движении Марса. Это был хитрый ход, ведь Браге знал, что Марс движется по крайне странной орбите, порой делая резкие скачки в сторону от привычного круга. Задачей Кеплера было объяснить траекторию Марса с помощью циркулярных движений, используя собранные Браге данные.

Кеплер надеялся, что эта работа займет у него лишь пару недель, а в итоге закончил ее через девять лет. В 1609 году он с гордостью опубликовал свою «Новую астрономию», в которой заявил, что Марс движется не по круговой, а по эллиптической орбите. Это было неожиданное решение, противоречащее тысячелетним представлениям астрономов, но Кеплер ни на шаг не отступал от наблюдений Браге. После нескольких лет экспериментов с кругами и эллипсами Кеплер применил идею Птолемея об экванте к Солнцу, немного сместив его из центра всех планетарных орбит. Этот подход сработал почти идеально, вот только два наблюдаемых параметра отличались от расчетов на основании его модели на восемь угловых минут, то есть на 8 / 60 одного градуса. Большинство людей просто проигнорировали бы эти несоответствия и посчитали бы такую модель максимально точным приближением к истинному положению вещей (так оно и было). Но неуемный Кеплер знал, что может лучше использовать драгоценную информацию, оказавшуюся в его руках.

Итак, Кеплер продолжил попытки и через какое-то время пришел к теории эллипса. Это был уже второй случай – в первый раз он отказался от идеи эллиптических орбит. Иногда ответ находится прямо у нас перед глазами, но мы не готовы его принять. Итак, звезды сошлись идеально. В руках Кеплера точнейшие данные Браге, собранные с помощью лучших инструментов, могли совершить революцию в науке. В истории науки вряд ли можно найти много примеров, столь же ярко иллюстрирующих силу точных данных как катализатора масштабных изменений в наших представлениях о мире. История Браге и Кеплера показывает нам, что наблюдатель и теоретик могут создать практически всесильный союз, пускай и не всегда столь блестящий. Перефразируя знаменитое высказывание Эйнштейна о науке и религии, «информация без теории хрома, а теория без информации слепа».

Но Кеплер не остановился на достигнутом. Для того чтобы по-настоящему изменить науку, ему недостаточно было обосновать астрономию Коперника данными, полученными от Браге. Требовалось создать новую физику для ее объяснения. Полное название книги Кеплера звучало так: «Новая астрономия, причинно обоснованная, или Физика неба, изложенная в исследованиях движения звезды Марс по наблюдениям достопочтенного Тихо Браге». Причинно обоснованная астрономия или физика неба. Кеплер не просто описывал астрономические явления, как все его предшественники, но пытался объяснить движения светил с помощью физики, будучи уверенным в том, что они подчиняются законам причины и следствия. Это была настоящая революция – первая попытка в истории астрономии объяснить траектории планет воздействием физических сил. Кеплер предположил, что Солнце и планеты имеют магнитную природу и взаимодействуют друг с другом с помощью притяжения. На эту идею его вдохновил труд Уильяма Гилберта, придворного врача Елизаветы I, в котором автор описывал Землю как гигантский естественный магнит. Кеплер заключил, что если Земля является магнитом, то им должно быть и Солнце. А два магнита притягиваются друг к другу даже на расстоянии, как и происходит с Солнцем и планетами. В письме от 1605 года он писал: «Моя цель – показать, что небеса представляют собой не божественный организм, но скорее часовой механизм… поскольку почти все из огромного количества движений объясняются единственно простейшей магнитной силой». Революционные идеи Кеплера о физических причинах движения планет стали основанием для ньютоновской теории гравитации, созданной позднее, в XVII столетии.

Перед тем как перейти от Кеплера к другим темам, я бы хотел обратить внимание еще на один очень важный пассаж из названия его книги – «физика неба, основанная на наблюдениях». Несмотря на то что пространные рассуждения о космосе порой заводили его слишком далеко, Кеплер понимал, что информация – это главный судья между Природой и теориями, которые мы создаем, чтобы ее объяснить. Сегодня это кажется нам очевидным, но во времена Кеплера все было совсем не так. Кеплер был человеком переходного периода, провозвестником нового. Но к этому моменту он уже был не одинок. Вдали от него, в Италии, на сцену мировой науки готовился выйти еще один последователь Коперника.

В 1610 году, всего через год после выхода «Новой астрономии» Кеплера, Галилео Галилей опубликовал свою работу Siderius Nuncius, название которой обычно переводят как «Звездный вестник». Этой небольшой книгой Галилей изменил представление человечества о Вселенной. А помог ему в этом новый мощный инструмент для наблюдения за небом – телескоп. Благодаря ему Галилей смог увидеть новый космос, полный сложности и красоты, далекой от идеализированной Аристотелевой симметрии вечных и неизменных эфирных сфер. Инструменты Браге позволяли ему измерять небесные явления с беспрецедентной точностью. Точно так же и телескоп Галилея давал ему возможность видеть дальше и точнее, чем кто-либо из его предшественников. Как это часто случается в истории науки, новый измерительный прибор открыл людям неожиданные аспекты физической реальности. Остров знаний увеличивается неравномерно, новые участки суши поднимаются из воды и изменяют старые границы, порой до неузнаваемости.

Несмотря на то что новости об изобретении телескопа появились уже в октябре 1608 года, когда голландский мастер Иоанн Липперсгей подал заявку на регистрацию соответствующего патента (она была отклонена), свой первый телескоп Галилей создал сам. Друг Галилея, дипломат, подарил ему образчик труда Липперсгея, и Галилей осознал потенциал этого прибора. Он начал вытачивать линзы самостоятельно и к июлю 1609 года собрал телескоп с трехкратным увеличением. Вскоре после этого, в августе того же года, он представил перед венецианским сенатом инструмент, приближающий наблюдаемые объекты в восемь раз. Это позволило ему закрепить свое место в Падуанском университете и потребовать увеличения жалованья в два раза. В октябре он уже смотрел на небо через телескоп с 20-кратным увеличением. Галилей не был одинок в своих трудах. Сегодня мы знаем, что в августе 1609 года Томас Хэрриот из Англии уже использовал устройство с шестикратным увеличением для наблюдения за Луной, хотя результаты его работы так и не были опубликованы. Итак, телескоп обязан своей славой Галилею и его уверенности в том, что в его руках находится инструмент новой астрономии, если не нового мирового порядка.

О Галилее и его злоключениях по вине католической церкви написано очень много. Я и сам поднимал эту тему в своей книге «Танцующая Вселенная». Поэтому сейчас я постараюсь сфокусироваться на влиянии его открытий и на его роли в создании эмпирического метода, который впоследствии станет основой современной науки.

В «Звездном вестнике» (несомненно, в этой роли Галилей видел самого себя) он описывает три главных открытия, сделанных с помощью его телескопа и полностью противоречащих Аристотелевым взглядам на космос. Во-первых, поверхность Луны не является ровной – на ней имеются горы и кратеры и она больше похожа на Землю, чем на идеальную сферу из чистого эфира. Во-вторых, направив свой телескоп на Плеяды и созвездие Ориона, Галилей увидел в десять раз больше звезд, чем невооруженным глазом. Это заставило его предположить, что Млечный Путь и другие туманности являются не облачными формированиями, а бесчисленными множествами звезд. Наконец, у Юпитера обнаружилось четыре спутника, которые Галилей тут же окрестил «светилами Медичи» в стремлении получить поддержку великого герцога Тосканского Козимо II. Эти открытия, а также многие последующие наблюдения (например, фазы Венеры и пятна на Солнце) убедили Галилео, что Коперник был прав, а Аристотель – нет. Даже несмотря на то что они не в полной мере доказывали теорию Коперника (и при необходимости легко вписывались в модель Браге), как, к примеру, звездный параллакс, Галилей решил заявить всему миру и церкви о том, что пришло время перемен. Это в конце концов и навлекло на него гнев инквизиции.

Несмотря на всю свою новизну и революционность, работы Галилея в области астрономии все равно несли на себе печать консерватизма. Например, он так и не поверил в существование Кеплеровых эллиптических орбит. Вместо этого он предложил странный закон круговой инерции, основанный на идеях оксфордского ученого XIV века Жана Буридана. С помощью этого закона он пытался объяснить вращение планет вокруг Солнца, а впоследствии экстраполировал его и на линейную инерцию: «Тело, движущееся по ровной поверхности, будет продолжать движение в том же направлении с постоянной скоростью, если не подвергнется внешнему воздействию» (представьте себе, как человек на коньках скользит по гладкому льду замерзшего озера). Позднее Ньютон превратит эту формулировку в свой первый закон движения, введя в нее понятие силы: «Тело сохраняет постоянную скорость, если на него не воздействует чистая неуравновешенная сила». Кстати, слово «инерция» впервые встречается в Epitome Astronomiae Copernicanae Кеплера – труде в трех томах, напечатанном между 1618 и 1621 годами. В этом шедевре ранней астрономической науки Кеплер применяет свою идею эллиптических орбит ко всем планетам, а также успешно доказывает правильность своих математических формул с помощью данных, полученных от Браге. Согласно Кеплеру, инерция представляет собой сопротивление тела стартовому импульсу, выводящему его из состояния покоя.

Тем не менее и для Галилея, и для Кеплера космос оставался закрытой структурой, ограниченной сферой звезд. Идея бесконечности Вселенной вселяла в Кеплера отвращение: «Даже сами мысли об этом полны скрытого ужаса, возникающего в попытках представить себе столь полное отрицание любых границ и центров, что любое определение местоположения становится бессмысленным».

Кеплер верил, что космос, созданный Богом, должен быть симметричным и геометрически упорядоченным, а не бесконечным и бесформенным. Он даже сравнивал его со Святой Троицей: Солнце, находящееся в центре, представляло Бога-Отца, сфера звезд на периферии – Сына, а пространство между ними, наполненное солнечным (Божественным) светом, – Святой Дух. Чтобы подкрепить свое теологическое объяснение, он заявлял, что идея бесконечной Вселенной противоречит данным астрономических наблюдений, и приводил в качестве примера сверхновую 1604 года (так называемую Кеплерову сверхновую, последнюю, наблюдавшуюся невооруженным глазом). Защитники теории бесконечного космоса утверждали, что новая звезда стала заметна, приблизившись к Земле из космических глубин, а затем снова исчезла из виду, когда расстояние увеличилось. Кеплер отрицал эту идею, говоря, что звезды не могут двигаться. Кроме того, он считал, что бесконечный космос был бы однородным и выглядел бы одинаково в любой точке, в то время как наблюдения за созвездиями показывали, что это не так.

Вполне возможно, что и Кеплер, и в особенности Галилей просто не забывали об ужасной судьбе Джордано Бруно, закончившего жизнь на костре инквизиции, пускай его обвинение и казнь стали результатом скорее его борьбы с религиозными догматами, чем трудов в области астрономии. К примеру, Бруно утверждал, что Христос был не сыном Бога, а просто ловким волшебником, и что Святой Дух – это душа всего мира. Тем не менее он верил в бесконечность Вселенной и в то, что каждая звезда представляет собой солнце, вокруг которого вращаются другие планеты (подумать только, как он был прав!), населенные мыслящими существами. Эта теория также противоречила представлениям о Земле как о центре творения и людях как любимых детях Создателя.

Итак, Галилей и Кеплер подготовили сцену к выходу еще одного человека, готового изменить реальность, – Исаака Ньютона. Он не только точно сформулировал закон всемирного тяготения, применимый ко всем объектам во Вселенной, но и разбил небесный свод, показав, что за ним скрывается бесконечный космос. Ни одному человеку до него не удавалось настолько увеличить наш Остров знаний – и лишь немногим это удастся после.

 

Глава 6. Разбить небесный свод

в которой мы узнаем больше о гении Исаака Ньютона и поймем, почему его физика стала маяком человеческой мысли во тьме непознанного

Галилей умер в 1642 году – в год рождения Ньютона. Великий итальянец не ограничивался в своей работе только астрономией. Он потрясал основы Аристотелевой физики и на Земле, показывая, к удивлению многочисленных читателей и ярости святых отцов, что внешность действительно бывает обманчива. Самое блестящее открытие Галилея касается природы тяготения. Даже сегодня, когда я читаю лекции, посвященные этой теме, и показываю, насколько неверными могут быть наши интуитивные представления, я вижу удивление и зачастую даже неверие на лице своих студентов. Как писал Аристотель и как подсказывают нам органы чувств, все объекты в мире стремятся к своему «месту в природе». «Места в природе» организованы в соответствии с иерархией четырех стихий. Они располагаются вертикально снизу вверх в такой последовательности: земля, вода, огонь и воздух. Это кажется совершенно логичным, ведь мы знаем, что, если подбросить камень в воздух (или бросить его в огонь или воду), он упадет вниз, а если разжечь костер, то языки пламени будут стремиться вверх. Из этого эксперимента можно сделать вывод, что чем тяжелее предмет, тем быстрее он упадет. Соответственно, гравитация должна каким-то образом учитывать состав предмета. Почему бы и нет, если перо действительно падает на землю куда медленнее булыжника?

Проведя ряд потрясающих экспериментов, Галилей доказал, что ни Аристотель, ни наша интуиция не правы. Все предметы, вне зависимости от их веса, формы или состава, падают вниз с одной и той же скоростью. Различия могут объясняться лишь сопротивлением воздуха или разницей во времени броска. Если точнее, можно сказать, что все предметы, вне зависимости от их массы, в вакууме падают с одинаковой скоростью (хотя для того, чтобы объяснить разницу между весом и массой, необходимо было дождаться прихода Ньютона). Галилей описал кинематические характеристики свободного падения, измерив его скорость для различных объектов. Для осуществления таких измерений он придумал блестящий эксперимент – наблюдение за шарами, скатывающимися по наклонной поверхности. При этом он мог варьировать угол наклона, контролируя тем самым их скорость и рассчитывая время движения шара даже в отсутствие часов (которые к тому моменту еще не изобрели). Для измерения времени он использовал собственный пульс, музыку (так как все люди известны своей способностью чувствовать ритм) и даже воду, капающую в ведро. Чтобы убедиться, что в гроб Аристотеля загнано уже достаточно гвоздей, Галилей провел еще два опыта. В рамках одного из них, самого известного, он сбросил деревянный и свинцовый шары с верхушки Пизанской башни. Несмотря на разницу в весе, оба шара коснулись земли практически одновременно.

Еще один эксперимент с падением предметов был проведен ранее, в 1602 году, во время мессы в Пизанском соборе, когда внимание Галилея привлек прислуживающий в алтаре мальчик, зажигавший свечи на большой люстре. Галилей заметил, что после того, как мальчик отпускал люстру, она некоторое время раскачивалась вперед и назад. К его удивлению, даже при уменьшении амплитуды время между полными колебаниями (период осцилляции) оставалось примерно одинаковым (на самом деле это верно лишь для колебаний с небольшой амплитудой). Позднее Галилей доказал, что время колебаний не зависело от массы объекта: при старте из одного и того же положения (то есть под одним и тем же углом к перпендикуляру) и легкие и тяжелые предметы колебались с одинаковой скоростью. Для колебаний с небольшой амплитудой время определяется лишь длиной подвеса и местным значением силы притяжения (которое в экспериментах Галилея оставалось неизменным).

Учитывая, что движение маятника представляет собой, по сути, контролируемое падение, тот факт, что маятники с разным весом имели равное время колебания, соответствовал данным эксперимента с шарами, движущимися по наклонной плоскости или сброшенными с Пизанской башни. Итак, свободное падение – это демократичное явление, ведь в нем все массы равны. Различия, которые мы будем наблюдать, если одновременно сбросим с высоты 10 футов перо и кадиллак, объясняются исключительно сопротивлением воздуха. В конце своей прогулки по Луне командир корабля «Аполло-15» Дэвид Скотт одновременно выпустил из рук перо и молоток, чтобы провести опыт Галилея в вакууме. Видео, снятое во время этого эксперимента, поражает воображение и кажется совершенной магией, хотя и не должно удивлять тех, кому известно об открытиях Галилея. Единственное волшебство здесь заключается в отсутствии всякого волшебства.

Пока Кеплер формулировал первые математические законы, описывающие орбиты небесных тел, Галилей работал над выведением законов, регулирующих движения более близких к Земле объектов. Природа стала подвластной рациональному объяснению через математические формулы и собранные данные. И Кеплер, и Галилей сумели сформулировать то, что мы сегодня называем эмпирическими законами природы, после проведения экспериментов и тщательного анализа данных. Помимо всего прочего, их история учит нас, что для открытия математических законов Природы крайне важна экспериментальная точность (подумайте о Кеплере с его отклонением 8 угловых минут и о Галилее с его замерами времени при свободном падении). Естественным наукам необходимы методы, включающие в себя как математические уравнения, так и точные приборы. Одно значение измерений – это всего лишь число, но вот ряд значений может указывать на тенденцию. Задача ученого – понять смысл этой тенденции, изучить вероятные закономерности и выразить их в терминах математических законов, применимых к аналогичным системам. Законы Кеплера работают для всех объектов, движущихся по орбитам, будь то в Солнечной или иной звездной системе (если только гравитация в ней не слишком сильна), а результаты экспериментов Галилея со свободным падением применимы для всех (постоянных) гравитационных полей.

Ньютон стал для науки великим объединителем, связав физику Земли с законами небес. Своим законом всемирного тяготения он показал, что и закон Галилея о свободном падении, и закон Кеплера о движении планет по сути являются одним и тем же. Ньютон приблизил небеса к Земле и ко всему человечеству и позволил человеческому уму проникнуть в их тайны. Если эмпирические законы его предшественников рассказывали о закономерностях процессов на Земле и над ней, то его закон описывал общий космический порядок в масштабе, доселе недоступном мыслителям. Будучи увлеченным алхимиком, Ньютон, должно быть, очень радовался, когда ему удалось найти практическое воплощение знаменитого выражения из «Изумрудной скрижали» Гермеса Трисмегиста, главного кодекса алхимии: «То, что находится внизу, аналогично тому, что находится вверху». Для Ньютона математические принципы натурфилософии, алхимический поиск единства духа и материи и роль Бога как Создателя и хранителя мирового порядка были прочно связаны между собой.

Движения всех деталей космического механизма, будь то дальние планеты или падающее яблоко, подчиняются ряду правил, выраженных в одном уравнении. Неудивительно, что Ньютона превозносят как создателя современной науки, как воплощение силы разума, позволяющей познать мир вокруг.

Но многие забывают, что Ньютон не был типичным одиноким теоретиком, погруженным в поиски математических законов природы в своем кабинете в Кембридже. Он и правда был отшельником и отрицал любые прямые социальные контакты или обмен знаниями, чему существует множество документальных доказательств и что не раз отражалось в его биографиях. Гораздо меньше широкой публике известно о том, что Ньютон был старательным экспериментатором, проведшим много часов за изучением свойств света и алхимическими опытами в поисках тайных знаний. К этому мы еще вернемся чуть позже.

В оптике Ньютон занимался исследованиями природы видимого света, в частности, он определил, что тот состоит из напластования бесконечного количества цветов, находящихся в радуге между красным и фиолетовым. Более того, Ньютон изобрел новый тип телескопа, рефлектор, гораздо более мощный, чем рефракторный телескоп Галилея, дававший изображения с гораздо большим разрешением и не имевший цветовых искажений (так называемых аберраций). Благодаря рефлекторному телескопу, в котором использовалось зеркало, собирающее свет и фокусирующее его в глазах наблюдателя, Ньютон стал знаменитым еще до открытия законов механики и всемирного тяготения. К 1669 году он уже был назначен вторым Лукасовским профессором математики в Кембриджском университете. Эта должность была создана в 1663 году и существует до сих пор. С 1979 года ее занимал Стивен Хокинг, а после его ухода на пенсию место перешло к Майклу Грину – известному ученому, занимающемуся теорией струн.

В декабре 1671 года первый Лукасовский профессор Исаак Барроу, восхищавшийся работами Ньютона, отвез его рефлекторный телескоп в Лондон, чтобы продемонстрировать членам Королевского общества – знаменитого сообщества ученых, ставившего своей целью познание законов Природы. Еще через месяц Ньютон вступил в общество, тем самым закрепив за собой место среди элиты британской науки. Однако вместе со славой к нему пришла известность, а с известностью – профессиональная зависть и интеллектуальная конфронтация. Ньютону совсем не хотелось играть в эти игры, по крайней мере поначалу. Только после публикации в 1687 году «Начал», его труда, в котором были представлены законы механики и всемирного тяготения, и признания в качестве одного из величайших ученых всех времен Ньютон осмелился вернуться в общество.

Что касается алхимических работ Ньютона, то их он по большей части держал при себе, делясь лишь с избранными коллегами, например с одним из первых химиков Робертом Бойлем (кстати говоря, так же ревностно он охранял и свои теологические труды). Тем не менее ньютоновская новая теория мира распространялась на все области знаний быстрее лесного пожара, и Ньютон уже не мог это контролировать. Разумеется, теория, объясняющая динамику небесных тел воздействием невидимых сил не могла не вызвать интереса у теологов, тем более что эти силы, судя по всему, управляли всеми процессами в космосе – от падения самой крошечной песчинки до движения планет и комет. Могли ли верующие люди увидеть за силой гравитации что-то иное, кроме воли Творца? Как объяснял Ньютон кембриджскому теологу Ричарду Бентли, только бесконечный космос мог являться отражением безграничной Божественной силы творения. Если Бог присутствует во всем космосе, значит, космос не имеет конца. В «Общем поучении» к «Началам» Ньютон пишет, что Бог и Вселенная суть одно и то же: «[Бог] существует всегда и присутствует везде и, будучи вечным и всеобъемлющим, представляет собой время и пространство».

Новая теория гравитации Ньютона разбила небесный свод и показала, что простирающийся за ним космос безграничен. Вселенная предстала перед людьми во всей своей бесконечной и грозной красоте. Это был космос тысячи солнц, «находящихся на неисчислимых расстояниях друг от друга», в котором Земля оказалась лишь крошечной точкой в пустоте, не имеющей центра, лишь хрупким убежищем для человечества. Через несколько десятков лет после публикации революционных идей Ньютона французский математик и философ Блез Паскаль, вторя Кеплеру, описал экзистенциальный ужас, охватывающий его при мысли о безграничности мира: «Вечная тишина этого бесконечного пространства пугает меня». Если точнее, его мысль звучала так:

Когда я размышляю о мимолетности моего существования, погруженного в вечность, которая была до меня и пребудет после, о ничтожности пространства, не только занимаемого, но и видимого мною, растворенного в безмерной бесконечности пространств, мне неведомых и не ведающих обо мне, я трепещу от страха и недоуменно вопрошаю себя: почему я здесь, а не там, потому что нет причины мне быть здесь, а не там, нет причины быть сейчас, а не потом или прежде. Кто определил мою судьбу? Чей приказ, чей промысел предназначил мне это время и место? [45]

И сегодня, сталкиваясь с новыми научными открытиями, постоянно подтверждающими бесконечность времени и пространства, многие испытывают тот же ужас, что и Паскаль. Великого философа поддерживала в борьбе с его страхом христианская вера. Но как еще, если не с помощью религии, мы можем понять истинный смысл нашего мимолетного существования в этом мире?

 

Глава 7. Наука как грандиозное описание Природы

в которой автор рассуждает о том, что наука – это человеческий конструкт, действующий в установленных рамках, но открытый для изменений

Ньютон, Галилей и Кеплер, равно как и многие после них, находили смысл существования в познании законов Природы. Если мир и его законы действительно были созданы Богом, то поиск этих законов и постижение Божественного плана – обязанность каждого верующего. Понимание задумки Творца было высочайшей целью человеческого разума, вооруженного математикой, интуицией и точными данными. Даже сегодня верующие ученые точно так же объясняют, как в их жизни сочетаются наука и религия: чем больше они узнают о Природе, тем сильнее восхищаются результатами Божественного труда. Но даже среди тех, кто не причисляет себя ни к одной религии, распространено представление о природном единстве.

Теперь мы знаем, как Галилей, Кеплер и Ньютон изменили правила игры в свое время, как наука стала больше полагаться на инструменты и приборы и как в эффективности этих устройств отражались ограниченные возможности человека при познании мира. Природные закономерности выражались в математических законах, разработанных на основании внимательных наблюдений за физическими явлениями. С каждым открытием Остров знаний разрастался, но и береговая линия непознанного становилась длиннее. У ученых появлялись новые вопросы, на которые они не могли дать ответ.

Тем не менее начало было положено, и настолько эффективно, что к 1827 году, через 100 лет после смерти Ньютона, научное знание полностью изменилось. Такие понятия, как энергия и законы ее сохранения, электрический ток и магнетизм, были признаны частью природного повествования. На небеса направлялись все более и более мощные телескопы, и физика расширяла свое присутствие. После открытия Урана Уильямом Гершелем в 1781 году число известных человечеству планет достигло семи, новые кометы пересекали небеса, двигаясь по своим огненным орбитам, туманности виделись наблюдателям уже не как бесформенные облака, но как объекты, наполненные невероятной игрой света и цвета. Космос оказался куда более ярким и живым, чем можно было предположить. Древние ионийцы с их представлениями о постоянно меняющейся Вселенной внезапно снова вышли на передний план. Разумеется, нельзя было забывать и о противоположных идеях идеальной неизменности космоса. Для того чтобы понять природу космоса, наука должна была уравновесить понятия симметрии, красоты и сохранения энергии с представлениями об изменениях, распаде и перерождении.

По мере накопления знаний о мире увеличивался и объем непознанного. Приборы, предназначенные для улучшения человеческого зрения, открывали перед наблюдателями неожиданные богатства на всех уровнях, от крошечного до галактического. Если та или иная теория достаточно успешна, она может предсказать существование новых природных объектов и характеристик. Но предвидеть все, чего мы еще не знаем, невозможно. Новые инструменты не только расширяют наше видение мира, но и показывают, сколького мы еще не знаем и не можем предсказать, причем зачастую это происходит весьма впечатляюще. В качестве примера можно привести голландцев Захария Янсена и Антони ван Левенгука, совершивших революцию в микромире и создавших микроскоп примерно в то же время, когда Галилей впервые направил свой телескоп на звезды. В частности, Левенгук исследовал налет, снятый с его собственных зубов, и обнаружил в нем бактерии, открыв, таким образом, целый новый мир микроорганизмов.

Открытие этих крошечных форм жизни сразу же породило лавину вопросов. Насколько маленьким может быть живой организм? В чем разница между живой и неживой материей? Откуда вообще произошла жизнь? У важнейших вопросов макромира, вроде границ Вселенной и возраста нашего мира, нашлись эквиваленты и в микромире. Какова минимальная частица материи? Какова продолжительность ее жизни? Что есть смерть – Божественная установка или природное явление? Возможность того, что неживая материя когда-то превратилась в живую без какого бы то ни было посредничества Творца, пугала многих верующих. Здесь уместно вспомнить четвертое письмо Ньютона к Ричарду Бентли, в котором он отвечает на вопрос теолога о природе гравитации:

Невозможно представить, чтобы неодушевленная грубая материя без посредства чего-нибудь еще нематериального могла действовать и оказывать влияние на другую материю без взаимного соприкосновения с ней… То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее…представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее. [46]

Ньютон настаивал на том, что гравитация не может иметь материального объяснения, так как инертная материя остается инертной. В самой материи имелось что-то непостижимое, запускавшее силы притяжения. Возможно, Ньютон объяснял это вмешательством Бога, хотя в своем ответе Бентли по этому поводу он весьма осторожен (если не сказать противоречив): «Тяготение должно вызываться неким агентом, постоянно действующим по определенным законам; материален этот агент или нематериален, я предоставляю судить читателям».

После Ньютона поведение материальных объектов начали объяснять с помощью сил. Именно они определяют то, как мы познаем мир вокруг нас через наши органы чувств и их искусственные продолжения – приборы. В «экспериментальной философии» не осталось места для метафизики. Говоря словами Ньютона, «то, что не проистекает из фактов, не имеет места».

Это высказывание и по сей день остается кредо науки. Онтологическое описание физического мира через силы, влияющие на материальные объекты, не содержит никаких объяснений о природе таких сил или причинах их существования. Массы притягиваются друг к другу с силой, которая обратно пропорциональна расстояниям между ними. Притяжение (или отторжение) заряженных тел происходит по аналогичному принципу. Такие формулы позволяют физикам описывать поведение масс и зарядов в различных ситуациях. При этом мы не знаем, что представляют собой электрический заряд или масса и почему некоторые базовые единицы материи, например электроны или кварки, обладают и тем и другим. Масса или заряд – это характеристики материальных объектов, которые мы познаем с помощью приборов и опытов и используем для классификации их типов и физических свойств. Масса и заряд не существуют сами по себе. Они лишь часть информационной картины, которую люди создают для описания мира вокруг себя. Пятьсот лет назад этих понятий еще не существовало, а через 500 лет их могут заменить другие концепции. Иными словами, если во Вселенной существуют другие разумные существа, они, несомненно, пытаются объяснить наблюдаемые ими физические явления. Но считать, что они используют при этом те же концепции, что и мы, то есть что придуманные нами описания отражают какую-то вселенскую истину, – это глупость и антропоцентризм.

Наше понимание материальных объектов и взаимодействий между ними резко изменилось в ХХ веке с распространением нового описательного инструмента – понятия поля, породившего новую онтологию. Частицы материи стали представляться как локализованные флуктуации в полях, сгустки энергии, появляющиеся из базового поля и исчезающие в нем же. Несмотря на то что после введения полей как инструмента для объяснения фундаментальной физической реальности наше понимание материи и взаимодействий между объектами существенно улучшилось, поля все равно следует рассматривать как всего лишь один из уровней описания, а не как окончательное объяснение того, почему массы и заряды ведут себя так, как мы наблюдаем. Наверняка мы можем сказать лишь то, что на нашем текущем уровне понимания массы и заряды представляют собой измеримые характеристики возбуждения полей на уровне частиц. То, что это объяснение успешно, не значит, что в будущем мы не найдем ничего лучше. Более того, учитывая скорость развития научных знаний, это почти наверняка произойдет. Точно так же, как современные представления об электроне отличаются от представлений вековой давности, концепции будущего будут отличаться от сегодняшних.

Но давайте вернемся в XIX век. Двести лет назад ньютоновская наука потрясла основы человеческого знания и изменила наши представления о мире. Девятнадцатый век породил ученых, выдающихся не только своим блестящим воображением, но и потрясающей работоспособностью и экспериментальным мастерством. В 1865 году Джеймс Клерк Максвелл объединил десятки на первый взгляд разрозненных электрических и магнитных явлений, введя понятие колебаний магнитного поля. В 1886 году Генрих Герц подтвердил предположение Максвелла о том, что такие колебания распространяются в пространстве, перенося энергию и импульс. Позже он также доказал, что электромагнитные волны движутся со скоростью света (как и предсказывал Максвелл). Объединившись, теория и опыт оказались непобедимыми. Чтобы избавиться от ассоциаций с философами прошлого, натурфилософию стали называть наукой. Согласно Оксфордскому словарю английского языка, слово «ученый» вошло в обиход в 1863 году.

Ученый – это человек, который ищет знания о физическом мире, используя специальную методику. Научный метод предполагает выдвижение гипотезы с ее последующим экспериментальным подтверждением. У ученого имеется четкая цель: описать природное явление, используя для этого рациональные аргументы, основанные на воспроизводимых экспериментах и единообразии. Рассуждения допустимы только в той степени, в которой они ведут к возникновению доказуемых прогнозов. Итак, между старой натурфилософией и новой наукой возникла четкая граница, и пересекать ее ученым предлагалось на свой страх и риск (впрочем, желающих оказалось немного). Большинство физиков-исследователей занимаются изучением твердой материи, ее элементарных частиц, жидкостей, плазмы и небесных тел, от планет и звезд до галактик и их расположения в космосе. Однако с ростом наших знаний о Вселенной в ХХ и XXI веках ученые (по крайней мере те, кого интересуют космологические и фундаментальные проблемы) все чаще сталкиваются с вопросами метафизического характера, которые угрожают разрушить неприступную стену между наукой и философией. К сожалению, в большинстве случаев встречи этих двух областей человеческого знания сопряжены с невнимательностью и концептуальной неосторожностью, что лишь больше усложняет дело. Когда известные космологи делают заявления вроде «философия не имеет смысла» или «квантовая космология доказывает, что в Боге нет необходимости», они лишь ухудшают ситуацию. Для того чтобы понять, как мы оказались в такой ситуации и как она демонстрирует нам ограниченность наших знаний, нужно сначала кратко описать современную космологию – от теории Большого взрыва до концепции множественности вселенных.

 

Глава 8. Пластичность пространства

в которой рассказывается об общей и специальной теории относительности Эйнштейна и об их влиянии на наше понимание пространства и времени

Седьмого ноября 1919 года лондонская газета Times вышла с сенсационным заголовком: «Революция в науке. Новая теория Вселенной. Ньютон повержен». Еще через три дня эстафету подхватила New York Times: «Искаженный свет в небесах. Ученые взбудоражены результатами наблюдений за солнечным затмением. Триумф теории Эйнштейна. Звезды не то, чем кажутся, но волноваться не о чем». Эти публикации быстро превратили Эйнштейна в знаменитость. В них говорилось о том, как две команды астрономов подтвердили правильность его блестящей общей теории относительности после наблюдения за солнечным затмением на западном берегу Африки и в городе Собрал в северо-восточной Бразилии.

Эйнштейн предлагал новое видение природы гравитации. Он описывал ее не как загадочное ньютоновское «воздействие на расстоянии», а как эффект, возникающий в результате искривления пространства вокруг массивных объектов. Пространство эластично, а степень его искривления зависит от концентрации массы в том или ином регионе. Небольшие объекты слабо деформируют пространство вокруг себя, а большие вызывают более сильные изменения. Поэтому деформация вокруг человеческого тела незаметна (хотя она и существует), а вот деформация вокруг Солнца гораздо более выражена. В ходе опыта с затмением проводились измерения света дальних звезд в момент, когда они проходили рядом с Солнцем. Звезды были выбраны таким образом, чтобы Солнце находилось на пути между ними и Землей для их света. Затмение на время скрыло солнечный свет, позволив астрономам увидеть дальние звезды и сравнить их положение на небе с тем, которое наблюдалось при отсутствии Солнца как помехи. Если пространство вокруг Солнца действительно искривлено, то звездный свет отклонился бы от своего первоначального маршрута и звезды стали бы видны в других местах. Эйнштейн использовал свою теорию, чтобы рассчитать видимые глазу различия в положении звезд, возникающие в присутствии Солнца. Результаты эксперимента нельзя было назвать полностью ясными, но и их было достаточно для подтверждения его теории.

Уравнения, включенные в общую теорию относительности, можно использовать для расчета искривления пространства вокруг любого массивного объекта, а не только Солнца. По мере движения от далекого источника свет отклоняется то в ту, то в другую сторону, реагируя на пространственные неровности.

Еще в одном эксперименте Эйнштейн использовал искривление пространства для объяснения хорошо известных ученым аномалий в орбите Меркурия, перед которыми оказался бессилен закон всемирного тяготения Ньютона. Успех теории был закреплен, и очень скоро ее начали считать величайшим достижением человеческой мысли в истории.

Но на присутствие материи реагирует не только пространство, но и время. В своей специальной теории относительности, созданной в 1905 году, то есть за десять лет до выведения более общей версии, Эйнштейн показал, что время и пространство нельзя рассматривать как абсолютные величины, как было принято со времен Эйнштейна. Кроме того, нельзя и разделять их, так как они формируют единое целое – пространственно-временной континуум, в котором время играет роль четвертого измерения. Соответственно, присутствие материи (или энергии в целом) искривляет и пространство, и время (или лучше сказать «пространство-время»).

Идея пространственно-временного континуума проще, чем кажется на первый взгляд. Представьте, что вы видите у себя в комнате муху и через пять секунд убиваете ее. Когда вы заметили муху впервые, она находилась в определенной точке в пространстве, а время на «мушиных часах» составляло 0 секунд. Когда вы ее прихлопнули, местоположение мухи в пространстве изменилось и прошло 5 секунд. Для того чтобы точно указать, где и когда погибла муха, вам нужно знать точку в пространстве и момент во времени. Для того чтобы связать время с расстоянием, оно умножается на скорость. Эйнштейн выбрал для этого скорость света, которую считал самой высокой в природе. Скорость света в вакууме составляет 186 282 мили в час и обычно обозначается буквой с (от латинского celeritas – «скорость»; тот же корень используется, например, в слове acceleration – «ускорение»). За время, необходимое нам на то, чтобы моргнуть, луч света успевает семь с половиной раз обойти вокруг Земли. Если умножить значение времени (t) на скорость света, мы получим ct, а к этому значению уже можно применять единицы расстояния. Точка в четырехмерном пространстве имеет координаты ct,x, y и z, где x, y и z задают ее местоположение в трех измерениях (с севера на юг, с запада на восток и сверху вниз). Последовательность точек в пространстве-времени может рассказать нам целую историю – например, как двигалась муха между моментами, когда вы ее заметили и убили. Эта история, или путь в четырехмерном пространстве, называется мировой линией.

Для того чтобы аргументировать свою теорию, Эйнштейн весьма умно сфокусировал ее на наблюдателе, то есть на человеке (или инструменте), замеряющем расстояния и временные интервалы. Он постулировал, что два наблюдателя, движущиеся относительно друг друга, получат разные результаты таких измерений. В своей специальной теории Эйнштейн рассматривал лишь относительное движение с постоянной скоростью, в общей же теории учитывалось и ускорение. Теория предлагала способ согласования несоответствующих измерений, полученных двумя такими наблюдателями. Несоответствия обычно являются минимальными и определяются относительной скоростью движения между наблюдателями (v) и скоростью света (с), то есть выражаются как v/c. Различия становятся существенными только в том случае, если скорости наблюдателей приближаются к скорости света. Тем не менее они все же существуют и представляют собой еще один уровень искажений в нашем восприятии мира. Движущиеся объекты кажутся короче по направлению движения, а движущиеся часы идут более медленно. Например, объект, движущийся со скоростью, равной 60 % от скорости света, будет выглядеть на 20 % короче, а часы, движущиеся с той же скоростью, окажутся на 20 % медленнее. Когда относительная скорость движения между двумя наблюдателями достигнет скорости света, время остановится, а объект исчезнет.

В реальности подобная странная ситуация никогда не происходит, так как относительное движение имеет и еще один эффект – возрастание массы по мере увеличения скорости. Пока движущийся объект стремится к скорости света, его масса бесконечно увеличивается. Поскольку для разгона объекта с постоянно растущей массой требуется все больше энергии, а к моменту, когда масса объекта приближается к бесконечной, такой разгон и вовсе становится невозможен, специальная теория Эйнштейна говорит нам, что ни один объект, обладающий массой, не может разогнаться до скорости света. Это доступно лишь чему-то без массы, например самому свету. Кроме того, по непонятным причинам свет всегда движется в определенной среде (например, в вакууме, воздухе или воде) с постоянной скоростью относительно любого наблюдателя, какую бы скорость (ниже с) он ни развивал. Для отбивающего в бейсболе мяч летит медленнее, если подавать его против ветра, и быстрее, если ветер дует в направлении подачи. Если питчер во время броска бежит в направлении отбивающего, мяч будет лететь еще быстрее, так как скорости складываются. Однако скорость света совершенно не зависит от движения его источника – это абсолютная природная величина, не подвластная никаким изменениям. На самом деле теория относительности – это теория абсолютов, неизменных вещей в Природе, таких как законы физики и скорость света.

Специальная теория относительности позволяет различным наблюдателям самостоятельно давать объяснения тому, как действует Природа, при условии, что скорость света всегда неизменна и является самой высокой скоростью передачи сигналов (и, соответственно, информации). В мире ньютоновской физики время и пространство были абсолютны, а значит, была возможна любая скорость. Предположив, что абсолютным лимитом является лишь скорость света, Эйнштейн опроверг эту теорию. Если вспомнить платоновскую аллегорию пещеры, то теория Ньютона окажется тенью на стене, видимой для существ, которые не подозревают о постоянстве скорости света и потому считают ее единственно верным описанием реальности. Разумеется, мы действительно живем в этой пещере, так как наше зрение не может делать поправку на скорость света. Специальная теория относительности – это еще одна проекция на стену пещеры, исправленная впоследствии общей теорией, в рамках которой учитывалось ускорение движения наблюдателей. После общей теории относительности Эйнштейна наше представление о мире снова изменилось и мы снова немного продвинулись к свету. У платоновской пещеры много стен. Возможно, это даже несколько пещер, расположенных одна в другой, как матрешки. Двигаясь от стены к стене, мы понимаем, что по мере расширения наших знаний о мире перед нами будут появляться все новые и новые уровни описания реальности. Все, что мы видим, – это тени на стенах. Платон мечтал о пещере, из которой есть выход к свету чистого знания, но кажется разумным предположить, что никакое знание не может быть чистым или окончательным.

Как что-то может существовать без массы? Свет – это, пожалуй, одна из величайших загадок. Даже Эйнштейн, один из ключевых исследователей его физической природы, часто признавался, как его поражают потрясающие свойства света. Мы не знаем, почему свет может распространяться как волна в вакууме, в то время как другим волнам (например, звуковым или водным) для этого требуется физическая среда. Мы не знаем, почему свет движется именно с такой скоростью и почему ничто в Природе не может его обогнать. Все, что мы можем сказать, – это что пока мы не имеем оснований посмотреть на свет по-другому. Если в уравнение добавляются свойства света, становятся возможными невероятные вещи: уменьшение расстояний, замедление времени, увеличение массы… Удивительно, но все они были подтверждены многочисленными экспериментами. GPS в вашем фитнес-браслете или автомобиле работает так точно потому, что при его создании учитывались поправки общей и специальной теории относительности к ньютоновской теории. Они изменили наше представление о пространстве, времени и материи – о Вселенной в целом. И именно Эйнштейн сделал первый шаг.

 

Глава 9. Беспокойная Вселенная

из которой вы узнаете о расширении Вселенной, сингулярности и начале времени

«Если пространство пластично, – рассуждал Эйнштейн, – и если оно реагирует на количество материи, то, если бы я знал, сколько материи имеется во всем космосе и как она распределена, я мог бы использовать свои уравнения, чтобы рассчитать форму Вселенной». Как мы уже отмечали, Эйнштейн сделал гигантский шаг вперед, когда всего через год после публикации своей общей теории относительности экстраполировал ее на весь космос. Точно так же когда-то поступил и Ньютон со своим законом всемирного тяготения. Эйнштейн вывел свою новую теорию из-за пределов Солнечной системы, где она уже была испытана, и распространил на всю Вселенную, будучи уверенным, что в ней действуют одни и те же физические принципы. Он предположил, что космос является сферическим и статичным, а затем продолжил упрощение. Поскольку точных данных о распределении материи в космосе получить невозможно, Эйнштейн логично предположил, что в среднем в достаточно больших объемах пространства материя распределена одинаково. Такое приближение работает только для по-настоящему огромных пространств, включающих в себя миллионы галактик и простирающихся на множество световых лет. Математически это означает, что плотность материи, то есть ее количество в объеме, является примерно постоянной величиной. В больших объемах содержится больше материи в той же пропорции. Уравнения Эйнштейна определяли геометрию пространства на основании распределения материи, а значит, геометрия должна была отражать эту однородность, выражая ее в простейшей из возможных форм – в сфере. Эйнштейну удалось рассчитать «радиус» этого сферического космоса, а чтобы сделать свою модель стабильной, он добавил в нее странную константу, которую мы сегодня называем космологической постоянной. На этом он прекратил работу, будучи уверенным, что его теория (с некоторыми поправками и коррективами) может ответить на один из старейших вопросов в истории: «Какую форму имеет космос?»

В 1929 году, всего через 12 лет после публикации работы Эйнштейна, ставшей первым трудом по современной космологии, все резко изменилось. Американский астроном Эдвин Хаббл опубликовал результаты своих наблюдений за дальними галактиками, указывающие на то, что они удаляются от Млечного Пути со скоростями, пропорциональными расстоянию до них. Иными словами, галактика, находящаяся в два раза дальше от нашей, чем ее соседка, двигалась в два раза быстрее. В распоряжении Хаббла имелся самый большой телескоп того времени, рефлектор диаметром 100 дюймов, установленный на горе Маунт-Вилсон в Калифорнии. С его помощью он мог видеть дальше и точнее, чем кто-либо до него. Примерно за десять лет до этого Весто Слайфер писал о том, что свет далеких галактик имеет тенденцию отклоняться в красную часть спектра сильнее, чем более близких. Сегодня данное явление известно как красное смещение. Что оно могло означать? Ответ на этот вопрос был получен австрийским физиком Кристианом Доплером еще в XIX веке. Любая волна растягивается по мере смещения ее источника (или наблюдателя). Мы знаем это из экспериментов со звуковыми волнами. Например, по мере того, как машина скорой помощи с включенной сиреной подъезжает ближе к нам, высота звука постепенно повышается, а когда она удаляется от нас, звук становится ниже. Доплер предположил существование этого эффекта в 1842 году, а в 1845 году подтвердил его с помощью эксперимента с участием поезда и нескольких музыкантов, дующих в рога. «Эффект Доплера» распространяется и на световые волны, но здесь вместо высоты звука варьируется частота (при этом у синего цвета она выше, чем у красного). Итак, когда астрономы говорят о красном смещении, они имеют в виду растяжение световых волн в результате удаления источника. Синее смещение, наоборот, означает, что источник (или наблюдатель) приближается. Благодаря Доплеру рождается потрясающая связь между повседневным и космическим: теперь каждый раз, заслышав на улице сирену скорой помощи, вы можете думать о миллиардах галактик, разбегающихся в небесах.

Итак, в очередной раз мощный новый инструмент изменил наш взгляд на Вселенную. Еще до Эдвина Хаббла некоторые теоретики размышляли о том, что она может не быть статичной, что, вполне вероятно, она изменяется со временем. Первым подобную мысль высказал голландский ученый Виллем де Ситтер, критиковавший кажущуюся необоснованной идею Эйнштейна о статичном космосе: «Все экстраполяции неточны… Перед нами лишь фотоснимок мира, и мы не можем и не должны утверждать…что мир навсегда останется таким же, как и в момент съемки». Пытаясь понять поведение материи в бесконечной Вселенной, де Ситтер в 1917 году предложил другую модель, которая предполагала почти полное отсутствие в космосе материи. Единственным вкладом Эйнштейна в эту концепцию пространства-времени был сам придуманный им термин «пространство-время». С помощью уравнений де Ситтер продемонстрировал, что любой материальный объект должен двигаться со все возрастающим ускорением. Еще через несколько лет русский метеоролог Александр Фридман, приверженец теории Эйнштейна, математически доказал, что ни одно из уравнений общей теории относительности не указывало на обязательную статичность Вселенной. Наоборот, с течением времени она могла расширяться или сжиматься, как воздушный шарик. В таком случае плотность материи также изменялась бы со временем – уменьшаясь при расширении и увеличиваясь при сжатии (представьте себе, что вы переставляете мебель из маленькой комнаты в большой зал или, наоборот, из гостиной в чулан и как от этого меняется количество свободного пространства). Открытый Хабблом закон линейного расширения (указывающий на то, что скорость расхождения далеких галактик пропорциональна расстоянию до них) подтвердил правоту Фридмана. Незачем было делать космос статичным, а тем более вводить для этого искусственные постоянные.

Концепция расширяющейся Вселенной часто вводит людей в замешательство. Большинство наивно (и неверно) представляет расширение чем-то вроде взрыва бомбы, а галактики – осколками, разлетающимися к краям космоса. Почему эта картина неверна? Потому, что она предполагает, что космос остается неизменным, а галактики движутся по нему, хотя на самом деле происходит совершенно противоположный процесс – пространство расширяется и тащит за собой галактики, как течение реки – мелкие щепки. Это космическое движение даже называют потоком Хаббла. Разумеется, гравитационное притяжение, возникающее между галактиками или их группами (галактическими кластерами), может вызывать отклонения от потока, называемые пекулярными движениями. Например, наша ближайшая галактическая соседка, Андромеда, движется по направлению столкновения с Млечным Путем. Моделирование и данные, полученные с помощью телескопа «Хаббл», указывают на то, что это произойдет примерно через четыре миллиарда лет.

Открытие Хаббла и его подтверждение подняли представления о пластичности пространства до новых высот. Наблюдая за локальными отклонениями вблизи звезд, мы можем видеть, что теория Эйнштейна верно предсказывает растяжение пространства как реакцию на содержащуюся в нем материю (по крайней мере в наблюдаемой Вселенной, так как ни о чем ином мы не можем говорить с определенностью). Но все становится гораздо интереснее, когда мы задумываемся, что было до расширения, то есть когда заглядываем в прошлое. Если сейчас космос растет, значит, в прошлом галактики находились ближе друг к другу. Чем дальше мы проникаем в прошлое в нашем мысленном эксперименте, тем меньше становится расстояние между ними. Так происходит до тех пор, пока все они не оказываются сжатыми в одной точке. Но как это возможно? Как все сущее может уместиться в одной точке в пространстве? Все еще больше усложняется, когда мы понимаем, что точка – это всего лишь математическая концепция, не существующая в реальном мире. Как же тогда объяснить происходящее? Теория Хаббла описывает космос, существование которого началось в определенный момент в прошлом. Эта точка начала называется сингулярностью.

В 1960-х годах физики Стивен Хокинг и Роджер Пенроуз доказали, что, принимая во внимание разумные предположения о характеристиках материи, любая расширяющаяся вселенная должна иметь в своем прошлом сингулярность. Но вот в чем состоит затруднение: так как при движении назад во времени объем космоса постоянно уменьшается, а вся материя постепенно сжимается в одну точку, плотность этой точки постоянно растет. Представьте себе забитый людьми вагон метро, который сначала уменьшили до размера консервной банки, потом – горошины, затем – атома и т. д. Очевидно, что плотность материи станет при этом бесконечно высокой, а пространство вокруг нее окажется бесконечно искривленным. Время остановится, так как сингулярность достигается при t = 0 (начало времени). Но ни одна физическая теория не может безнаказанно оперировать бесконечными величинами. Значит, что-то должно быть не так.

Когда математики сталкиваются с сингулярностью (например, при делении любого числа на ноль), они, так сказать, изучают ее границы, чтобы найти выход из нее. К примеру, вместо деления на ноль можно использовать деление на бесконечно малое число. Возможно, существует путь, при котором можно избежать сингулярности, но все равно попасть в нужную точку (то есть обойти ее, как вы объезжаете яму на дороге). В физике наличие сингулярности – это серьезный звоночек, показывающий, что теория, которую вы используете, скорее всего, неверна. В ней чего-то не хватает, и это что-то обычно включает в себя новую физику. Например, использование законов Ньютона для объяснения того, как ведут себя тела на скоростях, близких к световым, ведет к появлению ошибок – неверных теней на стене платоновской пещеры. Сегодня мы знаем, что для получения ответов нужно применять специальную теорию относительности Эйнштейна. То же касается и сильной гравитации: ньютоновские законы хороши для описания достаточно слабого гравитационного притяжения, но требуют корректирования рядом с массивными объектами (например, Солнцем).

Ни одна теория не является полной или окончательной. Новые значения требуют новых формул, а те, в свою очередь, – новых экспериментальных подтверждений, зависящих от доступных технологий. В поисках предсказанных эффектов для тестирования своих теорий ученые частенько сталкиваются с чем-то неожиданным, толкающим их назад к расчетам и, вполне возможно, к новым знаниям. Большинство физиков, участвовавших в поисках бозона Хиггса и работавших на Большом адронном коллайдере в Швейцарии, с гораздо большей радостью обнаружили бы частицу, не соответствующую предсказаниям Стандартной модели физики частиц. Неожиданности ведут к изменениям.

Космическая сингулярность указывает на необходимость в новой физике, выходящей за пределы, которые устанавливает общая теория относительности Эйнштейна. Поскольку в самом начале времен расстояния были крайне небольшими, такая новая физика должна объяснить, как пространство, время и материя действуют на коротких дистанциях. Физика макромира сталкивается с микромиром. Мы вступаем в царство «квантовой гравитации», в котором общая теория относительности сочетается с квантовой физикой (физикой атомов и субатомных компонентов). Происходит невероятный скачок – исследования Вселенной и ее истории приводят нас к мельчайшим единицам материи. Насколько нам известно сегодня, макро – и микромир накрепко связаны между собой. Ученые не смогут понять происхождение Вселенной до тех пор, пока не узнают, как квантовая физика влияет на геометрию пространства-времени. Но перед тем, как мы перейдем к этому вопросу, давайте рассмотрим некоторые из фундаментальных последствий влияния современной космологии на границы наших знаний. Начнем с конечности скорости света и понятия «сейчас».

 

Глава 10. Нет никакого «сейчас»

из которой мы узнаем, что понятие «сейчас» – это ошибка восприятия

Что происходит, когда мы что-то видим? К примеру, вот эту книгу, которую вы сейчас читаете. Оставим в стороне весь процесс обработки визуальной информации мозгом и сфокусируемся на времени ее передачи. Для еще большего упрощения мы будем рассматривать лишь классическое распространение света без учета того, как он поглощается и излучается атомами. В вашей комнате светло, потому что у вас открыто окно, или включена лампа, или и то и другое. Так или иначе, поток света попадает на поверхность книги, частично поглощается ею, а частично отражается в различных направлениях. Бумага и чернила, с помощью которых на ней напечатан текст, поглощают и излучают свет по-разному, и эти различия воплощаются в отраженном свете. Затем часть этого отраженного света попадает от книги в ваши глаза, и благодаря невероятной способности мозга декодировать сенсорную информацию вы видите слова на странице.

Вам кажется, что весь этот процесс происходит в одно мгновение. Вы можете сказать: «Я читаю это слово прямо сейчас». Но в реальности это не так. Поскольку свет движется с конечной скоростью, ему требуется время для того, чтобы отразиться от страницы вам в глаза. Когда вы читаете слово, на самом деле вы видите, как оно выглядело в определенный момент в прошлом. Если быть точным, то, при условии, что вы держите книгу в одном футе от лица, время движения света от нее до ваших глаз составит одну наносекунду, или одну миллиардную долю секунды. То же самое происходит с каждым предметом, который вы видите, и с каждым человеком, с которым ведете разговор. Оглядитесь вокруг. Вам кажется, что вы видите все предметы одновременно («сейчас»), вне зависимости от расстояний, на которых они находятся. Но в реальности это не так, потому что отражающемуся от них свету требуется разное время, чтобы достигнуть ваших глаз. Мозг интегрирует различные источники визуальной информации, и, так как различия во времени движения света гораздо меньше, чем может различить ваш глаз и обработать ваш мозг, вы не видите разницы. Настоящее, то есть совокупность всей входящей информации от органов чувств, которую мы получаем в данный момент, – это всего лишь убедительная иллюзия.

Как бы быстро нервные импульсы ни двигались по волокнам нервной ткани, их скорость все равно меньше скорости света. Средняя скорость нервного импульса составляет 60 футов в секунду, хотя это значение может варьироваться в зависимости от человека и типа нерва. Итак, нервный импульс проходит один фут за 16 миллисекунд (тысячных долей секунды). Для сравнения, свет за это время покрывает дистанцию 2980 миль – это примерно как от Нью-Йорка до Сан-Диего.

Давайте проведем мысленный эксперимент, иллюстрирующий влияние этих временных различий. Представьте себе, что у нас есть два источника света, которые одновременно включаются каждую секунду. Один из них установлен в 10 ярдах от наблюдателя, а другой постепенно удаляется от него по прямой. Теперь представьте, как они медленно расходятся в пространстве, все еще включаясь одновременно каждую секунду. Наблюдатель начнет замечать разницу во времени включения, когда расстояние между ними превысит 2980 миль. Поскольку наше зрение не позволяет нам видеть так далеко, наше восприятие одновременности кажется нам очень надежным даже для больших расстояний. Для того чтобы проверить эту теорию, можно провести альтернативный и более реалистичный опыт – настроить источники света так, чтобы они включались с небольшой задержкой во времени, и проверить, когда наблюдатель заметит разницу. Если мои расчеты верны, это произойдет, когда временной интервал превысит 20 миллисекунд. Данный промежуток времени – граница человеческого восприятия одновременности визуальных явлений.

Все эти аргументы приводят нас к поразительному выводу: настоящее существует, потому что наш мозг размывает реальность. Иными словами, гипотетический мозг, обладающий способностью к невероятно быстрому визуальному восприятию, заметил бы, что два источника света не синхронизированы, гораздо раньше. Для такого мозга слово «сейчас» означало бы куда меньший промежуток времени, чем для нас. Итак, помимо описанной Эйнштейном относительности одновременности для одного или нескольких движущихся наблюдателей существует еще и относительность одновременности на когнитивном уровне, возникающая в результате субъективного восприятия одновременности (момента «сейчас») человеком или, если говорить в общем, любым мозгом или аппаратом, способным распознавать свет.

Каждый человек – это остров восприятия. Глядя на океан, мы видим горизонт – линию, разделяющую небо и воду, дальше которой наш взгляд проникнуть не в силах. Точно так же наши горизонты восприятия представляют собой все явления, которые наш мозг считает происходящими одновременно, даже если на самом деле это не так. Горизонт восприятия очерчивает границы нашего настоящего. Для того чтобы описать область настоящего, я использую скорость света, самую высокую скорость в Природе. Если бы мы ориентировались по скорости звука, которая составляет всего 1126 футов в секунду в сухом воздухе при температуре 68 градусов по Фаренгейту, наша область настоящего была бы куда меньше. Вспомните, как две молнии, ударяющие на разном расстоянии от вас, выглядят одинаково, но звучат по-разному.

Резюмируя: скорость света велика, но конечна, поэтому для того, чтобы попасть к нам в мозг, информации от любого объекта требуется время, пускай и совсем незначительное. Мы никогда не видим вещи такими, какими они являются прямо сейчас. Мозгу требуется время для обработки информации, поэтому он не разделяет (и не может расставить в хронологической последовательности) два события, происходящие с небольшой временной задержкой. Если мы видим несколько событий, происходящих прямо сейчас, это всего лишь иллюзия, вызванная нашим размытым восприятием. Не существует двух людей с одинаковым мозгом, поэтому каждый из нас имеет собственный лимит восприятия времени и собственную область настоящего. Любой мозг, будь он биологическим или механическим (например, светочувствительный детектор), обрабатывает информацию с разной скоростью и по-своему видит настоящее. Соответственно, наши восприятия реальности различаются. На основании недавних нейрокогнитивных экспериментов можно предположить, что среднее значение человеческого восприятия времени составляет порядка 10 миллисекунд. Расстояние, которое за это время проходит свет (несколько тысяч миль), составляет примерный радиус области настоящего для каждого человека.

«Сейчас» – это не только когнитивная иллюзия, но и математический трюк, связанный с тем, что мы определяем пространство и время с помощью количественных характеристик. Соответственно, восприятие настоящего как прослойки между прошлым и будущим, – это не что иное, как удобная ложь. Если настоящее представляет собой период времени, не имеющий длительности, оно не может существовать. Реальны лишь память о недавнем прошлом и ожидания от ближайшего будущего. Мы связываем прошлое и будущее с помощью концептуального понятия настоящего, или «сейчас». Но на самом деле все, чем мы располагаем, – это накопленная память о прошлом (хранящаяся в биологических системах или на различных устройствах) и ожидания от будущего.

Понятие времени неразрывно связано с изменениями, а течение времени – это всего лишь инструмент для их отслеживания. Когда мы видим, как что-то движется в пространстве, мы можем наблюдать изменение его положения с течением времени. Допустим, перед нами мяч. Двигаясь, он описывает в пространстве кривую, то есть воображаемую последовательность точек между стартовым положением А и финишным положением В. Мы можем определить, в какой точке между А и В находится мяч, расположив все его передвижения в хронологическом порядке; ноль секунд – мяч отрывается от ноги футболиста, то есть покидает точку А, одна секунда – мяч попадает в верхний левый угол ворот, то есть в точку В. Кривая между А и В показывает положение мяча в промежуточные периоды времени между нулем и одной секундой. Однако мяч никогда не занимает одну-единственную точку в пространстве, а время невозможно измерить с абсолютной точностью (самые точные часы имеют погрешность в одну миллиардную секунды, а время в них измеряется на основании перехода электронов в атомах). Рассуждая математически, мы отбрасываем все эти уточнения и рассчитываем, как позиция мяча изменяется в каждый момент времени, в который нам известно его положение. Разумеется, это всего лишь приближение, пускай и очень хорошее.

Мы представляем время в виде последовательности единиц, каждая из которых имеет порядковый номер. В нашем примере с футбольным мячом время охватывает промежуток с нуля до одной секунды. Но сколько единиц времени умещается между ними? С математической точки зрения их количество бесконечно, как и количество чисел между нулем и единицей. Любой временной интервал делится на более мелкие: десятые, сотые, тысячные доли секунды и т. д. Но даже самые точные часы имеют погрешность. Пусть мы представляем себе время последовательно, но измеряется оно в дискретных единицах. Соответственно, понятие «сейчас», временной интервал, не имеющий длительности, – это всего лишь математическая условность, не имеющая никакого отношения к реальности временных измерений и тем более нашего восприятия времени. Я еще вернусь к этой теме и к тому, почему она важна для нашего представления о реальности, когда мы перейдем к теме квантовой физики – области знаний, в которой нет ничего непрерывного.

 

Глава 11. Космическая слепота

в которой мы рассмотрим концепцию космических горизонтов и выясним, как они ограничивают наши знания о Вселенной

По мере приближения к современной космологии становится все интереснее и интереснее. Сочетание Вселенной, имеющей ограниченный возраст (ведь время возникло в момент Большого взрыва), и конечности скорости света создает непреодолимый барьер для нашего познания космоса. Данный барьер совершенно не похож на те, которые мы видели до этого, потому что он не зависит от точности наших измерительных приборов, то есть от нашей «близорукости» в отношении реальности. Это абсолютная граница возможных знаний о физическом мире, о которой даже не подозревали Галилей, Коперник и Ньютон. Пространство Вселенной может быть бесконечным, но мы никогда не узнаем этого наверняка. Мы живем в информационном пузыре, как рыбки в аквариуме. За этим пузырем тоже что-то есть, мы можем делать выводы об этом, исходя из тех неясных образов, что мы видим через его стенки, но нам никогда не узнать наверняка, что за ними скрывается. Три века назад де Фонтенель уже понимал, что агония и экстаз научного и философского познания проистекают из желания знать больше, чем мы можем увидеть. Мы тянемся к границе познания, рискуя разбить себе голову о стекло. Так же как и наши предшественники, мы мечтаем освободиться от ограничений и коснуться неведомого. Но теперь это невозможно. То, что находится за установленными границами, останется неизвестным.

Теории относительности Эйнштейна устанавливают довольно жесткие ограничения для тех, кто мечтает путешествовать во времени в прошлое. Специальная теория прямо заявляет, что это невозможно, так как по мере достижения скорости света масса объекта бесконечно возрастает. Однажды, во время традиционного метафизического спора по дороге в школу, мой шестилетний сын Луциан гордо заявил мне: «Папа, только одна штука может двигаться со скоростью света. Это свет!» Что ж, это верно. И ему это удается потому, что у света нет массы. Любая частица материи, даже находящаяся в состоянии покоя, будет иметь энергию, равную ее массе (m), умноженной на квадрат скорости света (с2), что и показал Эйнштейн в своей знаменитой формуле Е = mc2. Но, в отличие от материи, свет никогда не бывает в состоянии покоя. Его энергия зависит от частоты (f), что выражается в до смешного простой формуле E = hf, где h – это постоянная Планка, крошечная природная константа, задающая тон всему квантовому миру. Чем выше частота света, тем больше его энергия. Формула E = hf не описывает поведение света, который мы видим вокруг себя и который представляет собой постоянно отражающиеся от объектов волны. Эта формула скрывает одну из величайших загадок современной науки.

Для того чтобы создать свою формулу энергии света, Эйнштейн предложил теорию, которую он сам считал своей самой революционной идеей. Он заявил, что свет можно одновременно интерпретировать и как волну (как считали большинство ученых в XIX веке), и как частицу. Частицы света называются фотонами, а формула E = hf описывает энергию одного фотона. Потоки света содержат множество фотонов, и их энергия всегда кратна энергии одного – hf. В данном случае можно провести аналогию с деньгами. Сумму любой финансовой сделки, от пары долларов до миллиардов, можно выразить в центах. Разумеется, при больших объемах теряется «квантовость» сделки, то есть ее центовое выражение. Но как каждый цент – это деньги, так и каждый фотон – это свет.

На практике в одном световом потоке могут находиться фотоны с разной длиной волны. К примеру, солнечный свет состоит из всех видимых цветов, от красного до фиолетового, а каждый цвет имеет свою длину волны и свои фотоны. Если продолжить нашу финансовую аналогию, солнечный свет – это клиент, который приходит в обменный пункт с множеством разных валют (цветов спектра), и при этом каждая из них имеет свой вариант цента (фотон с энергией, равной hf).

Большая часть информации о Вселенной поступает к нам в форме электромагнитного излучения. В качестве примера можно привести оптическую астрономию – благородную традиционную технологию, предполагающую сбор фотонов видимого света невооруженным глазом или с помощью телескопа. Сегодня астрономы рассматривают небеса почти во всем электромагнитном спектре, от радио – до гамма-волн. Однако на какой тип света мы бы ни смотрели, его скорость все так же ограничена. Когда вы читаете эту книгу, вы видите страницу такой, какой она была одну миллиардную долю секунды назад. Луна представляется нам такой, какой она была 1,282 секунды назад, так как расстояние от нее до Земли составляет 1,282 световой секунды. Солнце выглядит в наших глазах таким, каким оно было 8,3 минуты назад, ведь расстояние до него – 8,3 световой минуты. Прямо сейчас Солнце может взорваться, и вы еще восемь минут не узнаете об этом.

Путешествуя по Солнечной системе дальше, мы сталкиваемся с трудностью. Планеты движутся вокруг Солнца с разной скоростью, а значит, расстояния между ними и Землей могут значительно изменяться в зависимости от соотношения орбит. Например, расстояние между Землей и Марсом варьируется от 4,15 световой минуты (при максимальном приближении и расположении с одной стороны Солнца) до 20,8 световой минуты (максимальное удаление и Солнце посередине). Если вы не работаете на НАСА и не проектируете полеты космических кораблей, проще всего измерять расстояния в Солнечной системе дистанциями между планетами и Солнцем. Марс находится от него примерно в 12 световых минутах, а Нептун – в 4,16 светового часа. Внезапно восьмиминутная задержка света между Солнцем и Землей кажется просто мелкой погрешностью по сравнению с расстояниями на краю нашей системы. Самым дальним из известных объектов в Солнечной системе является облако Оорта – скопление ледяных шаров, опоясывающее Солнце и планеты на расстоянии один световой год. Именно там находятся остатки газового облака, которое сжалось 4,6 миллиарда лет назад и сформировало Солнце, планеты и их луны.

Все небесные тела внутри этого пузыря диаметром два световых года, включая и нашу планету, имеют общее происхождение. Удаляясь от Солнца, мы попадаем на незнакомую территорию, полную чужих звезд со своими планетами. Их тоже объединяет общее происхождение и история. Эти звездные системы можно сравнить с семьями, где дети имеют одних и тех же родителей (первичное газовое облако), а затем вырастают и идут в жизни своими путями. Ближайшая к Солнцу звездная система находится в созвездии Центавра, которое было известно еще Птолемею во II веке н. э. Это значит, что его можно увидеть на южном небе невооруженным глазом и попытаться разглядеть в нем полуконя-получеловека. В созвездии Центавра находятся ближайшие к Солнцу звезды – тройная звезда под названием альфа Центавра расположена от нашего светила в 4,4 светового года, то есть в 26 триллионах миль. Из трех звезд, составляющих альфу Центавра, ближайшая к нам – это Проксима, свет от Солнца до которой идет 4,24 светового года. Итак, когда мы смотрим на альфу Центавра (и ошибочно считаем, что перед нами одна звезда), мы получаем информацию более чем четырехлетней давности. В этот момент звезд вообще уже может не быть на своих местах. Мы можем лишь предполагать, что они никуда не исчезли, потому что мы знаем, к какому типу они принадлежат и на каком этапе развития находятся. Но прямых доказательств у нас нет и никогда не будет. Ночное небо – это коллекция историй из прошлого.

В Южном полушарии созвездие Центавра с трех сторон граничит со знаменитым Южным Крестом. Я родился в Бразилии, так что для меня на небе нет более важного знака (второе место занимает Орион). Южный Крест находится на нашем флаге (а еще на флаге Австралии, Новой Зеландии, Папуа – Новой Гвинеи и Самоа), символизируя нашу преданность небу и верность нашим звездным корням. Несомненно, Южный Крест подкреплял веру набожных и жадных миссионеров, прибывших в Южную Америку в начале XVI века. Они были убеждены, что крест в небе – это знак Бога, подарившего им эту полную красоты и богатств землю обетованную. Именно поэтому они посчитали себя вправе разграбить ее.

Если мысленно соединить две вертикально расположенные звезды Южного Креста, а затем продолжить линию вниз, она практически точно укажет на Южный полюс мира. Я уже достаточно долго прожил в северных широтах, но каждый раз, возвращаясь в Бразилию, ищу в небе Южный Крест. Только после этого я чувствую, что действительно вернулся к небесам, под которыми находится мой дом. Очень странно думать о том, что звезды, из которых состоит Южный Крест, находятся от нас на разных расстояниях в сотни световых лет. Изображение креста – это всего лишь иллюзия, спроецированная на небесный свод.

Если вы верите в инопланетян и мечтаете о космических путешествиях, я бы хотел вас отрезвить. Даже если бы мы отправили к альфе Центавра свой самый быстрый космический корабль и он сумел бы развить скорость 30 тысяч миль в час, он все равно долетел бы до места назначения только через сотню тысяч лет. Даже если бы нам удалось разработать новую технологию, способную переносить нас в пространстве со скоростью, равной одной десятой скорости света, перелет все равно занял бы 44 года. Так что до тех пор, пока мы не организуем массовую звездную миграцию с участием нескольких поколений или не придумаем совершенно новый способ космических путешествий, новые звездные системы – даже наши ближайшие соседи – нам не светят.

Диаметр нашей Галактики, Млечного Пути, составляет 100 тысяч световых лет. Если зажечь на одном ее краю фонарик, столько времени потребуется фотонам, чтобы достигнуть противоположного края. Иными словами, когда мы изучаем звезды на границе нашей Галактики, мы видим их такими, какими они на самом деле были во времена зарождения нашего вида Homo sapiens sapiens. Если перевести взгляд на галактику Андромеды, то мы увидим свет, испущенный звездами еще в то время, когда первые Homo только расселялись по Африке.

Когда астрономы наблюдают за звездами, они заглядывают в прошлое и собирают свет, зажегшийся миллионы, если не миллиарды лет назад. Это верно и для модели расширяющейся Вселенной, хотя в данном случае все немного сложнее. Если Вселенная статична, то мы видим ее компоненты такими, какие они есть на самом деле. Когда нам известно расстояние до объекта, мы можем рассчитать, насколько давно этот объект испустил свет. Для этого нужно просто разделить расстояние на скорость света. Но расширение Вселенной заставляет галактики и другие источники света двигаться, поэтому излучаемый ими свет может проходить за одно и то же время большие расстояния, чем в статическом космосе. Представьте себе пловца в реке. Если он движется по течению, то за тот же промежуток времени покроет большее расстояние, чем если бы он плавал в бассейне. В расширяющейся Вселенной свет от объекта, находящегося на расстоянии 2,6 миллиарда световых лет от нас, был испущен им 2,4 миллиарда лет назад. Чем дальше разбегаются наблюдаемые объекты, тем больше становится это несоответствие. В тот момент, когда я пишу эти строки, самый дальний из известных космических объектов находится на расстоянии 32,1 миллиарда световых лет от Земли. Свет покинул его 13,2 миллиарда лет назад и прошел в 2,5 раза большее расстояние, чем сумел бы покрыть, если бы Вселенная была статичной. Учитывая, что возраст Вселенной составляет около 13,8 миллиарда лет, свет от этого объекта покинул свой источник всего через 600 лет после Большого взрыва и шел к нам в течение почти всей истории космоса.

Я уверен, что читатели уже поняли, к чему я клоню. В какой-то момент мы упремся в заграждение, в стенку аквариума, в барьер, который мы не сумеем преодолеть. Теоретически таким барьером является сингулярность, точка начала времени. Практически же, по крайней мере в ходе сбора информации от электромагнитного излучения, мы натыкаемся на стену немного раньше. Примерно через 400 тысяч лет после Большого взрыва Вселенная пережила существенную трансформацию. Чтобы понять почему, представьте себе раннюю Вселенную как бульон, в котором плавают и постоянно сталкиваются между собой элементарные частицы: фотоны, протоны, электроны, нейтроны и легкие атомные ядра. Чем дальше мы углубляемся в прошлое, тем горячее космос и тем активнее эти частицы взаимодействуют между собой. Если же мы продвинемся во времени вперед, мы убедимся, что Вселенная остывает – по мере ее расширения частицы теряют энергию. Благодаря этому остыванию и потере энергии происходит то, что раньше было невозможно. Электрон и протон соединяются и образуют атом водорода. До этого момента фотоны наполнявшего космос излучения были такими активными, что при любой попытке протона и электрона объединиться сталкивались с ними и мешали формированию прочной связи. Получался эдакий космический любовный треугольник, который распался лишь тогда, когда страсть фотонов угасла и они позволили протонам и электронам соединиться. Так родился самый простой из атомов, а фотоны, освободившись от любовных драм, смогли беспрепятственно продолжить движение по космосу. Этот процесс называется рекомбинацией и обозначает переход от темной к прозрачной Вселенной.

До рекомбинации фотоны были так заняты в своем любовном треугольнике с протонами и электронами, что не могли свободно перемещаться. А если фотон не двигается, мы не можем его заметить. Ранняя Вселенная была непроницаема для электромагнитного излучения любого типа, поэтому пытаться понять, что происходило до рекомбинации, – словно смотреть сквозь густой туман. Однако вскоре после рекомбинации они получили свободу передвижения – в физике этот процесс называется расщеплением материи и излучения. Эти расщепленные фотоны, несущиеся сквозь космос, известны как реликтовое излучение – затухающий свет тех времен, когда формировались первые атомы. В ходе рекомбинации температура излучения составляла около 4000 градусов по Кельвину, или 7200 по Фаренгейту. Вселенная сияла, как флюоресцентная лампа. Вот уж воистину «да будет свет»! После 13,8 миллиарда лет расширения реликтовые фотоны остыли до 2,75 градуса по Кельвину (–454,7 по Фаренгейту). Космос утратил очарование юности, и теперь его глубины погружены в холод и мрак.

Итак, мы видим, как в космологии появляется концепция горизонта. Когда мы стоим на берегу моря, горизонт обозначает границы видимого пространства, но при этом мы знаем, что море продолжается и за ним. Тот же принцип работает и для Вселенной. Существует самая дальняя точка, свет от которой шел к нам 13,8 миллиарда лет, то есть в течение всей жизни Вселенной. Даже если космос продолжается за данной точкой, мы не можем получать сигналов из-за этой стены. Релятивистская космология показывает нам новую границу наших знаний о мире. Физическая Вселенная – это все тот же Остров знаний.

Вероятность развить на обычном космическом корабле скорость, превышающую скорость света, крайне мала. У нас нет оснований полагать, что специальная теория относительности может ошибаться в этом отношении. С другой стороны, как я пытаюсь показать этой книгой, никогда нельзя знать наверняка. Вполне возможно, что наше текущее представление о причинно-следственных связях и хронологии, основанное на скорости света, не является последним словом по данному вопросу. Мы должны строить свои рассуждения на имеющихся у нас научных знаниях, но быть открытыми для неожиданностей. Вера в то, что научное знание неизменно, – это ошибка, которую мы ни в коем случае не должны совершать. Как уже должен был понять читатель из нашего краткого обзора истории астрономических знаний, ни одна научная конструкция не является непоколебимой. Изменения – это единственный путь вперед.

Все, что мы знаем (и можем узнать) о Вселенной, основывается на информации из нашего космического пузыря, царства причинно-следственных связей, ограниченного скоростью света и историей нашей расширяющейся Вселенной. По иронии судьбы над нами все же нависает небесный свод, пускай он ограничивает не пространство, как полагали Аристотель, Коперник или Эйнштейн, но время. Мы не можем увидеть того, что находится за космическим горизонтом, если только нам не будет отправлен оттуда сигнал. Возможно, там происходят совершенно сумасшедшие вещи, например, прямо сейчас розовые слоноподобные дроиды пляшут там самбу на планете Мамба. Но мы этого никогда не узнаем и не сможем узнать.

Сегодня нашим самым ценным источником информации о ранней Вселенной является реликтовое излучение – фотоны, оставшиеся после рекомбинации. Данные спутниковых миссий, таких как Cosmic Microwave Background, Explorer, Wilkinson Microwave Anisotropy Probe и недавно запущенной космической обсерватории «Планк», совмещенные с информацией, полученной в результате десятков наземных наблюдений, помогли астрономам составить подробную карту раннего космоса. Тот факт, что результаты некоторых измерений реликтового излучения были независимо подтверждены разными телескопическими исследованиями, показывает, что современная космология является серьезной наукой, основанной на фактах и ушедшей далеко вперед от своих первых дней, наполненных исключительно рассуждениями. Гравитационные толчки и пертурбации, которые переживала материя в начале существования космоса, отражены в едва заметных температурных колебаниях фотонов реликтового излучения и потрясающим образом помогают нам понять, как галактики распределяются по небу сегодня.

Что же говорят нам последние измерения космоса? Во-первых, они указывают на то, что космическая геометрия плоская – что-то вроде трехмерной версии столешницы (которая имеет лишь два измерения). Если свет не проходит рядом с массивной звездой или галактикой, он движется по прямой в заданном направлении. Плоскость – это один из трех возможных вариантов. Еще один из них описывает замкнутую геометрию, вроде поверхности сферы, двигаясь по которой в одном и том же направлении можно оказаться в точке старта (не пытайтесь представить себе это в трех измерениях). Наконец, третий вариант – это открытая геометрия, которую можно (весьма приблизительно) описать с помощью такого двухмерного аналога, как кусочек чипсов Pringles, загибающийся одновременно в двух направлениях. Иногда в качестве примера используют седло, которое опускается вниз под ногами всадника, но поднимается вверх на спине у лошади.

Космическая геометрия, форма космоса в самом что ни на есть вселенском масштабе зависит от всего, что существует во Вселенной, и от взаимоотношений между этими объектами или явлениями. За контроль над космосом борются две противоположные тенденции: расширение (за счет того, что в самом начале горячая материя и излучение были сжаты до небольшого объема) и сжатие (за счет действия сил притяжения). Победитель определит судьбу Вселенной: она может либо вечно расширяться, либо, если в ней окажется достаточно материи, начать сокращаться. Большой взрыв вполне может обернуться Большим схлопыванием.

Эти две тенденции определяют геометрию космоса с тех пор, как Эйнштейн показал нам влияние на нее материи. Вселенная с невысокой плотностью материи, в которой силы притяжения недостаточно сильны, будет расширяться вечно и иметь открытую геометрию. Критическое количество энергии в объеме, необходимом для остановки расширения, иногда называют критической плотностью. Она равняется всего 5 атомам водорода на кубический метр пространства. Согласно нашим измерениям, обычная атомная материя составляет лишь 4,8 % от этого количества (то есть 0,2 атома на кубический метр).

Однако, помимо обычной атомной материи, существует другой тип материи, состав которой нам до сих пор неизвестен. Это так называемая темная материя. Почему темная? Потому, что она не излучает свет, то есть не испускает никакого электромагнитного излучения. Мы знаем, что она существует, потому что она заставляет галактики вращаться быстрее. Астрономы также могут измерить то, как темная материя, собираясь вокруг галактик в своеобразную темную вуаль, искажает пространство. Это довольно интересное зрелище. Для того чтобы увидеть его, астрономы обращают внимание на свет, исходящий от очень далеких объектов и проходящий мимо ближайших галактик. Точно так же, как и Солнце, галактики заставляют свет изгибаться. Этот эффект называется гравитационным линзированием, потому что свет при нем искривляется так же, как при попадании в обычную линзу. Если сложить все данные наблюдений и прибавить к ним информацию о реликтовом излучении, окажется, что количество темной материи во Вселенной в шесть раз превышает объем обычной. Соответственно, темная материя добавляет к плотности космоса еще 25,9 % критического значения. Природа темной материи, то есть ее состав, является одной из главных загадок современной космологии и физики частиц. Однако ее мы, вероятно, сможем разгадать, когда у нас появятся более совершенные приборы. Этим она отличается от космического горизонта – предела, за который мы не можем выйти.

Сегодня основными кандидатами на включение в состав темной материи являются частицы, существование которых предсказывают суперсимметричные теории, продолжающие современную физику частиц и вводящие новое понятие природной симметрии. Приставка «супер» в названии суперсимметричных теорий происходит из теории суперструн, которая должна объединить общую теорию относительности с квантовой механикой. По состоянию на зиму 2014 года доказательств суперсимметрии так и не было обнаружено, несмотря на многолетние исследования и активную поддержку многих физиков. Реализована ли суперсимметрия в Природе, на сегодняшний день неясно (и немного сомнительно).

Еще один способ объяснить существование темной материи – это не вводить новую частицу, а постулировать ошибку в общей теории относительности Эйнштейна. Теория заявляет, что изменения в поведении сил гравитации возникают лишь на огромных галактических расстояниях. Тем не менее и в этом случае у нас не имеется доказательств того, что такое объяснение будет работать и соответствовать астрофизическим наблюдениям. Загадочная природа темной материи – это еще одна яркая иллюстрация того, что существуют важные вопросы (вроде существования неизвестного компонента в материальном составе Вселенной), на которые мы не можем ответить из-за ограниченной точности и дальности наших приборов. Мы знаем, что вокруг галактик что-то скапливается, но не можем понять, что именно.

Если сложить вместе общую массу (и энергию) атомной материи, темной материи и излучения (которое не привносит в это уравнение почти ничего), плотность Вселенной с ее открытой геометрией составит всего 30 % от критической. Но это еще не вся история. Если во Вселенной существует космологическая постоянная или что-то подобное, она заставляет космос растягиваться. Вспомните, что Эйнштейн ввел ее, чтобы сделать свою закрытую Вселенную статичной, а затем отказался от этой идеи, узнав об открытии Хабблом закона расширения космоса. Удивительно, однако данные, полученные двумя группами астрономов независимо друг от друга, указывают на то, что что-то похожее на космологическую постоянную не только существует, но и управляет материей в рамках нашего космического горизонта. Результаты измерений были опубликованы в 1998 году и поразили физическое и астрономическое сообщество. Поначалу никто не хотел им верить, но шло время, а данные проходили проверку за проверкой и выдерживали критику. Мощные новые инструменты снова открыли что-то, о чем мы и не подозревали, показав нам, каким странным местом на самом деле является космос. Все эта ситуация очень похожа на историю с темной материей: мы знаем, что там что-то есть, но не можем понять что.

В 2011 году трое лидеров исследовательских групп получили Нобелевскую премию по физике за открытие темной энергии, загадочного явления, действующего как космологическая постоянная и ответственного не только за растяжение пространства, но и за ускорение этого процесса. Что еще более важно, при подсчете доли темной энергии в общей плотности Вселенной получается почти 70 % критической плотности. Сопоставив различные собранные данные, можно прийти к потрясающему выводу: темная энергия не только весит больше всего остального в космосе, но и доводит плотность до критического значения. Это звучит слишком хитро, чтобы быть правдой. Итак, выходит, что плотность космоса практически достигла критического значения. Текущие измерения показывают соответствие общей плотности Вселенной этому значению с точностью до 0,5 %.

На первый взгляд, космос, в котором значение критической плотности достигнуто абсолютно точно, кажется результатом тонкой божественной настройки. Но если задуматься, вселенные, способные породить жизнь, должны соответствовать строгим критериям: их плотность не должна быть ни слишком низкой, иначе они будут расширяться слишком быстро и материя не успеет сгруппироваться в планеты и галактики, ни слишком высокой, иначе они схлопнутся еще до того, как в них появятся первые звезды. Вселенная, в которой может зародиться жизнь, должна быть достаточно старой, чтобы в ней сменилось несколько поколений звезд и чтобы они сумели произвести достаточно тяжелых химических элементов. Эти условия налагают ограничения на потенциальные значения плотности Вселенной и гипотетической космологической постоянной. Оптимальная для жизни Вселенная должна иметь как раз такое критическое значение плотности материи, как в нашем случае. Физик и писатель Пол Дэвис называет наш космос «Вселенной-Златовлаской». Действительно, считать нашу Вселенную идеально подходящей для жизни очень соблазнительно. Однако у меня имеется несколько другое объяснение этих космических совпадений, к которому я скоро вернусь.

Современные измерения настолько точны, что мы можем определить плотность материи и темной энергии с точностью более половины процента. Если в будущем не произойдет никаких потрясений вселенского масштаба и космическое доминирование темной материи не ослабнет, мы можем с уверенностью говорить, что живем в плоской Вселенной, обреченной на вечное расширение с постоянным ускорением. Но если Вселенная продолжит вести себя подобным образом, наших (очень далеких) потомков ждет мрачное будущее. Растягиваясь, пространство утащит за собой большую часть небесных светил, то есть почти все те галактики, которые мы сегодня можем рассмотреть в телескоп. Со временем скорость их разбегания превысит скорость света, и возникнет новый космический горизонт, свет из-за которого мы никогда не увидим. В конце концов, в ночном небе останется лишь наше местное сверхскопление – большая группа галактик, включающая в себя Млечный Путь и Андромеду и связанная силами гравитации. Да и оно будет выглядеть непривычно для нашего глаза. Как уже говорилось выше, через несколько миллиардов лет Млечный Путь и Андромеда могут слиться в одну галактику. Через четыре миллиарда лет Солнце превратится в красный гигант и жизнь на Земле станет невозможна (на самом деле это произойдет гораздо раньше из-за нестабильных выбросов солнечной энергии). Если космологи из далекого будущего не будут иметь доступа к результатам прошлых измерений, их выводы о природе Вселенной будут совершенно отличными от наших. Не видя разбегающихся галактик, они не смогут прийти к заключениям о расширении Вселенной или о Большом взрыве. По иронии судьбы их космос окажется статичным – островок местного сверхскопления, окруженный темной пустотой. Остров знаний будет уменьшаться до тех пор, пока не исчезнет совсем. Через какое-то время редкие звезды, еще способные испускать свет, состарятся и погаснут. Космос погрузится во тьму, и кошмар, когда-то описанный лордом Байроном, станет явью:

Я видел сон… Не все в нем было сном. Погасло солнце светлое, и звезды Скиталися без цели, без лучей В пространстве вечном; льдистая земля Носилась слепо в воздухе безлунном. Час утра наставал и проходил, Но дня не приводил он за собою… И люди – в ужасе беды великой Забыли страсти прежние… Сердца В одну себялюбивую молитву О свете робко сжались – и застыли. [64]

К счастью, по последним данным, эти мрачные перспективы ожидают нашу планету лишь в далеком будущем, вероятно через пару триллионов лет. Я рассказываю об этом не для того, чтобы напугать своих читателей, а чтобы дать им пищу для размышлений, ведь подобные прогнозы влияют на имеющуюся у нас сегодня картину космоса. Вселенная, которую мы изучаем, рассказывает нам лишь конечную историю, состоящую из информации, которая может к нам попасть (то есть не ограничена космическим горизонтом), и информации, которую мы можем собрать (доступную для наших технологий). Если несчастные космологи будущего станут основывать свои теории только на том, что они могут измерить, они получат неверную картину мира и никогда не узнают, что их мрачный космос имеет историю, длящуюся уже несколько триллионов лет. Их статический космос будет иллюзией, результатом существования космического горизонта, в рамках которого галактики не разбегаются. Из всей этой истории можно извлечь страшный урок: наши знания о космосе ограничиваются не только естественными лимитами и технологическими причинами. Собранная нами информация может быть обманчивой и приводить к возникновению у нас совершенно неправильного видения мира. Наши измерения не показывают нам всю картину целиком – возможно, всего лишь краешек.

Чтобы не впасть в научный нигилизм, мы должны наслаждаться тем, что мы можем узнать о мире, пускай уверенными можно быть лишь в немногом. Вместо громких заявлений вроде «Мы знаем истинную природу Вселенной» следует говорить: «Вот то, что мы можем заключить о природе Вселенной». Слово «истинный» бессмысленно, если мы так никогда и не узнаем, в чем состоит истина. Но мы все еще в состоянии делать потрясающие выводы, и это тоже ценно. Мы не должны останавливаться. Нужно продолжать стремиться дальше, к тому, что может лежать за нашим космическим горизонтом.

 

Глава 12. Конечные бесконечности

в которой мы рассматриваем понятие бесконечности и его применение в космологии

– Что будет, если сложить две бесконечности? – спросил однажды мой сын Луциан.

– Бесконечность, – стоически ответил я.

– Но как это возможно, чтобы число плюс число равнялось этому же числу? – настаивал Луциан. – Я думал, так может делать только ноль.

Я ответил:

– На самом деле бесконечность – это не число. Это скорее идея.

Луциан закатил глаза и задумался:

– То есть бесконечность – это противоположность нуля, но при этом бесконечность плюс бесконечность равно бесконечность?

– Да.

– Папа, но это странно.

– Именно.

Бесконечность – это то, что не поддается исчислению, хотя математики часто используют термины «счетная и несчетная бесконечность». Да, бесконечности бывают разными. Например, все множество целых чисел (… –3, –2, –1, 0, 1, 2, 3…) – это счетная бесконечность. Еще один пример – это совокупность рациональных чисел, то есть чисел, имеющих форму p / q (1/2, 3/4, 7/8 и т. д., кроме деления на ноль). Количество объектов в каждом множестве (также называемое его кардинальным числом) обозначают как алеф-0. Алеф – это первая буква еврейского алфавита, которая в каббалистической интерпретации обозначает союз неба и земли ( ). Значение алеф-0 бесконечно, но это не наибольшая из возможных бесконечностей. Совокупность действительных чисел, включающая в себя все рациональные и иррациональные числа (то есть числа, которые нельзя представить в качестве частей от целого, такие как √ 2, π, е), имеет кардинальное число алеф-1. Значение алеф-1, называемое континуумом, больше алеф-0 и может быть получено путем умножения алеф-0 на себя алеф-0 раз: . Немецкий математик Георг Кантор, создавший все эти концепции и разработавший теорию множеств, выдвинул гипотезу континуума: не существует множества с кардинальным числом, находящимся между алеф-0 и алеф-1. Однако недавние исследования показывают, что гипотеза континуума неразрешима, то есть ее нельзя ни доказать, ни опровергнуть. Человеческое сознание создает различные бесконечности даже в упорядоченном пространстве абстрактной математики. Но к вопросу неразрешимости мы еще вернемся, а сейчас давайте перенесем понятия счетной и несчетной бесконечности в космос.

Бесконечен ли космос? Расширяется Вселенная в бесконечность или замыкается сама на себя, как поверхность воздушного шарика? Сможем ли мы когда-нибудь узнать ее форму? Существование космического горизонта и тот факт, что мы получаем информацию лишь из пространства, ограниченного скоростью света, устанавливают серьезные границы нашего познания. Когда космологи говорят, что Вселенная плоская, на самом деле они имеют в виду (или по крайней мере должны иметь в виду), что измеримая часть Вселенной является плоской или практически плоской с учетом погрешности измерений. Подобная плоскость космоса предполагает, что на самом деле Вселенная гораздо больше, чем мы можем измерить. Но с нашей позиции мы не в состоянии делать никаких заключений о том, что лежит за пределами нашего информационного пузыря, или об общей форме Вселенной.

Разумеется, мы можем и должны рассуждать о том, что находится за космическим горизонтом, и, возможно, такие рассуждения помогут нам что-то узнать. Иногда вернуться на берег Острова познания может быть полезным. Если вы не житель Древней Месопотамии, где верили, что горизонт является краем мира, то, глядя с берега на океан, вы легко предположите, что он продолжается и за горизонтом. Когда корабль выплывает из-за горизонта, вы не можете видеть его нижнюю часть, так как Земля круглая. Если вы видите на горизонте остров, вы можете отметить его положение относительно горизонта, а затем забраться на высокую гору и увидеть, что океан продолжается и за островом, а значит, не ограничивается горизонтом, который вы видели у подножия горы. Однако даже с вершины самого высокого пика невозможно осмотреть все океаны и континенты нашей планеты или увидеть, что она представляет собой шар, слегка приплюснутый у полюсов. Исторически наше видение планеты определялось тем, как далеко (или высоко) мы могли на ней продвинуться. Затем, объединив усилия математики и астрономии, ученые смогли сделать гигантский шаг вперед. Это подтверждается расчетами окружности Земли, произведенными Эратосфеном примерно в 200 году до н. э., а также наблюдениями за круглой тенью, которую Земля отбрасывает на Луну во время лунного затмения. Можно привести еще множество других примеров, но окончательное подтверждение того, что Земля круглая, мы получили лишь в 1521 году, когда завершилось кругосветное плаванье Фернана Магеллана и Себастьяна Элькано. Если математические расчеты и толкование теней на Луне еще могли вызывать у людей какие-то сомнения (пускай и неверные), то путь, пройденный кораблями Магеллана, был непреложной истиной. К сожалению, когда дело доходит до космического горизонта, кругосветное путешествие исключается.

В данном случае уместно привести двухмерную аналогию. Представьте себе поверхность очень большого шара. На этой поверхности существует галактика, и в ней живут разумные существа. Как и наша Вселенная, эта двухмерная конструкция когда-то пережила Большой взрыв. Так же как и у нас, у существ из этой Вселенной имеется космический горизонт – участок поверхности шара в форме диска. Если шар достаточно велик, а диск слишком мал, существа будут считать свою Вселенную бесконечной, а ее геометрию – плоской. (Если вы мне не верите, возьмите воздушный шарик и нарисуйте на нем круг. Поверхность внутри круга действительно будет казаться вам плоской.) Но этот вывод будет неверным. Да, поверхность видимого им диска действительно плоская, но поверхность всего шара, то есть их Вселенная, конечна. Смогут ли эти существа когда-нибудь узнать правду о форме своей Вселенной, если выход за границы диска им недоступен?

Можем ли мы определить форму Вселенной, если находимся на плоскости, ограниченной космическим горизонтом? Если наша Вселенная – это трехмерная сфера, нам не повезло. Судя по текущим данным, радиус кривизны этой сферы, скорее всего, настолько мал, что мы просто не сможем его измерить. Существует еще одно интересное, хотя и не совсем правдоподобное предположение. Наша Вселенная может иметь сложную форму, которую математики называют нетривиальной топологией. Топология – это направление в геометрии, которое изучает непрерывную деформацию пространств. «Непрерывное» в данном случае означает без разрывов, как, например, растягивание и сгибание куска резины. Такие трансформации называют геоморфизмами. К примеру, цельную сферу можно превратить в эллипсоид, в куб или в грушу – но не в кольцо. Кольцо же, в свою очередь, можно превратить в кружку с ручкой. Соответственно, сложная топология космоса может налагать свой отпечаток на наши измерения. Например, если топология подразумевает сложное соединение (то есть если в ней есть отверстия, как в пончике), свет от дальних объектов может определенным образом проявляться в фоновом излучении. В частности, если Вселенная действительно имеет форму кольца и его радиус невелик по сравнению с нашим космическим горизонтом, свет от дальних галактик может несколько раз описывать круг, создавая множественные одинаковые образы, похожие на отражения в зеркалах, стоящих параллельно друг другу. В принципе, такие отражения, или узоры, можно заметить и проанализировать.

Эта история показывает, как несовершенство наших измерительных приборов позволяет нам заниматься рассуждениями. До тех пор пока мы не удостоверимся, что радиус кривизны нашего космического диска точно равен нулю, у нас всегда останется место для фантазий о других топологиях, отличных от скучного плоского трехмерного космоса. Разумеется, существует вероятность, что однажды мы сумеем засечь зеркальные отражения, которые дадут нам основания предположить, что Вселенная имеет несколько иную форму. Гораздо интереснее будет, если мы так никогда их и не обнаружим. Будет ли это означать, что космос действительно плоский? Поскольку мы не в состоянии измерить что-либо с абсолютной точностью, то, даже если все текущие данные будут указывать на нулевое пространственное искривление в пределах нашего космического горизонта, мы все равно не сможем сказать этого наверняка. В отсутствие сведений о наличии искривления вопрос о форме космоса в принципе не имеет ответа. Сможем ли мы когда-нибудь найти его? Судя по всему, нет, если только у нас не появится новых фактов. Если бы Вселенная действительно имела форму сферы, как писал Эйнштейн, и если бы в далеком будущем эта сфера схлопнулась, наблюдатели этого последнего момента (если бы они существовали) смогли бы увидеть собственные затылки. Затем они бы исчезли, растворились в небытии, зная, что Вселенная все-таки была конечной, и затаив в сердцах (если у них были бы сердца) надежду на новый цикл существования, в котором их энергия нашла бы новый способ превращения в сложные материальные формы (возможно, даже такие, которые смогли бы, в свою очередь, задуматься о значении вечности).

Существует и еще одна надежда – что форма Вселенной будет однозначно определена с помощью фундаментальной теории, объединяющей в себе общую теорию относительности и квантовую механику. Одной из главных проблем современной физики является преодоление трудностей, возникающих при достижении сингулярности, будь то в начале времени, как при Большом взрыве, или в конце жизненного цикла звезды при формировании черной дыры. Мы пытаемся описать оба случая с помощью эйнштейновской общей теории относительности, но при этом прекрасно знаем, что она не работает для крайне малых расстояний и/или большой плотности материи. Что же нам делать? Единственный выход – это создать такую физическую теорию, которая успешно описывала бы микромир и одновременно была бы применима к сильным искривлениям пространства и объектам с высокой плотностью. Для этой цели идеально подходит квантовая теория, так как она устанавливает ограничение для небольших расстояний – горизонт, дальше которого мы не можем видеть микромир. Это ограничение возникает вследствие принципа неопределенности Гейзенберга.

Идея этого принципа, который мы рассмотрим более подробно во второй части книги, состоит в том, что наблюдатель, занимающийся измерением положения объекта с постоянно увеличивающейся точностью, в конце концов наткнется на стену, информация из-за которой будет ему недоступна. Иными словами, квантовая теория предполагает некоторую естественную расплывчатость материи, конечное минимальное значение, меньше которого не бывает. Объект может быть сколь угодно маленьким, но ниже этого значения его размер не опустится. В Природе не существует «точечных» частиц, так как любые материальные структуры в какой-то момент распадаются на квантовую неопределенность и заполняют некоторый объем. В каком-то смысле минимальный объем – это барьер между тем, что мы можем узнать о физической реальности, и тем, что навсегда останется скрытым от наших глаз. Более того, в квантовой физике сама попытка узнать больше, то есть выйти за границы, установленные неопределенностью, не имеет смысла. Предположение о том, что наши возможности познания Вселенной ограниченны, сводило Эйнштейна с ума.

Логично предположить, что этот же подход применим и к космосу, то есть что существует минимальное расстояние в пространстве, меньше которого быть не может. Если развить этот подход, окажется, что пространство не непрерывно, а размыто и что движение из одной точки в другую не может происходить напрямую. Если это так, то сингулярность в принципе невозможна, так как пространство нельзя сжать до нулевого объема. Этого взгляда придерживаются сторонники квантовой теории гравитации, такие как Абэй Аштекар, Ли Смолин, Мартин Божовальд и др. Они предполагают, что границы неопределенности, действующие в квантовой механике и применимые к свету и материальным объектам, можно распространить на пространство и время – концептуальные инструменты, которые мы используем для описания материальных объектов и их движения. Но обоснована ли такая экстраполяция?

Существует и противоположный подход, приверженцы которого утверждают, что нужно не «квантифицировать» космос, а, наоборот, избавиться от самого понятия точечных частиц. Идея проста: если мельчайшая из существующих частиц материи имеет некое пространственное продолжение, то такие частицы невозможно сжать до нулевого объема. Именно это и утверждает квантовая механика. Материальные объекты одновременно представлены как частицами, так и волнами, так как у них имеется пространственное продолжение. Основываясь на этом, теория струн утверждает, что мельчайшими объектами во Вселенной являются не электроны, не кварки, не другие частицы, о существовании которых мы знаем благодаря ускорителям вроде Большого адронного коллайдера, а одномерные линии энергии, которые могут пересекаться и переплетаться различными способами. Форма таких линий, а также тот факт, что они часто формируют закрытые петли, означают, что у этих объектов (струн) есть пространственное продолжение, а значит, их нельзя сжать до нулевого объема. Следовательно, если динамика ранней Вселенной основывалась на суперструнах, они не могли сформировать сингулярность.

Теорию суперструн часто называют теорией всего, имея в виду, что потенциально она предлагает единое объяснение для всех частиц материи (которые представляются как различные виды вибрации базовых струн) и для четырех сил Природы (также описываемых через переносящие их частицы, выраженные в форме вибраций). Я посвятил подробному разбору теории всего и стремлений к всеобщему объединению часть своей книги A Tear at the Edge of Creation и предлагаю всем, кого заинтересовала эта тема, прочесть ее. В ней я обращаю внимание на то, что само понятие окончательного ответа несовместимо с научным методом. Учитывая, что мы можем накапливать научные знания только с помощью измерения естественных процессов, мы по определению не можем быть уверены в том, что знаем о существовании всех сил Природы или частиц. В любой момент может появиться новая технология, которая откроет нам что-то неожиданное и заставит нас пересмотреть свои текущие представления. Представления о всеобъемлющей Божественной Вселенной – это всего лишь романтическая фантазия. В лучшем случае теория суперструн или те идеи, которые придут за ней, смогут объединить все наши знания о частицах и их взаимодействии на момент их возникновения. Но это ни в коем случае не будет последним словом по данному вопросу. Вспомните о космологах далекого будущего, живущих в статичной и темной Вселенной, которую мы рассматривали пару страниц назад. Как бы выглядела их окончательная теория всего? Наверняка она казалась бы им очень убедительной, даже если с нашей точки зрения была бы абсолютно неправильной. Можем ли мы быть уверены, что мы хоть в чем-то лучше, что мы не упускаем из виду большую часть космической картины? Наука умеет обнаруживать то, что существует в пределах досягаемости, но то, чего она обнаружить не может, нельзя и полностью исключать. Это приводит нас к важнейшему вопросу: уникальна ли наша Вселенная? Или есть и другие, сосуществующие с ней в некой бесконечной множественной структуре? Если Мультивселенная реальна, как нам об этом узнать? Чтобы ответить на этот вопрос, нужно разобраться, что могло бы дать толчок к такому безудержному росту вселенных. Для этого мы рассмотрим нормальное и метастабильное состояние материи и поговорим о том, как они могли повлиять на космос в его первые годы жизни.

 

Глава 13. Вниз по склону

в которой объясняется понятие энергии ложного вакуума, ее связь со знаменитым бозоном Хиггса и роль в ускорении космического расширения

Общая теория относительности Эйнштейна описывает гравитацию как искривление пространства по причине наличия материи и энергии. Мы не знаем, почему материя (или энергия) искривляет пространство, но можем рассчитать, как это происходит. Блестящая теория Эйнштейна – это очередной уровень описания. Разумеется, в этом описании Эйнштейн отходит от представлений Ньютона о гравитации как о действии на расстоянии, ведь искривленное пространство присутствует здесь и сейчас, а не является сторонним влиянием. Тем не менее причина этого искривления до сих пор неясна. Если бы Эйнштейна спросили, почему материя искривляет пространство, он наверняка ответил бы, что не знает. Его теория базируется на так называемом принципе эквивалентности, говорящем, что масса одинаково реагирует на гравитационное притяжение и на силу инерции. Пока ускорение остается неизменным, наблюдатель (который не может получать информацию извне) не будет в состоянии обнаружить его источник. Как говорил сам Эйнштейн, падающий наблюдатель не чувствует своего веса. Принцип эквивалентности прочно удерживает свои позиции до сегодняшнего дня и проходит все многочисленные проверки.

Будучи самым лучшим описанием гравитации, доступным нам на сегодняшний день, теория Эйнштейна позволяет делать интересные предположения. Базируясь на подтвержденном наблюдениями предположении о том, что материя в больших объемах распределена гомогенно и изотропно (то есть одинаково во всех направлениях, как гласит космологический принцип), теория может делать количественные утверждения относительно геометрии космоса в целом. Для этого космологи представляют материю и излучение в виде гомогенного газа, обладающего энергетической плотностью (то есть массой и/или энергией на единицу объема) и давлением (силой, с которой газ давит на единицу площади, как делаете вы, когда надуваете воздушный шарик). В теории Эйнштейна и плотность, и давление газа влияют на искривление пространства и, соответственно, на динамику космоса. Для обычной материи или излучения энергетическая плотность и давление имеют положительные значения в уравнениях, моделирующих развитие Вселенной. В результате мы получаем Вселенную, которая расширяется со временем, но в которой скорость расширения постепенно снижается. В зависимости от количества материи такая Вселенная может либо схлопнуться, либо продолжить расширение, но со скоростью, медленно приближающейся к нулевой в далеком будущем. Исключением является Вселенная с открытой геометрией, которая просто продолжит расширяться. Но нормальность материи и излучений – это совсем не обязательное явление в физике.

В общей теории относительности под влиянием давления на искривленное пространство-время могут происходить удивительные вещи: некоторые типы материи приобретают загадочные гравитационные свойства.

Для начала вот вам краткий экскурс на физическую кухню. Вода существует в трех состояниях: твердом (лед), жидком и газообразном (пар). Для того чтобы перевести ее из одного состояния в другое, необходимо изменить ее температуру. Чтобы жидкость превратилась в твердое тело, ее нужно поставить в холодильник с температурой ниже точки замерзания, то есть 32 градуса по Фаренгейту (или 0 по Цельсию). Жидкая вода внутри холодильника находится в неестественном состоянии, поэтому она трансформируется – выбрасывает энергию в окружающую среду и медленно превращается в лед. Можно сказать, что внутри холодильника жидкая вода попадает в метастабильное состояние – такое, при котором в ней содержится больше энергии, чем необходимо. Смена метастабильного состояния стабильным называется фазовым переходом. Могут ли другие виды материи совершать фазовый переход? Конечно! Это происходит постоянно при соответствующей температуре (и/или давлении).

Тот же принцип применим и к физике частиц. Частицы материи также могут проходить через различные фазы, в рамках которых меняются их свойства. Например, мы с вами существуем в нормальной фазе материи, в которой электроны весят в две тысячи раз меньше, чем протоны. Материю в этой фазе можно сравнить с водой в состоянии льда. Однако при повышении энергии частицы начинают деформироваться и их массы постепенно уменьшаются до нуля. Представьте себе, что мы могли бы взять кусок такой материи в руки при текущем уровне энергии. Как и жидкая вода в холодильнике, этот кусок не имеющих массы электронов и протонов (или, еще лучше, кварков, составных элементов протонов) оказался бы в метастабильном состоянии. Оно не продлилось бы долго – материя быстро перешла бы в другую, более привычную нам фазу. Несмотря на то что современные ускорители пока не в состоянии создавать такие метастабильные частицы материи без массы, есть все основания полагать, что это будет возможно в будущем. Как когда-то изобретение холодильника, такие технологии требуют времени и фантазии (и еще денег, кучи денег).

Но есть одно место, в котором такой метастабильной материи имеется в избытке, – это ранняя Вселенная. Раньше космос был горячее, а уровни энергии – выше. В течение одной триллионной доли секунды после Большого взрыва температура и плотность Вселенной были достаточными для того, чтобы материя находилась в метастабильном состоянии. И вот что удивительно: метастабильная материя имеет отрицательные значения в уравнениях, описывающих космическое расширение. А общая теория относительности утверждает, что отрицательное давление ускоряет расширение Вселенной, а не замедляет его. Именно эта энергия, скрытая в метастабильной материи, двигает нашу Вселенную вперед. Представьте себе груз, подвешенный на сжатой пружине. Если отпустить груз, накопленная энергия пружины толкнет его вперед. Отрицательное давление делает примерно то же самое с геометрией космоса. Итак, мы приходим к удивительному заключению: ранняя Вселенная могла переживать периоды ускоренного расширения, когда масса находилась в метастабильном состоянии. Этот эффект оказался настолько всеобъемлющим, что метастабильного состояния больше не требуется – космическое ускорение происходит всегда, когда материя не находится в своем нормальном состоянии, то есть при минимальном уровне энергии. В качестве аналогии можно привести мяч на наклонной плоскости. Он будет скатываться по ней до тех пор, пока не найдет стабильную точку, в которой сможет вернуться в состояние покоя. Соответственно, в любой точке на склоне мяч будет находиться в «смещенном» состоянии, а его энергия будет выше, чем у подножия склона. Точно так же и Вселенная, заполненная материей в смещенном состоянии, будет расширяться все быстрее и быстрее до тех пор, пока не «скатится» до минимального уровня энергии.

Внимательный читатель вспомнит, что мы уже обсуждали ускоренное расширение, когда говорили про космологическую постоянную. До тех пор пока материя остается в смещенном состоянии (то есть в любой точке на склоне), она имеет силу космологической постоянной. Основное различие состоит в том, что космическое ускорение, возникающее под влиянием космологической постоянной, имеет неизменное значение (потому-то она и называется постоянной), а для материи ускорение может уменьшаться и увеличиваться в зависимости от того, насколько она отклоняется от нормального состояния. Такое отклонение часто называют энергией ложного вакуума, но мы будем обозначать ее термином «смещенная энергия», так как это избыточная энергия, возникающая при смещении из нормального состояния. Чем выше уровень смещенной энергии, тем быстрее происходит космическое ускорение.

Для полноты картины нам требуется еще один элемент: фактор, запускающий изменения в свойствах частиц и превращающий их из безмассовых при высоком уровне энергии (высоком смещении) в массивные при низком (то есть в нормальном состоянии). Согласно нашим сегодняшним знаниям о физике частиц, выраженным в так называемой стандартной модели, этим фактором является еще одна частица, знаменитый бозон Хиггса. О его открытии в июле 2012 года объявили ученые, работавшие на Большом адронном коллайдере.

Для того чтобы понять, как бозон Хиггса воздействует на другие частицы, можно представить его в качестве своего рода среды, в которой они движутся. Звучит как старый добрый электромагнитный эфир, но это не совсем так. Традиционно эфир представлялся как нечто неизменное и инертное, в то время как бозон Хиггса может изменяться и взаимодействовать с обычной материей. Подобно обычным частицам материи, он также изменяет свои свойства при разных температурах. Современные модели физики частиц используют колебания свойств бозона Хиггса для того, чтобы изменять характеристики частиц материи. Возвращаясь к образу бозона Хиггса как среды (вроде воздуха или меда), нужно сказать, что при высоких температурах эта среда, по сути, прозрачна и материя проходит сквозь нее, не встречая преград. Это его безмассовая фаза. При более низких температурах «среда» сгущается и частицам материи требуется больше усилий, чтобы пройти сквозь нее. Благодаря этой вязкости среды кажется, что масса частиц растет. Вот почему часто говорят, что бозон Хиггса «придает массу» частицам.

Давайте перейдем к тому, почему кварки, электроны и другие частицы, входящие в стандартную модель, обладают разными массами. Дело в том, что они чувствуют присутствие бозонов Хиггса с разной интенсивностью. Чем сильнее чувствительность частицы к нему, тем выше ее масса в нормальной фазе. В математическом выражении стандартной модели эту чувствительность называют интенсивностью, с которой каждая частица взаимодействует с бозоном Хиггса. К примеру, топ-кварк, самый тяжелый из кварков и в целом из известных нам элементарных частиц, имеет массу, в 399 216 раз превосходящую массу электрона. Поэтому мы можем сказать, что он сильнее взаимодействует с бозоном Хиггса. Исключением является фотон, который вообще не вступает во взаимодействие с бозоном и потому не имеет массы.

Вооруженные образом бозона Хиггса как среды, мы можем забыть обо всех частицах, которые взаимодействуют с ним, и просто представить его в роли мяча, катящегося вверх или вниз по склону холма. Чем ближе к вершине, тем дальше бозон от своей нормальной фазы и тем выше его смещенная энергия. Вселенная, наполненная бозонами Хиггса в такой фазе, будет стремительно расширяться. По мере того как бозон скатывается вниз по склону к своему минимальному значению энергии, ускорение уменьшается. Так происходит до тех пор, пока он полностью не остановится.

Итак, этот простой образ мяча, катящегося по склону холма, должен помочь нам понять невероятную концепцию множественной Вселенной. Давайте рассмотрим ее поближе.

 

Глава 14. Считая вселенные

в которой вводится понятие множественности вселенных и объясняются его физические и метафизические последствия

Читатели наверняка заметили, что я делаю различие между понятиями «Вселенная» и «вселенная». Поначалу это кажется всего лишь незначительной деталью. Однако дело в том, что современная космология вполне серьезно рассматривает возможность существования более чем одной вселенной. Вот почему разница в написании все-таки важна. Я использую слово «Вселенная» с заглавной буквы для обозначения нашего видимого космоса и всего, что в нем находится, известно оно нам или нет. Иными словами, термин «Вселенная» обозначает все то, что существует в пределах нашего космического горизонта. Вселенная – это наш дом, построенный из причин и следствий. Как мы уже знаем, рассчитанная на основании измерений плоскость видимого космоса может означать, что наша Вселенная продолжается и за пределами горизонта – все дальше и дальше, вплоть до бесконечности, которая недоступна для измерения нашим приборам. В связи с этим хотелось бы расширить понятие Вселенной на это потенциальное бесконечное пространство. Но я должен строго придерживаться правила «Мы знаем лишь то, что можем измерить». Соответственно, наша Вселенная может быть лишь частью потенциально бесконечной Вселенной. Более того, по соседству с нами могут находиться и другие вселенные – и их может быть много.

Согласно Оксфордскому словарю английского языка, вселенная – это «совокупное обозначение всей существующей материи, пространства, времени, энергии и т. д., в частности, как систематического или упорядоченного целого; все творение, космос». Характеристика «все существующее» тут же усложняет дело. Если под этим подразумевается действительно все то, что существует в реальности, то Оксфордский словарь должен был бы включить в свое определение все другие участки пространства, которые могут существовать, но быть отделены от нас пространственно-временным барьером. В таком случае вселенная будет представляться единым целым, а любой участок пространства, в том числе доступный нам, – ее составной частью. Однако если поискать в словаре понятие «Мультивселенная», можно наткнуться на довольно странное определение: «гипотетическое место или пространство, состоящее из некоторого количества вселенных, одной из которых является наша Вселенная». Итак, если Мультивселенная существует, то наша Вселенная уже не может рассматриваться как совокупность «всей существующей материи, пространства, времени, энергии и т. д.». Наоборот, такое определение можно дать как раз Мультивселенной, а наша Вселенная окажется лишь ее частью, одной из (возможно, бесконечного) множества «островных вселенных», существующих одновременно. Еще больше усложняет дело тот факт, что вселенная, даже будучи частью Мультивселенной, все равно может быть пространственно бесконечной. Бесконечность является частью еще большей бесконечности, как входит в . В современной космологии, как и в математике, могут существовать разные типы бесконечностей.

Перед тем как мы пойдем дальше, позвольте мне объяснить, как такая идея, как совокупность различных вселенных, часть из которых, возможно, бесконечна, вообще может иметь смысл. Для того чтобы это было проще визуализировать, давайте ограничимся двумя измерениями. Представьте себе плоскую столешницу, которая имеет огромную длину и ширину. Если значения ее длины и ширины не ограничены, значит, наша столешница – это плоский бесконечный космос. В этой бесконечной вселенной могут жить крошечные плоские амебообразные существа. Теперь представьте, что у вас есть две столешницы, которые расположены параллельно друг другу, но не соприкасаются. Пускай вторая столешница тоже будет бесконечной, а на ее поверхности тоже будут жить плоские существа (в конце концов, все это происходит у вас в голове). Теперь представьте, что столешницы соединены в одном месте узким туннелем. Теперь у нас имеется два бесконечных пространства с точкой соединения. Существа, живущие в каждом из них, не имеют доступа к туннелю и верят, что их вселенная уникальна и бесконечна, особенно если туннель находится за их космическим горизонтом. Они никогда не узнают, что их вселенные являются элементами гораздо большей структуры – мультивселенной. А вы легко можете себе представить множество столешниц, расположенных одна над другой и соединенных переходами, которые недоступны их обитателям. Продолжайте этот ряд до бесконечности, и у вас в голове возникнет бесконечная двухмерная мультивселенная!

Но она не обязательно должна быть такой простой. Вселенные могут быть искривленными и конечными. Или они могут возникать из «материнской» вселенной, которая бесконечна сама по себе. Или такие «дочерние» вселенные тоже могут быть бесконечными. Представьте себе, что вы выдуваете пузырь из жевательной резинки. Если вы хоть раз пытались это сделать, то знаете, что маленькие пузыри обычно сдуваются, а те, что побольше, продолжают расти (и в итоге лопаются, но этот факт мы пока что игнорируем). Вообразите, что такой пузырь начинает расти в той части плоской вселенной, которая плотно населена амебообразными существами. Кого-то из них затянет внутрь, а кто-то останется снаружи, в ужасе наблюдая, как его друзья исчезают в небытии. Но все прошло удачно, большинство амеб, оказавшихся внутри пузыря, пережили этот катаклизм и начали исследовать новый мир. Сменились поколения, и наконец ученые измерили радиус кривизны пространства и выяснили, что они живут в замкнутом сферическом космосе. Все это время пузырь продолжал расти, поэтому к данному моменту туннель, соединяющий его с материнской вселенной, уже находится за пределами их космического горизонта. Они живут в замкнутой расширяющейся вселенной, не зная о своей связи с плоским бесконечным космосом. Возможно, в их мире существует миф, повествующий о боге, который выдул их вселенную из другой вселенной, населенной богами, которые целыми днями занимаются только тем, что надувают другие пузыри. В это же время существа, оставшиеся в материнской вселенной, наблюдают, как вход в пузырь становится все уже и уже, пока наконец не закрывается вовсе. Вместо него остается лишь шрам на ткани пространства, отмечающий эти давние события. Вселенная-пузырь, возможно, остается соединенной с материнской вселенной чем-то вроде пуповины, но их жители уже изолированы друг от друга.

Может ли что-то подобное происходить на самом деле? Как ни удивительно, да, это теоретически возможно. И вот почему.

Для начала вообразите себе вселенную, наполненную материей Хиггса. Не думайте, что это то же самое, что и бозон Хиггса в стандартной модели. Все теории физики частиц, пытающиеся объяснить физику энергий, не входящих в стандартную модель, обычно включают в себя дополнительную материю, похожую на бозоны. Давайте впредь называть материю Хиггса ее настоящим именем – поле. Понятие поля было введено в XIX веке Майклом Фарадеем и Джеймсом Клерком Максвеллом в рамках их теории электромагнетизма и является ключевым в современной физике. По сути, поле представляет собой пространственное влияние определенного источника. Для того чтобы составить картину температурного поля в комнате, нужно всего лишь измерить температуру в разных ее точках. Такое поле, зависящее исключительно от значения температуры в определенной точке в пространстве, называется скалярным. Еще один тип поля – это скорость потока воды в реке. Если течение не идеально равномерно, то в нем всегда будут существовать отклонения и завихрения. Поле, для которого важно не только значение в определенной точке, но и направление движения в ней, называется векторным. В качестве примера векторного поля можно привести поток ветра, дующего вокруг дома. Хиггсовы поля скалярны, в то время как электромагнитные состоят одновременно из скалярных и векторных полей.

Но вернемся к нашей модели вселенной. Давайте представим, что это заполняющее весь космос Хиггсово поле не достигло своего минимального уровня энергии и смещенная энергия заставляет его разгоняться и расширяться. И здесь возникает важнейший момент, приводящий нас к идее множественности вселенных. Вовсе не обязательно, чтобы вся вселенная была наполнена смещенной энергией скалярного поля. Хватит и небольшого участка. Если его объем будет достаточным, то он будет раздуваться на фоне огромной, потенциально бесконечной вселенной, как воздушный шарик. Точно так же мы выдуваем пузыри из жвачки! Вот только толчок, который заставляет пузырь расти, дает не бог, а смещенная энергия скалярного поля. Насколько большим должен быть такой участок пространства, чтобы расти в геометрической прогрессии? На самом деле хватит и пространства, охваченного космическим горизонтом. Например, при том уровне энергии, который заставил частицы приобретать массу в присутствии бозона Хиггса (и существовал примерно в течение одной триллионной доли секунды после Большого взрыва), достаточно было бы одного миллиметра. И чем ближе к началу времени, тем меньше становится этот участок. Итак, пока мы всего лишь представляем, что этот участок пространства, наполненный скалярным полем, возник в прошлом точно так же, как и наша Вселенная. К вопросу этого возникновения мы еще вернемся.

Таким образом, мы можем представить себе сценарий, при котором пространство космоса похоже на клетчатый плед, в разных клетках которого скалярное поле имеет разные значения, отличные от его минимального уровня энергии. Вообразите, что на каждом из таких участков стоит холм с катящимся по склону мячом и при этом каждый мяч находится на разной высоте. Достаточно большие участки пространства будут расширяться в геометрической прогрессии, а скорость расширения будет зависеть от количества смещенной энергии на участке (чем выше мяч на склоне, тем быстрее расширение). Очень скоро космос превратится в кучу разномастных пузырей, растущих с разной скоростью. Каждый из таких пузырей – это потенциальная вселенная, связанная с материнской вселенной трубкой или туннелем, своеобразной пуповиной, которую чаще называют кротовиной (кротовой норой, червоточиной). Этот сценарий, получивший название хаотической инфляции, был предложен в 1980-х годах американским космологом российского происхождения Андреем Линде, который сейчас работает в Стэнфордском университете. Слово «хаотический» в данном случае обозначает случайное распределение значений скалярного поля на различных участках пространства.

Линде добавил в свою модель потрясающий ход. Квантовая механика учит нас, что ничто в Природе не остается неподвижным. Все вибрирует, пускай эти вибрации и не воспринимаются нами в повседневной жизни. Но для скалярного поля, наполняющего нашу гипотетическую вселенную, эти квантовые колебания очень важны. Чем дальше поле отходит от своего минимального уровня энергии, тем колебания сильнее. Если в уже надувающемся пузыре достаточно большой кусок поля достигнет более высокого уровня энергии, он начнет расти с другой скоростью. В результате он отколется от пузыря и сформирует собственную вселенную, «внучку» оригинальной. Читатель легко может представить себе эту картину: пузыри, постоянно возникающие на поверхности других пузырей и формирующие все новые и новые вселенные с собственной историей. Линде заключил, что вселенная, наполненная скалярным полем с уровнем энергии, смещенным от минимального, в обязательном порядке будет порождать новые вселенные и, таким образом, превратится в постоянно растущую мультивселенную без начала и конца.

В это же время еще один космолог российского происхождения, Александр Виленкин из Университета Тафта, предложил альтернативную теорию, ведущую к аналогичным последствиям. Виленкин рассматривал поля с крайне плоским начальным распределением энергии (если раньше мы использовали аналогию со склоном холма, то эти поля можно сравнить с вершинами горных плато). Если в теории Линде квантовый эффект толкал поле вверх и вниз, то в модели Виленкина поле случайным образом двигалось по плато в различных направлениях. Если участок с таким плато оказывается достаточно большим, он растет по экспоненте, производя множество пузырей. Виленкин назвал свою модель вечной инфляцией, так как он заключил, что в мире всегда будут существовать плато, расположенные достаточно высоко на склоне нашего воображаемого холма и ведущие к разрастанию пространства. В каких-то регионах поле уже достигнет минимального энергетического уровня, и фаза ускоренного роста прекратится (как это случилось с нашей Вселенной), а в каких-то в это же время он только начнется. Виленкин показал, что растущие участки будут возникать чаще, чем замедляющие свое расширение. Итак, двое моих российско-американских коллег (от общения с которыми на совместных встречах я всегда получаю удовольствие) создали запутанные модели бесконечно самовоспроизводящихся вселенных. Пускай каждый участок имеет свое начало и свою историю, сама мультивселенная может существовать вечно. Большой взрыв может оказаться лишь одним из множества разнообразных случаев зарождения вселенных.

Но может ли такая идея, как бы безумно она ни звучала, оказаться чем-то большим, чем просто умозрительным экспериментом? Может ли ее подтвердить физика? Каждая научная гипотеза должна быть экспериментально проверяемой. Для ее подтверждения или опровержения необходимо провести опыты или собрать данные наблюдений. Учитывая, что мы не располагаем никакими свидетельствами того, что живем в мультивселенной (и такие свидетельства, вполне вероятно, вообще невозможно получить), эту теорию следует рассматривать с большой осторожностью, внимательно анализируя все те данные, которые у нас уже имеются и которые мы можем получить в будущем.

Для начала давайте рассмотрим понятие ускоренного космического расширения. Есть ли у нас основания верить в его существование? Конечно! В 1998 году мы получили убедительные доказательства того, что живем в расширяющейся Вселенной, работающей на темной энергии. Это блестящее открытие, о котором нельзя забывать. Оно кажется еще более интересным, если вспомнить, что ускоренное расширение началось всего пять миллиардов лет назад. Иными словами, фазы космического расширения не просто реальны, но имеют начало и, вероятно, конец. Пять миллиардов лет – это точное время формирования нашей Солнечной системы. Иногда эту ситуацию называют проблемой совпадения. Почему расширение космоса началось именно в этот момент, а не раньше и не позже?

Еще одним весомым подтверждением существования периода активного расширения является инфляционная космологическая модель, предложенная в 1981 году американским космологом Аланом Гутом. Это оригинальная модель инфляции космоса, которая впоследствии повлияла на идеи Линде и Виленкина. Гута интересовали некоторые вопросы, на которые не могла ответить стандартная модель Большого взрыва (описывающая появление Вселенной из горячей первобытной смеси материи и излучения 13,8 миллиарда лет назад). Во-первых, почему космос имеет плоскую геометрию? Почему она не является закрытой или открытой? Во-вторых, температура фонового излучения во всей Вселенной одинакова до одной стотысячной доли градуса. Откуда взялась такая тонкая настройка? Размер космического горизонта при расщеплении не позволяет нам верить в ее существование. Для того чтобы иметь сегодня одинаковую температуру, частицы и фотоны в процессе расщепления должны были бы взаимодействовать на огромных расстояниях, превышающих те, которые были допустимы их горизонтом. Во всей Вселенной (как в горячей ванне) температура регулируется за счет столкновения частиц (молекул воды) друг с другом. Чем больше ванна, тем больше времени требуется, чтобы вода в ней нагрелась или охладилась равномерно. Точно так же излучению в расширяющейся Вселенной требуется время на то, чтобы урегулировать ее температуру. И с момента расщепления времени прошло недостаточно. Учитывая это, откуда фотоны по другую сторону неба знают, какую температуру поддерживать?

Гут предположил, что молодая Вселенная пережила краткий период ускоренного расширения, который он назвал инфляцией. Его идея была аналогична приведенной выше метафоре мяча на склоне холма. Хиггсово поле оказывалось в метастабильном состоянии, и до тех пор, пока его состояние не изменялось, Вселенная расширялась в геометрической прогрессии. Андрей Линде и Андреас Альбрехт из Калифорнийского университета в Дейвисе, а также Пол Штейнхардт из Принстона быстро поняли, что в модели Гута существовал недочет, который они назвали элегантным выходом: поле оставалось бы в метастабильном состоянии слишком долго для формирования той Вселенной, которую мы наблюдаем. Независимо друг от друга они скорректировали модель Гута, представив ее энергетический профиль как плоское плато. Именно это натолкнуло Виленкина на его идею вечной инфляции.

Инфляция объясняет, почему Вселенная имеет плоскую форму. Небольшой участок, раздираемый в разные стороны магнитудами разного порядка, будет казаться плоским, даже несмотря на то, что он может быть элементом огромной сферической поверхности. В таком случае наш космический горизонт – это всего лишь небольшая часть гораздо большей Вселенной, недоступной нашим наблюдениям. Инфляция также объясняет, почему значения фонового излучения остаются неизменными во всей Вселенной. Если весь доступный нашему наблюдению космос произошел из одного раздутого участка пространства, логично предположить, что частицы и фотоны в нем будут иметь одинаковые термальные характеристики.

Но инфляция помогает нам сделать еще один шаг вперед. Помните квантовые скачки, из-за которых новые вселенные возникают как грибы после дождя? Те же самые скачки, которые заставляют колебаться поле на различных участках пространства, приводят к возникновению небольших энергетических флуктуаций. Участки расширяющегося космоса можно сравнить с поверхностью озера в ветреную погоду – где-то энергии немного больше, а где-то немного меньше. Благодаря инфляции эти крошечные квантовые неровности раздуваются в участки поля астрономических масштабов. Теперь давайте быстро вернемся в прошлое, в момент расщепления, к началу формирования водорода. Так как гравитация – это сила притяжения, участки с повышенной или пониженной плотностью будут притягивать к себе соответственно больше или меньше материи, заставляя ее концентрироваться в определенных местах, как дождевую воду в лужах. По сути, участки с повышенной плотностью привели к появлению галактик и скоплений галактик во Вселенной. В то время космос был похож на старую грязную дорогу с выбоинами и кочками – вокруг кочек скапливалось меньше материи, а в рытвины попадало больше. Иными словами, инфляция представляет собой механизм для описания зарождения галактик. Так как фотоны тоже попадают в выбоины и трещины дороги, инфляция также предсказывает, что эти несоответствия будут оставлять свои следы в фоновом излучении в форме крошечных температурных флуктуаций (появления более горячих и более холодных точек). Эта пестрая температурная карта была исследована с высокой точностью с помощью спутника Wilkinson Microwave Anisotropy Probe и европейской орбитальной исследовательской станции «Планк». Удивительно, но полученные данные практически совпадают с данными некоторых моделей на основе теории инфляции. Это дает космологам основания полагать, что молодая Вселенная действительно когда-то пережила период ускоренного роста.

Если это так и если наш космический горизонт действительно является практически плоским, Вселенная должна быть куда больше, чем мы можем увидеть, и должна простираться намного дальше наблюдаемой Вселенной. Несмотря на то что исследователи до настоящего времени не делали никаких определенных заявлений относительно существования бесконечностей в Природе, Вселенная наверняка невероятно огромна и, возможно, бесконечна. Соответственно, есть все основания полагать, что в ней могут существовать и другие участки инфляции, на что указывает вечная инфляционная модель.

Ключевым фактором инфляции, разумеется, является скалярное поле. Можем ли мы быть уверены в том, что такое поле существовало на ранних стадиях космической эволюции? Нет, по крайней мере пока. Однако успех стандартной модели физики частиц и недавнее открытие бозона Хиггса подтверждают гипотезу о том, что при высоких уровнях энергии может существовать что-то вроде бозона Хиггса, оказывающее аналогичное влияние на космическое расширение. Скалярные поля используются во многих моделях, созданных для того, чтобы расширить наши текущие знания о физике частиц за пределы стандартной модели. К примеру, довольно перспективна теория суперструн. Даже если вас не привлекают модели, в которых используется суперсимметрия, вы все равно можете быть уверены в том, что новая физика будет иметь дело с более высокими энергиями, чем те, которые мы можем измерить на сегодняшний день, и, вероятно, найдет потенциальных кандидатов (поле или несколько полей) на роль движущей силы инфляции.

Здоровая наука – это сочетание смирения и надежды. Мы должны смириться с размерами нашего незнания, но при этом надеяться, что новые открытия смогут пролить на него немного света. Однако если мы находимся на самой границе познания нового, но не можем получить подтверждающих данных, нашей единственной стратегией остаются обоснованные предположения. Без воображения наука не может двигаться вперед.

Было бы упущением с моей стороны не рассказать о вкладе теории струн в понятие Мультивселенной. Несколько моих коллег, приверженцев этой теории, написали о ней ряд популярных работ, на которые я ссылаюсь в библиографии. Тем читателям, которые хотели бы узнать больше о теории струн, я в первую очередь рекомендую книги Брайана Грина и Леонарда Сасскинда. Для всех остальных же будет достаточно и следующих глав этой книги.

 

Глава 15. Интерлюдия: прогулка по струнному ландшафту

в которой вводится понятие струнного ландшафта и объясняется, что такое антропная мотивация

Для того чтобы теория суперструн имела математический смысл, струны должны существовать более чем в трех измерениях. Это создает для теории определенные затруднения, ведь теперь она должна дополнительно объяснить, почему мы видим всего три из этих измерений. Кроме того, важно знать, сколько их всего. Четыре, пять, двадцать? Теория струн вводит понятие новой симметрии Вселенной – суперсимметрии. Я уже упоминал ее, когда мы обсуждали темную материю, но сейчас настало время поговорить о ней более подробно. Насколько нам известно, в Природе существует два типа частиц – те, из которых состоит материя (электроны, кварки и некоторые другие), и те, которые переносят силы (фотоны для электромагнитных сил, гравитоны для гравитации, менее известные глюоны, удерживающие кварки внутри протонов и нейтронов, и тяжелые частицы Z0, W+ и W—, переносчики слабого ядерного взаимодействия, ответственного за радиоактивный распад). Суперсимметрия означает, что частицы материи могут превращаться в частицы силы и наоборот. В результате, каждая частица имеет своего «суперсимметричного партнера»: у электрона он будет называться селектроном, у любого из кварков – скварком и т. д.

У вас мог возникнуть вопрос: зачем кому-то понадобилось удваивать количество элементарных частиц в Природе? Ответ (и изначальный толчок к введению понятия суперсимметрии в середине 1970-х) состоит в том, что теории суперсимметрии могут объяснить, почему пустое пространство имеет нулевую энергию. Если бы это было не так, если бы в космосе имелась какая-то остаточная энергия, она бы действовала как космологическая постоянная, ускоряющая расширение Вселенной. В середине 1970-х ученые еще не располагали доказательствами существования расширения, поэтому и ввод подобной постоянной был невозможен. Темная энергия была открыта в 1998 году, и до этого момента предполагалось, что космическая постоянная равна нулю. Суперсимметрия предлагалась в качестве объяснения того, почему это так.

Проблема состояла в вакууме (так физики называют состояние отсутствия каких бы то ни было частиц). Вакуум – это пустое пространство и максимальное физическое приближение к понятию «ничто». Но квантовая физика все усложняет. Как вы можете помнить, основное ее положение состоит в том, что все колеблется – положение частицы, ее скорость и энергия. Даже если пустое пространство вообще не имеет энергии, квантовые флуктуации могут периодически подталкивать уровни энергии выше нуля. В регионах с избытком энергии могут периодически возникать частицы, так как в соответствии с уравнением E = mc2 энергия может превращаться в массу. Такие частицы возникают и исчезают, как пузыри на кипящем супе. Если суммировать крошечные квантовые эффекты по всему космосу, мы получим огромную добавку к энергии. Суперсимметрия подавляет такие флуктуации, заставляя энергию пустого пространства исчезнуть. Таким образом, она объясняет, почему космологическая постоянная равна нулю. Но теперь, когда нам известно о темной энергии, мы знаем, что это не так! С 1998 года ученые больше не могли использовать суперсимметрию для объяснения отсутствия вакуумных флуктуаций.

Объяснение небольших значений – это довольно сложная задача в физике. Тем не менее у теории суперсимметрии есть и другие точки приложения. Например, она может объяснить, почему масштаб, с которым частицы получают массы под воздействием бозона Хиггса, намного (почти в 16 раз) меньше, чем масштаб, при котором наблюдаются колебания пространства-времени в результате квантовых эффектов. Кроме того, она может предложить некоторые объяснения темной материи. В связи с этим, несмотря на отсутствие свидетельств ее существования (эксперименты, направленные на поиски предсказанных ей частиц, ничего не выявили), суперсимметрия все еще остается прочно укоренившейся в умах многих физиков.

Но вернемся к струнам. Если совместить их с суперсимметрией, то можно легко установить количество пространственных измерений, в которых могут существовать суперструны. Всего таких измерений девять. В данный момент существует пять возможных теорий струн. Физик-теоретик из Института перспективных исследований Эдвард Виттен показал, что все их можно объединить в одну, если добавить еще одно измерение. Эта новая теория получила название «М-теория».

Итак, если в основе Природы лежат струны, это значит, что еще целых шесть измерений остаются для нас невидимыми. Как такое возможно? Этому достаточно новому для науки вопросу была посвящена моя докторская диссертация и некоторая часть работы в постдокторантуре. В частности, если мы попытаемся совместить теорию суперструн с теорией Большого взрыва, как объяснить, что три измерения разрослись, а остальные шесть остались в своем первоначальном виде? Было предложено множество моделей, большинство из которых содержало в качестве причины силу притяжения между частицами, порождаемыми вибрациями струн. Именно это притяжение и должно было удерживать другие измерения в их изначальном виде. Так как у нас все еще нет единого кандидата на роль теории суперструн, то и ответить на этот вопрос мы не можем. Последние идеи основываются на том, что некоторые измерения слишком малы по сравнению с другими (также недоступными для наблюдения). Другие предполагают, что дополнительные измерения очень велики и пронизывают собой все, а мы живем в пространстве (в бране) между ними, словно на куске тоста, зависшем в воздухе. Лиза Рэнделл, мой друг с ранних лет существования экстрамерной космологии и первая женщина, получившая должность профессора теоретической физики в Гарвардском университете (долго же они ждали), написала книгу о концепции браны, которую она разработала совместно с Раманом Сандрумом в 1999 году.

Я рассказываю вам об этом потому, что теория суперструн также предсказывает существование Мультивселенной, которая в данном случае называется струнным ландшафтом. Струнный ландшафт включает в себя все возможные складки и изгибы шести измерений, которые могут существовать в принципе (представьте себе бесчисленное количество форм, которые вы можете слепить из куска пластилина, да еще и с разным количеством отверстий). Каждая форма экстрамерного пространства обладает в нашей трехмерной реальности разными физическими свойствами. Струнный ландшафт – это пространство, в котором могут существовать все формы шести измерений, так что пройтись по нему вам не удастся. Идея ландшафта привела к возникновению интересного психологического сдвига в отношении к теории струн. Изначально ее главной привлекательной стороной была претензия на роль единственной теории Природы. Ее основное преимущество и красота крылись в уникальности. Ученые надеялись, что после решения фундаментальных уравнений теории они смогут получить единственно возможное решение – нашу Вселенную. Увы, все оказалось совсем не так. Дальнейшие исследования показали, что теория суперструн может давать огромное множество решений (до 10500) в связи с топологическим разнообразием структуры многомерного космоса. Как можно выбрать единственно верное решение из 10500? Что направляло Вселенную к выбранному ей решению – «истинному вакууму»? На сегодняшний день никому не удалось найти убедительный критерий отбора, а в его отсутствие теория струн перестает быть уникальной.

Кроме того, так как каждое возможное объяснение экстрамерного космоса означает новую геометрию четырехмерного пространства, воплощенную в уникальном наборе частиц и взаимодействий между ними, различные колебания ландшафта (струнные пустоты) могут означать совершенно разные вселенные. Чем из них может выделиться наша с ее измеренными значениями основных постоянных и скорости расширения? Может быть, она уникальна тем, что в ней есть живые существа? Начиная с XVII века физическая космология показывает нам, как ничтожна наша роль в общей картине мира. Могут ли суперструны опровергнуть идеи Коперника?

В 2000 году Рафаэль Буссо из Университета Калифорнии в Беркли и Джозеф Полчински из Института теоретической физики имени Кавли при Университете Калифорнии в Санта-Барбаре (где я когда-то работал в качестве постдока) решили совместить струнный ландшафт с теорией вечной инфляции. Они рассуждали так. Различные провалы (или, точнее, углубления) в ландшафте должны чередоваться с быстро расширяющимися участками, что в итоге приведет к их изоляции друг от друга. Иными словами, все струнные пустоты – это отдельные вселенные (а не только наша). Таким образом, Буссо и Полчински избавились от вопроса нашей уникальности. Чтобы еще сильнее приблизить свою идею к модели инфляции, они предположили, что небольшие квантовые колебания могут вызывать незначительные изменения в геометрии дополнительных шести измерений, что, в свою очередь, привело бы к возникновению случайных движений по всему ландшафту. Итак, Мультивселенная в теории струн состоит из изменяющихся реализаций различных струнных пустот, каждая из которых представляет собой отдельную вселенную с собственными частицами и, возможно, даже собственными физическими законами. Последнее предположение высказывается часто, но кажется мне довольно непонятным. Изменения в массах и силе взаимодействия между частицами не ведут к изменению фундаментальных законов Природы, таких как сохранение энергии или электрического заряда.

Теория постоянно расширяющейся струнной мультивселенной постулирует существование множества вселенных, которым неизвестно друг о друге. Впервые в истории науки теоретическая физика дала добро на неизвестное. Такое радикальное отступление от проверенных временем методов экономической науки вызвало удивление множества физиков и появление по меньшей мере такого же количества вопросов. Как мы можем надеяться когда-нибудь найти объяснение своему собственному существованию в этой безумной мешанине постоянно возникающих новых вселенных? Или наука отказалась от этой идеи? Для ответа на эти вопросы многие приверженцы теории струн используют подход, который еще пару лет назад считался проклятием для всей философии уникальности, стоящей за разработкой теории струн. Имя ему антропный принцип, и он гласит, что наша уникальность – это не причина, а следствие.

В 1870-х годах астрофизик Брэндон Картер заявил, что нет ничего удивительного в том, насколько наша Вселенная благоприятна для жизни. В конце концов, только во вселенной, обладающей необходимыми свойствами (читай: значениями масс фундаментальных частиц и силы взаимодействия между ними, а также ряда космологических параметров, указывающих на достаточный возраст космоса и его расширение с подходящей скоростью), могло бы смениться несколько поколений звезд, а значит, у жизни появился бы шанс зародиться. Иными словами, природные константы, такие как сила притяжения или масса электрона, способствуют возникновению жизни. Учитывая тонкость физических процессов, приводящих к возникновению и смерти звезд в расширяющейся вселенной, допустимый диапазон значений этих постоянных не так уж велик. Мы могли бы существовать лишь в нескольких возможных вселенных, в которых природные константы имели бы значения, близкие к измеряемым нами сейчас.

Буссо и Полчински (а за ними и их коллеги) заключили, что антропный принцип – это единственный критерий отбора, по которому наша Вселенная как-то выделяется на огромном струнном ландшафте. Когда в 2003 году к ним присоединился один из создателей теории струн Леонард Сасскинд из Стэнфордского университета, концепция струнного ландшафта стартовала с места в карьер. Антропный принцип указывает на то, что мы можем существовать только в струнной пустоте с небольшим значением космологической постоянной (примерно таким же, которое, судя по всему, обеспечивается темной энергией). Так как все пустоты в ландшафте в принципе реализованы где-то в Мультивселенной, нет ничего удивительного в том, что среди них есть и наша, даже если мы занимаем всего лишь дальний уголок космоса. Уникальности не существует, есть лишь бесконечное количество возможностей, включая самые невероятные. Наша посредственность, на которую указывал еще Коперник, была полностью восстановлена. Разумеется, если бы кто-нибудь сумел найти убедительное подтверждение тому, что наш вакуум чем-то выделяется на струнном ландшафте, антропный принцип был бы забыт уже на следующий день как противоречащий самой сути физики.

Те, кто не верит в пользу антропного принципа (я причисляю и себя к этой группе), утверждают, что он не помогает нам в открытии нового, но всего лишь предлагает ряд допустимых значений для заданных переменных путем подгонки под них уже известных нам данных. Антропный принцип сужает возможный выбор физических параметров на основании свойств известной нам Вселенной, но не дает этому выбору никаких объяснений. Он подстраивается под реальность, а не проливает свет на нее. Чтобы проиллюстрировать это, я скажу вам, что средний рост взрослого американца составляет 1,77 метра. Простая статистика говорит нам, что во время прогулки по улицам города в США шансы встретить мужчину ростом от 1,63 до 1,99 метра составляют 95 %. Именно это и дает нам антропный принцип – ряд значений, основанный на среднем показателе. Но если бы этот средний показатель был нам неизвестен, мы не извлекли бы из антропного принципа ничего полезного. В частности, он не смог бы объяснить нам, почему средний рост американского мужчины именно таков (на самом деле это сложный вопрос, требующий междисциплинарных исследований).

Может ли Мультивселенная с различными значениями различных природных констант возникнуть в контексте вечной инфляции без участия суперструн? В теории да. Мы можем представить себе теорию, содержащую множество скалярных полей, каждое из которых имеет собственный набор постоянных при минимальном уровне энергии (как бозон Хиггса определяет значение масс в низкоэнергетическом вакууме, в котором существуем мы). При такой форме инфляции участок пространства, ограниченный космическим горизонтом, будет содержать несколько скалярных полей с разными историями, разными минимумами энергии и, соответственно, разными наборами констант. Или скалярное поле может быть одно, или их может быть несколько, но с многочисленными возможными минимальными уровнями энергии. На различных участках поля будут сводиться к разным минимальным значениям, приводя к возникновению различных физических констант.

В совокупности все приведенные выше аргументы указывают на то, что множественность вселенных теоретически возможна. Итак, для продолжения рассуждений давайте остановимся на мысли о том, что мы живем в Мультивселенной. Сможем ли мы когда-либо узнать об этом наверняка? Доступна ли Мультивселенная для наблюдений? Иными словами, Мультивселенная – это экспериментально доказуемая научная гипотеза или чисто теоретическая концепция, ведущая к опасному расколу в научном сообществе? И, что самое важное, познаваема ли она?

 

Глава 16. Можно ли экспериментально доказать существование Мультивселенной

в которой мы узнаем, является Мультивселенная полноправной физической теорией или обычной спекуляцией

Когда дело доходит до глобальных идей, физики должны быть беспощадны. За время существования человечества возникало множество разнообразных идей, у которых находились свои последователи. Потом такие идеи (например, существование электромагнитного эфира, флогистона, теплорода или планеты Вулкан) исчезали, вытесненные из сознания людей убедительными доказательствами. Всему виной избыток человеческого воображения и постоянное стремление к новым теориям. В конце концов, если не вы поддержите собственную идею, то кто? Мы хотим знаний, мы стремимся к ним, и мы делаем все, что в наших силах, для создания рациональных объяснений необычных явлений. Мы придумываем разнообразные убедительные доказательства того, почему верна именно наша теория. Разумеется, мы учимся на своих ошибках, но любое неправильное объяснение приближает нас к единственно верному. Если вы не любите ошибаться, не занимайтесь наукой. Остров знаний разрастается хаотично и непредсказуемо. Иногда на месте ровного берега образуются заливы. Воображение – ключевой элемент всех открытий и изобретений, но само по себе оно не работает. Фундаментом для построения любой научной теории является ее экспериментальная доказуемость. Двадцать физиков-теоретиков, запертых в одной комнате, могут придумать вселенную, полностью отличную от той, в которой живем мы.

Теория о множественности вселенных представляет серьезную угрозу для этого modus operandi. Если за пределами нашего космического горизонта существуют иные вселенные, мы никогда не сможем получить от них какой-то знак или отправить им свои сигналы. Даже если они реальны, они находятся в пространстве, совершенно недоступном для нас и наших инструментов. Мы никогда не увидим и не посетим их, а наблюдатели из них не смогут увидеть или посетить нас. Поэтому, строго говоря, существование Мультивселенной никогда не сможет быть подтверждено наверняка. Космолог Джордж Эллис из Университета Кейптауна, ЮАР, активно отстаивает эту позицию: «Все параллельные вселенные лежат за пределами нашего горизонта и вне нашего доступа – ни сейчас, ни в будущем, как бы ни развились наши технологии. Они находятся слишком далеко, чтобы хоть как-то влиять на нашу Вселенную. Вот почему ни одно из заявлений, приводимых теоретиками Мультивселенной, не может быть подтверждено напрямую».

Современные физики лишь немного готовы встать под древнее знамя позитивизма, поднятое выше всех австрийским философом Эрнстом Махом, который в 1900 году заявил, что атомов не существует, потому что их нельзя увидеть (и, к сожалению, придерживался этого подхода до самой своей смерти в 1916 году). Существует множество способов определить, реально что-то или нет, даже если мы не можем увидеть это или потрогать. К примеру, астрофизики делают вывод о существовании массивной черной дыры в центре Млечного Пути на основании движения расположенных рядом с ней звезд, а затем экстраполируют этот вывод на другие галактики. Специалисты по физике частиц действуют сходным образом, рассчитывая свойства частицы на основании следа, который она оставляет на детекторе. Невозможно увидеть электрон, но можно рассмотреть его след в различных устройствах. Мы делаем вывод о существовании частиц по их влиянию на различные приборы. Возможно, «существование» – это слишком сильное слово. Мы создаем идею электрона, чтобы обозначить ею точки и линии, которые мы видим на экранах приборов, используемых для измерения элементарных частиц. Точно так же мы вводим идею темной энергии как экономное объяснение смещенных в сторону красного цвета спектральных сигнатур удаленных объектов.

Итак, вопрос заключается не в том, можем ли мы увидеть соседнюю вселенную напрямую, а в том, существуют ли способы засечь ее присутствие, находясь в пределах нашего космического горизонта. Таким образом мы не докажем существование Мультивселенной, но подтвердим возможность наличия соседних вселенных. Такой эксперимент обеспечил бы значительную поддержку всей теории множественности вселенных, поэтому данная область исследований является очень привлекательной. Очень важно понимать разницу между обнаружением характерных признаков соседних вселенных и доказательств существования полноценной Мультивселенной. На данном этапе часто возникает путаница, поэтому я повторю еще раз: даже если мы, будучи ограниченными нашим космическим горизонтом, сумеем получить убедительные экспериментальные доказательства существования соседних вселенных, это не обязательно будет означать, что Мультивселенная существует. Для некоторых физиков обнаружение существования другой вселенной является достаточным основанием для экстраполяции, такой концептуальный прыжок не подтверждается никакими данными. Пара расположенных по соседству домов не считается страной. Существование Мультивселенной, бесконечна она или нет, остается неизвестным.

Как вы помните из нашего обсуждения космологии Большого взрыва, на данный момент нашим лучшим инструментом для изучения свойств Вселенной является фоновое космическое излучение. Могли ли другие вселенные каким-то образом оставить свой отпечаток на фотонах, движущихся через весь космос в течение последних 13,8 миллиарда лет?

Если бы я писал статью на эту тему, я бы назвал ее «Когда сталкиваются вселенные». Могла ли соседняя вселенная в прошлом столкнуться с нашей? Очевидно, даже если это произошло, столкновение не было очень сильным, иначе ни нас, ни наших рассуждений об этом уже бы не существовало. Но соседние вселенные действительно могут сталкиваться по мере роста и расширения – или, скорее, касаться друг друга, потому что слово «столкновение» звучит слишком жестко. В 2007 году Алан Гут совместно с Алексом Виленкиным и Хауме Гаррига из Барселонского университета предположили, что подобное соприкосновение действительно имело место. Если представить себе два столкнувшихся мыльных пузыря, можно понять, что такое соприкосновение вызовет вибрацию поверхностей вселенных. Затем такая вибрация передастся внутрь пузыря и заставит дрожать все, что находится в нем. Столкновение вызвало бы колебания в космической геометрии обоих вселенских пузырей. Такие колебания шли бы по пространству, как волны по воде, заставляя людей и неживые объекты подниматься и опускаться. Интересно, что такие волны могут быть дискообразными – похожими на круги на поверхности воды. Соответственно, микроволновая карта неба должна отображать кольцевые узоры в том месте, где произошло столкновение.

Некоторые космологи, включая Энтони Агирре из Калифорнийского университета в Санта-Крузе, Мэтью Клебана из Университета Нью-Йорка и их сотрудников, разработали теоретические сценарии того, какие следы подобных событий в прошлом могли бы дойти до наших дней. К примеру, в фотонах базового излучения могли бы наблюдаться кольцевые колебания температур разных размеров и разной интенсивности в зависимости от характера столкновения. Кроме того, фотоны также могли бы иметь поляризационный рисунок, то есть располагаться на небе в определенной последовательности, как костяшки домино, поставленные вертикально. Первые исследования, проведенные с использованием данных спутника WMAP, не дали положительных результатов, но это не означает, что вопрос можно признавать окончательно решенным. Команда орбитальной станции «Планк» готовит к публикации данные, которые могут содержать сигнатуры, ожидаемые Клебаном и его командой: дискообразные круглые узоры в фоновом излучении с двумя пиками поляризации фотонов, направленными в определенную точку у края диска. Такая сигнатура будет уникальной и станет достаточным подтверждением того, что столкновение вселенных действительно имело место в далеком прошлом, ведь привести другие объяснения ее существованию вряд ли удастся.

Обратите внимание, что даже в этом случае мы не сможем узнать почти ничего о физике, действующей в соседней вселенной, то есть о существующей в ней материи и силах и о том, сходны ли ее законы с нашими (хотя расчеты параметров столкновения строятся на том, что это так по крайней мере в общем смысле). Мы всего лишь увидим призрак альтернативной реальности за пределами нашей Вселенной, манящей, но недоступной, реальной, но непознаваемой. Даже если сценарий струнного ландшафта получит косвенное подтверждение из области физики частиц и, соответственно, еще больше подкрепит гипотезу Мультивселенной, мы никогда не узнаем, сколько вселенных соприкасались с нашей в прошлом, возможно ли подобное событие в будущем и приведет ли оно к нашей гибели (скорее всего, да). Мы будем подобны героям из легенд, которые, пройдя многочисленные испытания, находят темный артефакт, обладающий невероятной разрушительной силой. Открытие соседней вселенной вызовет у нас одновременно триумфальное ликование и первобытный страх. Чтобы развить эту метафору, можно вспомнить, что мы ищем в небе кольцеобразные узоры. На ум сразу же приходят «Кольцо нибелунгов» Рихарда Вагнера и «Кольцо всевластия», принадлежавшее Владыке Саурону в книгах Дж. Р. Р. Толкина.

Несмотря на то что шансы обнаружить подобный узор в фоновом излучении крайне малы, Агирре, Клебан и их коллеги указывают на один важный момент. Существование других вселенных, которое до этого казалось предметом изучения скорее эзотерики, чем физики, сегодня находится в области экспериментально доказуемого. Как это часто случается с экзотическими темами исследований, даже пусть шансы на успех невелики, результат в случае удачи будет настолько важным, что окупит все затраченные усилия. Однако я хотел бы еще раз подчеркнуть, что обнаружение соседней вселенной нельзя будет считать доказательством существования Мультивселенной. В рамках современных физических формулировок гипотеза множественности вселенных, несмотря на всю свою убедительность, не может быть доказана экспериментально. Нельзя автоматически экстраполировать данные о двух (или нескольких) вселенных на их бесконечное количество.

Кроме того, само понятие «бесконечное количество» тоже, в принципе, не доказуемо. Для того чтобы быть уверенными в бесконечности космоса, мы должны получить сигнал с бесконечно далекого расстояния (то же самое верно для бесконечности времени и далекого прошлого). Чтобы знать о вечном расширении Вселенной, мы должны вечно отслеживать это расширение, причем мы не можем знать наверняка, не поступят ли к нам в будущем новые данные, указывающие на то, что расширение остановилось или обратилось вспять. Несмотря на то что понятие бесконечности имеет для нас огромную математическую привлекательность и кажется совершенно естественным, мы никогда не узнаем наверняка, существует ли оно в Природе. В физическом мире бесконечное означает неизвестное. Все, что мы можем, – это рассуждать о его существовании, сидя на берегу своего Острова знаний.

Инфляционная гипотеза и возможное существование Мультивселенной доводят понятие испытуемости в физике до крайности. Мы уже знаем, почему так происходит с понятием Мультивселенной, которое, в строгом смысле, нельзя подтвердить экспериментально. В случае с инфляцией все немного тоньше. Инфляционная космология в своей наиболее независимой от моделей форме делает некоторые предположения, действительность которых была подтверждена. Основные из них – плоскость Вселенной и температурная гомогенность и изотропность фонового излучения. Но нам следует помнить, что на самом деле это вовсе не предположения, проистекающие из инфляционной гипотезы. Наоборот, инфляционная гипотеза была специально создана для того, чтобы найти ответы на вопросы о плоскости Вселенной и космическом горизонте, возникающие в стандартной космологии Большого взрыва. Нет ничего удивительного в том, что она выполняет свою задачу.

Если говорить о по-настоящему новых предположениях, выдвинутых в рамках инфляционной гипотезы, то в первую очередь следует упомянуть предсказанные ею колебания гомогенного фона фотонов в микроволновом излучении. Согласно инфляционной космологии, эти колебания, похожие на крошечные волны на поверхности озера, вызываются квантовыми колебаниями скалярного поля, которое и является причиной инфляции. В процессе инфляции эти небольшие участки растягиваются на огромные расстояния, в конце концов выходящие за пределы космического горизонта. По мере расширения Вселенной некоторые из этих флуктуационных волн возвращаются в область, ограниченную космическим горизонтом, но уже в астрономическом размере. А если где-то есть избыток энергии, гравитация привлечет в это место материю (в основном атомы водорода). Точно так же и фотоны из фонового излучения будут стремиться к этим более насыщенным областям космоса, приобретая при этом энергию (то есть повышая свою температуру). Это движение будет приводить к крошечным температурным колебаниям в фоновом излучении. Через миллионы лет материя, собравшаяся в участках с избыточной энергией, превратится в первые звезды, а затем и галактики. Итак, величайший триумф инфляционной космологии состоит в том, что она описывает механизм появления галактик и объясняет их распределение в пространстве в форме иерархии скоплений, похожей на пену в ванне.

Температурные колебания фотонов фонового излучения, измеренные с помощью современных спутниковых технологий и наземных детекторов, указывают на первобытные колебания материи. Исследовать их – означает открыть окно в первые секунды существования времени. Инфляционная гипотеза удивительным образом соединяет квантовый мир с миром астрономическим. Чем точнее становятся измерения, тем проще исключать неверные модели инфляции. Дополнительным признаком инфляции является спектр флуктуаций в геометрии пространства-времени: если концентрация материи колеблется определенным образом, то на это реагирует и пространство вокруг нее. Инфляция увеличивает масштаб таких пространственных колебаний и создает спектр так называемых гравитационных волн. Они также оставляют свой след в фоновом излучении. По своей природе (но не по сути) этот след похож на поляризационные флуктуации, возникающие в результате гипотетических столкновений с соседними вселенными. Остается надеяться, что орбитальная станция «Планк» сумеет измерить этот спектр поляризации. Если это будет сделано и если будет обнаружена ожидаемая сигнатура, мы сможем быть уверены, что процесс, похожий на инфляцию, действительно имел место на заре существования космоса.

Тем не менее подтвердить существование явления в общем – это одно, а вот проверить экспериментально его точную формулировку – совсем другое. Инфляционная гипотеза все еще оставляет многие вопросы без ответов. Данные помогают сузить круг возможных вариантов, но текущих наблюдений (равно как и тех, которые мы получим в ближайшем будущем) недостаточно для того, чтобы точно определить причину инфляции. Было ли это скалярное поле? Если да, то что за невероятно высокие энергии вызвали его появление? Инфляция также не объясняет важного перехода от стремительного расширения к более медленному, происходящему с нашей Вселенной на протяжении последних пяти миллиардов лет. Вероятно, именно во время этого перехода, ознаменовавшего собой конец периода инфляции, Вселенная разогрелась до высоких температур, а энергия, накопленная в скалярном поле, которое стремилось к своему энергетическому минимуму, в результате своеобразного взрыва была преобразована в другие типы материи, возможно в известные нам электроны и кварки. Многие космологи сегодня называют это взрывное образование частиц истинным Большим взрывом. Несмотря на множество попыток объяснить этот процесс (некоторые предпринимал и я), у нас есть лишь общее представление о том, как проходил данный переход и какие частицы образовались в результате. Главная проблема состоит в том, что мы совершенно ничего не знаем о тех типах материи, которые существовали во времена зарождения Вселенной и соответствовали энергиям, в триллионы раз превышающим те, которых мы можем достичь в лаборатории. Астрономические наблюдения позволяют исключить некоторые космологические теории или ограничить применимость других, но не дают нам точной картины произошедшего. Мы знаем лишь то, что неверно. Эта ситуация наверняка понравилась бы философу Карлу Попперу, который говорил, что подтвердить правоту физической теории в конечном итоге невозможно – мы можем лишь доказать, что она была неправильной.

Все, что мы можем сделать с инфляцией, – это создать рабочую модель, соответствующую всем измеримым параметрам. Но такая модель может оказаться похожа на эпициклы Птолемея – фантастическое нагромождение идей, которое «работает». Возможно, многие даже поверят в ее истинность, но суть ее будет заключаться в резюмировании всего, что мы сегодня знаем о ранней космической истории.

Наша следующая задача состоит в ответе на величайший из физических вопросов – вопрос о происхождении Вселенной. Ни гипотеза об инфляции, ни концепция Мультивселенной не приближают нас к пониманию начала всего. Для того чтобы ответить на этот вопрос, необходимо исследовать свойства материи и квантовые законы, которые их определяют. Если Вселенная расширяется с самого начала своего существования, значит, в какой-то момент времени в прошлом она была очень мала – настолько мала, что ее поведением управляли законы квантовой физики. Однако, как мы увидим дальше, эти законы заставляют нас отказаться от некоторых любимых нами представлений о том, что мы называем реальностью, и заменить их гораздо более тонкими и загадочными описаниями квантовой Вселенной и нашего взаимодействия с ней.

В квантовой физике мы сталкиваемся с двумя фундаментальными лимитами знания, о которых нам уже известно, – теми, которые налагает на нас ограниченная точность наших приборов, и теми, которые являются естественными результатами природных процессов. Эти лимиты – непреодолимые барьеры, стоящие между нами и нашими знаниями о природе реальности.