Беседы о физике и технике

Глухов Николай Данилович

Камышанченко Николай Васильевич

Самойленко Петр Иванович

В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.

 

Вместо предисловия

Еще совсем недавно выражения «научно-технический прогресс», «научно-техническая революция» звучали настолько часто, что к ним стали привыкать и они уже мало кого волновали. Считалось само собой разумеющимся, что прогресс — это нечто естественное и обязательное, как течение времени: когда нужно, изобретут что нужно, а если этого окажется мало, то сделают парочку открытий и произойдет научно-техническая революция. А всем нам желательно иногда интересоваться, чего достиг на сегодня прогресс, и по возможности эти достижения применять. Если же не применил — особой беды нет: мерной поступи прогресса не остановить.

Действительность жестоко наказала нас за такую расслабленность.

Идеи не возникают из ничего. Они приходят в головы тех людей, которые жаждут открытий, которые накопили достаточно знаний, которые умеют ставить перед собой высокие цели, не боятся долго и терпеливо двигаться к их достижению.

Идея появится и умрет, если не найдет для себя благодатной почвы. Эта почва — все мы. Для того чтобы идея не угасла, как луч света в темном царстве, мы все должны быть готовы к ее восприятию.

Любознательность — верный посыл для начала пути, желание завтра оказаться на более высокой ступеньке, чем сегодня, — надежный компас в дороге.

Конечно, каждый должен пойти такой путь самостоятельно — дорогу осилит идущий. Но кто сказал, что двигаться нужно в одиночку?

Эта книга — ваш спутник на каком-то этапе пути.

Здесь рассказано об истории некоторых открытий в области физики, об интересных поисках современных ученых, о том, что суть многих современных технических разработок не столь уж сложна, чтобы мы не могли ее понять, о том, что научно-технический прогресс действительно ускорится, если каждый из нас внесет в него посильную лепту.

Что украшает любой путь? — Беседа. Так давайте побеседуем о физике и технике.

Авторы

 

1. От паровой машины до ракетного двигателя

Много веков прошло от начала сознательного использования человеком энергии рек, энергии ветра в водяных и ветряных мельницах до освоения и создания машин, использующих тепловую и электрическую энергию. Паровые котлы, паровые и водяные турбины, паровые машины, двигатели внутреннего сгорания созданы главным образом в последние два столетия, а реактивные двигатели — в последнее столетие. Все эти двигатели нашли широкое применение в промышленности, сельском хозяйстве и на транспорте.

Развитие всех отраслей хозяйства стало возможным лишь при появлении машин, увеличивающих во много раз выпуск продукции по сравнению с ручным трудом.

Преимущество простейшей машины перед физическим трудом человека очевидно. Действительно, представим себе, что необходимо поднять груз массой в 1 кг на высоту 1 м за 1 с. Эту работу легко может выполнить любой человек. Для этого необходима мощность всего в 1 Вт.

А сколько же человек необходимо собрать вместе возможно), чтобы они работали непрерывно по 8 ч вместо паровой или водяной турбины мощностью 100 МВт? Оказывается, около 3,6 млн. человек! Применение экскаваторов, бульдозеров, транспортеров, подъемных кранов и других механизмов на строительных работах заменило миллионы землекопов и других подсобных рабочих.

КОГДА ПОЯВИЛАСЬ ПЕРВАЯ ПАРОВАЯ МАШИНА?

Первая паровая турбина была сконструирована Героном Александрийским, жившим во II в. до н. э. Шар Герона («эолипил» Герона) представляет собой полый железный шар (рис. 1), способный вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по двум осевым трубкам поступает в шар. Из шара он вырывается через изогнутые трубки наружу. При этом шар вращается.

Изобретение Герона в то время, естественно, не нашло себе технического применения и осталось забавной игрушкой.

Рис. 1. Геронов шар — прообраз реактивной паровой турбины:

1  — подвод пара от котла, 2 — паровой котел, 3 — сопло, 4 — пароприемник

КАК И КОГДА ПАРОВЫЕ ТУРБИНЫ ПЕРЕСТАЛИ БЫТЬ ИГРУШКАМИ?

КАКИМ ПУТЕМ ШЛО РАЗВИТИЕ ПАРОВЫХ ДВИГАТЕЛЕЙ?

Первый в мире паровой двигатель для привода заводских механизмов был осуществлен в 1765 г. в России выдающимся ученым и инженером-самоучкой Иваном Ивановичем Ползуновым, и лишь двадцать лет спустя в 1784 г. Д. Уаттом был построен и запатентован в Англии первый в Западной Европе универсальный паровой двигатель.

В 1829 г. в Англии Дж. Стефенсоном был построен первый промышленный паровоз мощностью 8,8 кВт (12 л. с), его скорость составляла 22 км/ч.

В 1834 г. отец и сын Е. А. и М.Е.Черепановы построили паровоз своей конструкции (рис. 2). Паровоз перевозил по чугунным рельсам состав вагонеток с грузом до 3,5 т при скорости 15 км/ч.

Рис. 2. Модель первого русского паровоза Черепановых ( 1834)

Постепенное усовершенствование паровозов привело к существенному повышению их мощности и экономичности. Так, мощность последних советских паровозов (рис. 3) была порядка 3 МВт (4000 л. с), но, хотя скорость паровозов уже достигла порядка 130–150 км/ч, их КПД все же не удалось поднять выше 10 %.

Паровозы буквально выбрасывали в трубу 90–92 % энергии сжигаемого топлива, не только «пожирали» первосортный каменный уголь (210 кг условного топлива на 10 тыс. тонно-километров), но и сильно загрязняли земную атмосферу.

В середине XX В. В результате быстрого развития более экономичных локомотивов — тепловозов и электровозов — производство паровозов стало сокращаться и в нашей стране было полностью прекращено в 1957 г.

Рис. 3. Последний советский паровоз ФД (1957)

ПОЧЕМУ ТАК НЕВЕЛИК КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТЕПЛОВЫХ МАШИН?

Для работы тепловых машин необходимо существование нагревателя и холодильника, при этом из законов термодинамики следует, что КПД = (Q1 — Q2)/Q1. Здесь Q1 — затраченная теплота, Q2 — теплота, использованная для совершения полезной работы. Для максимального коэффициента полезного действия идеальной тепловой машины КПД = (Т1 — Т2)/Т1 где Т1 и Т2 — температуры нагревателя и холодильника соответственно.

Из последнего соотношения следует, что увеличения КПД можно достичь увеличением разности температур нагревателя и холодильника.

Другой путь увеличения КПД тепловых двигателей связан с устранением конструктивных недостатков, свойственных каждому типу машин (применение теплоизоляции котлов и цилиндров, многократного расширения, использование перегретого пара, повышение давления пара при впуске и понижение при выпуске, уменьшение потерь на трение и т. д.).

КОНЕЧНО ЖЕ, УЧЕНЫЕ И ИНЖЕНЕРЫ ПОПЫТАЛИСЬ СОЗДАТЬ БОЛЕЕ СОВЕРШЕННЫЙ ДВИГАТЕЛЬ?

Первый путь увеличения КПД парового двигателя — увеличение разности температур котла и холодильника — привел конструкторскую мысль к идее применения двигателей другого типа — двигателей внутреннего сгорания.

Наиболее распространенными двигателями внутреннего сгорания являются поршневые двигатели: карбюраторные и дизели. О том, как работают двигатели внутреннего сгорания, мы поговорим чуть позже. Сейчас же, забегая вперед, скажем об их экономичности.

Карбюраторные двигатели работают обычно на высококачественном бензине, тогда как дизели — на относительно недорогом жидком топливе, являющемся грубой фракцией перегонки нефти. Более высокий КПД дизелей по сравнению с карбюраторными двигателями, а также важнейший в настоящее время ресурсосберегающий фактор (наиболее полное использование всех продуктов переработки естественных запасов сырья) обусловили их более широкое применение на транспорте, электростанциях, в тракторах.

Если КПД бензиновых двигателей не превышает 30 %, то для дизеля он достигает 35–40 %. Эти обстоятельства привели к тому, что 25 советских автозаводов, выпускающих свыше 300 моделей автомобилей, к концу одиннадцатой пятилетки поставляли народному хозяйству каждый третий автомобиль, оснащенный дизельным двигателем (в 1,8 раза больше, чем в 1980 г.). А это миллионы тонн сбереженного топлива!

ТАК КАК ЖЕ РАБОТАЮТ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ?

Все двигатели внутреннего сгорания с точки зрения осуществляемого в них рабочего цикла могут быть разделены на три типа:

1) двигатели, использующие четырехтактный цикл Отто,

2) двигатели Дизеля,

3) двигатели, использующие цикл Тринклера.

Если сгорание в двигателе происходит при постоянном объеме, то замкнутый цикл работы такого двигателя называют циклом с горением при постоянном объеме или циклом Отто (по имени немецкого изобретателя Отто, предложившего такой цикл в 1876 г.). По такому циклу работают все карбюраторные двигатели.

Если сгорание в двигателе происходит при постоянном давлении, то цикл работы такого двигателя называют циклом с горением при постоянном давлении. Такой цикл осуществляется в двигателях внутреннего сгорания системы дизеля (по имени немецкого инженера Дизеля, предложившего в 1897 г. цикл, в котором сгорание топлива осуществляется при постоянной температуре, а не при постоянном давлении, как в существующих двигателях).

Если сгорание рабочей смеси происходит сначала при постоянном объеме, а затем при постоянном давлении, такой цикл называют циклом смешанного горения или циклом Тринклера (по имени русского инженера Тринклера, предложившего его в 1904 г. из стремления упростить машину Дизеля). По такому циклу работают быстроходные автомобильные двигатели с высоким сжатием.

КАК РАБОТАЕТ ДВИГАТЕЛЬ ДИЗЕЛЯ?

В связи с наибольшим распространением в настоящем и будущем двигателей Дизеля ознакомимся кратко с рабочим циклом одноцилиндрового двигателя (рис. 4). В описании встретятся сокращения: ВМТ — верхняя мертвая точка (максимально высокое положение поршня при вертикальном расположении цилиндра), НМТ — нижняя мертвая точка.

В цилиндре дизельного двигателя происходит четыре процесса: впуск чистого воздуха, сжатие чистого воздуха, расширение газов после впрыскивания через специальные форсунки топлива и его сгорания (рабочий ход), выпуск отработавших газов.

Рис. 4. Схема устройства и рабочий цикл одноцилиндрового четырехтактного дизельного двигателя:

а — впуск чистого воздуха, б — сжатие, в — расширение (рабочий ход), г — выпуск отработавших газов;  1 — коленчатый вал, 2 — шатун, 3 — поршень, 4 — выпускной клапан, 5 — форсунка, 6 — впускной клапан, 7 — воздухоочиститель, 8 — цилиндр, 9 — маховик

1. Процесс впуска (на рабочей диаграмме, представленной на рис. 5, линия 0–1). Поршень движется от ВМТ к НМТ. При этом впускной клапан открывается. Вследствие разрежения, создающегося над поршнем, воздух заполняет цилиндр.

2. Процесс сжатия (адиабата 1–2 на рис. 5). Поршень движется от НМТ к ВМТ, сжимая воздух в цилиндре. Оба клапана при этом закрыты. В результате быстрого сильного сжатия температура воздуха внутри цилиндра возрастает до 600 °C, а давление повышается до (35–40)∙105 Па.

В конце сжатия при положении поршня, близком к ВМТ, через форсунку в цилиндр под давлением (120–200)∙105 Па впрыскивается мелко распыленное жидкое топливо. Смешиваясь с сильно нагретым воздухом, топливо сначала нагревается, а потом самовоспламеняется (изобара 2–3 на рис. 5).

3. Процесс расширения (рабочий ход). На рис. 5 этому процессу соответствует адиабата 3–4. Во время рабочего хода поршень движется от ВМТ к НМТ.

Впускной и выпускной клапаны при этом закрыты. В самом начале рабочего хода поршня впрыскивание топлива и его сгорание в цилиндре еще продолжаются. Температура газов, образовавшихся во время сгорания топлива, возрастает до 1800–2000 °C, а их давление — до (55–65)∙105 Па. Это давление передается поршнем через шатун коленчатому валу, заставляя его вращаться и производить работу. При движении поршня от ВМТ к НМТ газы в цилиндре расширяются, в результате чего к концу хода поршня давление их снижается до (4–5)∙105 Па, а температура — до 900—1100 °C.

Рис. 5. Рабочая диаграмма цикла дизеля

4. Процесс выпуска. Выпускной клапан открывается. Поршень движется от НМТ к ВМТ и через открытый клапан выталкивает отработавшие газы в атмосферу. Выталкивание этих газов происходит сначала под действием их остаточного давления, а затем поднимающимся поршнем. К концу хода поршня выпускной клапан закрывается. Давление в цилиндре составляет (1,1–1,2)∙105 Па, а температура 600–700 °C. В дальнейшем процесс повторяется.

Если в паровой машине разность температур нагревателя и холодильника составляет 500 К, в карбюраторных — 1000 К, то в дизелях она значительно больше: 1800–2000 К.

Отсюда понятно, почему КПД дизеля значительно выше, чем у других тепловых двигателей, (во всех случаях за температуру холодильника принимается температура атмосферы).

ЧТО ТАКОЕ СОВРЕМЕННАЯ ПАРОВАЯ ТУРБИНА?

Прошло более двух тысячелетий после Герона Александрийского (предложившего, как нам известно, идею использования энергии пара в турбине), прежде чем в конце XIX в. его идея получила признание и применение.

Турбины получили широкое распространение, например, на электростанциях, для работы которых необходим двигатель с большим числом оборотов и большой мощности. В настоящее время экономичные паровые турбины и двигатели внутреннего сгорания вытеснили паровые машины отовсюду. Достаточно сказать, что в 60-е годы нашего столетия более 80 % всей электроэнергии, вырабатываемой в стране, давали паротурбинные станции. И хотя в целях экономии природных источников получения теплоты (угля, нефти, газа) удельный вес паротурбинных установок в общем балансе должен сокращаться за счет гидростанций, паровые турбины все же будут иметь большое значение в народном хозяйстве. Простейшая турбина (рис. 6) состоит из закрепленного на валу 1 рабочего колеса 4 с лопатками 5, расположенными по окружности колеса (барабана).

Рис. 6. Модель простейшей одноступенчатой турбины

Пар при температуре 600–650 °C с давлением до 3∙107 Па (в современных турбинах) поступает на лопатки через специальные каналы — сопла 2, назначение которых состоит в получении струи с надлежащей по модулю и направлению скоростью. В сопле пар расширяется и часть его внутренней энергии преобразуется в кинетическую. В результате изменения направления движения пара в лопатках турбины (при неизменном давлении пара) рабочее колесо начинает вращаться, приводя в действие электрический генератор, воздуходувку, компрессор или какое-либо другое устройство.

Необходимость производства турбин большой мощности привела к созданию многоступенчатых турбин. В этом случае на валу турбины насажено несколько дисков с закрепленными на их ободах рабочими лопатками. Каждая соседняя пара дисков разделена неподвижными дисками-диафрагмами, в которых закреплены направляющие лопатки, служащие соплами для рабочих лопаток. Диафрагма и следующий за ней диск с рабочими лопатками образуют ступень паровой турбины.

КАК РАБОТАЕТ МНОГОСТУПЕНЧАТАЯ ПАРОВАЯ ТУРБИНА?

Рассмотрим вкратце работу, например, трехступенчатой паровой турбины (рис. 7).

Рис. 7. Схема устройства многоступенчатой турбины (сверху показан график изменения скорости и давлений пара в турбине)

Пар высокого давления поступает в кольцевую камеру А и через сопла, расположенные по ее окружности, — в каналы между рабочими лопатками первого диска, а затем последовательно проходит через сопла и каналы рабочих лопаток последующих ступеней турбины.

Отработанный пар через камеру В направляется в конденсатор. Проходя через сопла первой ступени, пар расширяется, его скорость увеличивается. Внутренняя энергия пара преобразуется в кинетическую. При движении пара между рабочими лопатками расширения пара не происходит, так как лопатки имеют такую форму и так расположены, что сечения криволинейных каналов между ними одинаковы по всей длине. Следовательно, давление пара при входе в канал и при выходе из него не меняется. Так как кинетическая энергия струи пара уменьшается (за счет механической работы вращения дисков), скорость движения пара в межлопаточном канале падает. Такой же процесс повторяется в последующих ступенях турбины.

Чем больше разность давлений пара по обе стороны сопла, тем выше скорость выхода пара из этих сопл, а значит, тем больше сила давления пара на рабочие лопатки. Поэтому к соплам подводят перегретый пар, обладающий большим запасом внутренней энергии. Графический процесс расширения пара представлен в виде диаграммы в верхней части рис. 8.

Рис. 8. Современная паровая турбина

Поскольку по мере движения пара через турбину его объем постепенно увеличивается, размеры рабочих лопаток и сопл в каждой из последующих ступеней (а их в современных турбинах насчитывается до 30) делают большими, чем в предыдущей.

На рис. 8 представлен внешний вид современной паровой турбины (некоторые части турбины для наглядности представлены в разрезе). По трубе пар поступает в цилиндр 6, приводит во вращение ротор высокого давления 5. Отсюда пар по перепускной трубе 4 направляется в цилиндр низкого давления 3, где отдает еще часть своей энергии дискам турбины и после этого выходит из турбины по трубе 1. За турбиной установлен электрический генератор 2. Вал турбины соединен с ротором генератора.

КАКОВО ОСНОВНОЕ НАПРАВЛЕНИЕ УСКОРЕНИЯ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГРЕССА В ОБЛАСТИ ТУРБОСТРОЕНИЯ?

Это прежде всего увеличение единичных мощностей агрегатов. Если в 70-х годах типовые блоки тепловых электростанций имели мощность 200 и 300 МВт, то в 80-х годах осуществляется переход на блоки в 500 и 800 МВт, т. е. мощность турбоагрегатов будет составлять 1200 МВт и более.

Применение энергоблока большой мощности экономически значительно выгоднее применения нескольких менее мощных агрегатов. При этом экономятся сырье, материалы, затраты на строительство зданий и т. д. Так, энергоблок мощностью 300 МВт при работе экономит до 20 % топлива по сравнению с тремя турбинами по 100 МВт и требует для своего изготовления на 30 % меньше металла.

В общем случае стоимость турбины, например, в 200 МВт всего лишь на 15–20 % выше стоимости турбины в 100 МВт, тогда как их мощности отличаются в два раза.

Экономия энергетических ресурсов в турбостроении также чрезвычайно важна, ибо турбина в 300 МВт (считающаяся в настоящее время турбиной небольшой мощности) потребляет в час до 900 т пара. А сколько же тогда должна потреблять пара турбина в 1200 МВт? И сколько каменного угля, нефти и газа надо сжечь для получения такого количества пара?

ЧЕМ ГАЗОВАЯ ТУРБИНА ОТЛИЧАЕТСЯ ОТ ПАРОВОЙ?

Почти одновременно с паровой турбиной появились первые газовые турбины, которые более просты по своей схеме, более компактны по сравнению с паротурбинной установкой.

Газовая турбина работает по тому же принципу, что и паровая, но рабочей средой в ней служит не пар, а продукты сгорания какого-либо топлива (жидкого или твердого).

В паротурбинной установке почти вся мощность турбины является полезной и передается какому-либо приемнику, тогда как в газотурбинной установке при температуре на входе 550–600 °C около 75 % мощности расходуется на сжатие воздуха в компрессоре и только 25 % может быть передано потребителю (электрогенератору или другому приемнику).

Пока не было жаропрочных сталей и не было конструкций компрессоров, обладающих высоким КПД, построить мощную и экономичную газовую турбину не было возможности, хотя еще в 1897 г. русский инженер П. Д. Кузьминский спроектировал и затем изготовил газовую турбину, работающую на керосине. Эта турбина работала по принципу, применяемому в газовых турбинах и в настоящее время, — при постоянном давлении в камере сгорания.

В конце второй мировой войны и после нее газовые турбины нашли широкое применение в авиации, где большая мощность, малый вес и малые габариты турбореактивных двигателей даже при их сравнительно малом КПД (20–25 %) обеспечивают скорости полета, недостижимые при других двигателях.

«РЕАКТИВНЫЙ» — ЭТО УЖЕ НОВЫЙ ТИП ДВИГАТЕЛЯ?

Можно удивляться той прозорливости, с которой великий ученый-самоучка К. Э. Циолковский еще в 30-х годах в статье «Реактивный аэроплан» предсказывал: «За эрой аэропланов винтовых должна следовать эра аэропланов реактивных, или аэропланов стратосферы». Первые авиационные реактивные двигатели были испытаны в дни Великой Отечественной войны. Тогда же появились и уже применялись в больших масштабах реактивные снаряды и мины. Прославленные гвардейские минометные части были вооружены специальными реактивными установками «Катюша», самолеты-штурмовики Ил-2 (конструкции С.В.Ильюшина), именуемые фашистами «черной смертью», несли под крыльями также реактивные снаряды.

Вспомним имена создателей нашей замечательной боевой техники. Это конструкторы самолетов А. С. Яковлев, С. А. Лавочкин, С. В. Ильюшин, В. М. Петляков, А. Н. Поликарпов, конструкторы авиационных двигателей А. А. Микулин, А. Д. Швецов, В. Я. Климов; конструкторы воздушного огнестрельного оружия Б. Г. Шпитальный, И. Д. Комарицкий, А. А. Волков, И. П. Шебанов и многие другие. Созданная в это время авиационная техника по своим технико-экономическим и тактическим показателям была лучшей в мире.

Для винтомоторных самолетов с поршневым двигателем получение скоростей, превышающих 1000 км/ч, невозможно, тогда как реактивные двигатели с увеличением скорости повышают свой КПД и при колоссальных скоростях становятся особенно выгодными. Кроме того, реактивный способ создания движения оказывается наиболее выгодным при полете на больших высотах и в космическом пространстве.

КАК РАБОТАЮТ ТУРБОРЕАКТИВНЫЕ ДВИГАТЕЛИ?

В работе турбореактивных двигателей (двигателей с газотурбинной установкой) использован следующий принцип. Струя газа, вытекая из сопла со скоростью большей, чем та, с которой она в него вступила, создает силу реакции, направленную в сторону, противоположную направлению движения струи. Эта сила реакции и используется для перемещения самолета, ракеты, снаряда.

Турбореактивный двигатель (рис. 9) состоит из пяти частей: входного устройства (диффузора) 1, компрессора 2, камеры сгорания 4, газовой турбины 5 и реактивного сопла 6. При полете самолета на двигатель набегает встречная струя воздуха. В диффузоре воздух затормаживается, его давление увеличивается. В компрессоре происходит 8—10-кратное дальнейшее сжатие воздуха. Часть воздуха направляется в камеру сгорания (примерно 1/5), куда при помощи форсунок 3 впрыскивается топливо (обычно керосин).

Рис. 9. Турбокомпрессорный реактивный двигатель

При запуске двигателя топливно-воздушная смесь воспламеняется от запальной электрической свечи, а в дальнейшем самовоспламеняется от соприкосновения с раскаленными газами и пламенем. При открытой с обоих концов камере сгорания процесс образования газов происходит при постоянном послекомпрессорном давлении. Так как температура горящего керосина более 2000 °C и такую температуру не могут выдержать лопатки турбины, то газы при выходе из камеры сгорания перемешиваются с основным потоком воздуха и температура газов снижается до 800–900 °C. Они со скоростью 600–900 м/с поступают на лопатки турбины, расширяются и приводят ее во вращение.

Другая часть энергии газов идет на повышение их скорости в реактивном сопле двигателя.

При выходе газов из сопла и образуется реактивная тяга, необходимая для полета самолета.

В сопле двигателя устанавливается подвижный конус 7, регулирующий выходное сечение, а следовательно, и скорость полета.

Сравнение работы турбореактивного двигателя с четырехтактным двигателем внутреннего сгорания показывает, что в двигателе внутреннего сгорания такты следуют друг за другом, тогда как в реактивном двигателе все процессы идут почти одновременно.

Сила тяги, развиваемая современными крупными воздушно-реактивными двигателями, огромна. Так, при расходе воздуха в 200 кг/с сила тяги составляет примерно 1,2∙105 Н. А это значит, что при полете со скоростью 1100 км/ч полезная мощность составляет 37 МВт (50 000 л. с). Получение такой мощности при использовании поршневых двигателей практически невозможно.

Сейчас газовые турбины стали применять на железнодорожном транспорте и в промышленности; не исключено их использование на грузовых и легковых автомобилях будущего.

ЧТО ТАКОЕ ВИНТОРЕАКТИВНЫЙ ДВИГАТЕЛЬ?

Для умеренных скоростей полета более выгодна комбинированная винтореактивная установка (рис. 10).

Рис. 10. Схема винтореактивного двигателя:

1 — компрессор, 2 — камера сгорания, 3 — турбина, 4 — сопло, 5 — редуктор, 6 — воздушный винт

Мощность газовой турбины винтореактивной установки значительно превышает мощность, поглощаемую компрессором. Избыток мощности турбины в этом случае передается на воздушный винт, соединенный с валом турбины через редуктор. При такой схеме скорость самолета создается как реактивным соплом (толкающая сила), так и воздушным винтом (тянущая сила). Естественно, что при осуществлении полета космических кораблей и ракет за пределами земной атмосферы кроме горючего на борту устанавливается и резервуар с окислителем (жидкий кислород, перекись водорода).

Для иллюстрации научно-технического прогресса в авиации приведем небольшую таблицу параметров некоторых самолетов: лучших истребителей конца Великой Отечественной войны Як-7 и Ла-11, а также современных реактивных пассажирских самолетов. Разница в классе самолетов выбрана нами для контраста преднамеренно.

В наше время сбылась мечта Циолковского о начале покорения космоса. Успехи отечественной науки и техники открыли век космических полетов. 4 октября 1957 г. был запущен первый в мире советский искусственный спутник, а 12 апреля 1961 г. впервые в истории человечества отправился в космический рейс советский космонавт Ю. А. Гагарин. От одиночных полетов к групповым, от производства единичных наблюдений к выходу в открытый космос и проведению технических и научных экспериментов, к созданию крупных кораблей многоразового использования, к решению насущных народнохозяйственных проблем — таков короткий, но богатый крупными успехами путь космической эры в истории человечества.

КАКОВЫ ДАЛЬНЕЙШИЕ ПЕРСПЕКТИВЫ РАЗВИТИЯ НАЗЕМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И ДВИГАТЕЛЕЙ?

Наиболее перспективными являются следующие направления.

1. Замена во всех видах наземного транспорта бензиновых карбюраторных двигателей на дизельные.

2. Замена существующего ныне топлива в этих двигателях на водородное, имеющееся в неограниченных количествах в водах морей и океанов.

3. Разработка и производство магнитогидродинамических (МГД) генераторов и термоядерных установок.

4. Дальнейшая разработка и более широкое внедрение солнечных установок для выработки энергии (питание электромобилей, солнечные электростанции и т. д.).

 

2. Физика и сельское хозяйство

Может быть, эту беседу следовало начать в традиционном ключе — «от сохи» — вспомнить историю, совсем недалекое прошлое, когда все на поле делалось вручную и помощником земледельцу в лучшем случае была одна лошадиная сила. А потом перейти к дню сегодняшнему и рассказать о могучих и умных сельскохозяйственных машинах, каждая из которых сильнее десятков, а то и сотен лошадей.

Это был бы простой способ показать, чего можно достичь в любой отрасли производства используя достижения науки. И тут, действительно, есть о чем рассказать, но, справедливости ради, будем помнить, что именно в сельском хозяйстве у нас пока что нет оснований «трубить в фанфары». Так что сейчас мы побеседуем не о достижениях сельскохозяйственного производства, а скорее о тех возможностях, которые предлагает для него наука.

ПРИ ЭТОМ НЕ НАДО ПРИУМЕНЬШАТЬ ТОГО, ЧТО ДЕЙСТВИТЕЛЬНО ЯВЛЯЕТСЯ ДОСТИЖЕНИЕМ. МЕХАНИЗАЦИЯ СЕЛЬСКОГО ХОЗЯЙСТВА ЦЕЛИКОМ ОСНОВАНА НА ДОСТИЖЕНИЯХ НАУКИ, В ЧАСТНОСТИ И ФИЗИКИ.

Мало кто знает, что идея трактора, этого «вагона с бесконечными рельсами», а также ее воплощение в металле родились более ста лет назад в самом центре России — на саратовской земле.

В 1888 г. в г. Балаково два народных умельца — Федор Блинов и Яков Мамин — изготовили первый русский гусеничный трактор.

Первый же в мире зерноуборочный комбайн был создан в России в 1868 г. замечательным изобретателем Андреем Романовичем Власенко, выходцем из крестьян Тверской губернии. Назывался он «конная зерноуборка на корню». «Конная зерноуборка» объединила в себе две машины: жатку и молотилку. В Америке подобная машина появилась лишь 11 лет спустя. С годами и мощности и скорости комбайнов возросли, но принцип их работы не изменился.

Если в течение первых пятилеток от нашей промышленности требовалось дать как можно больше тракторов и другой сельскохозяйственной техники, то сейчас требования изменились. Теперь главное — это ее высокое качество, надежность, экономичность и высокая производительность.

ЭТО ВСЕ ТЕХНИКА. А ГДЕ ЖЕ ФИЗИКА?

Физика является основой развития техники, и ее достижения широко используются и в сельскохозяйственном производстве. Действие сельскохозяйственных механизмов основано на использовании физических законов в области механики, термодинамики, электродинамики и др.

ДАВАЙТЕ ПОГОВОРИМ О КОНКРЕТНЫХ ПРИМЕРАХ.

Пожалуйста. Электроэнергия не только служит источником освещения, но и используется для приведения в действие различных машин и аппаратов для механической дойки коров, стрижки овец, для подогрева воды, пастеризации молока, выведения цыплят в инкубаторах, приготовления кормов, обогрева помещений, а также в автоматизированных системах управления (АСУ) производственными процессами.

В качестве конкретного примера расскажем, как с помощью электромагнитов происходит очистка зерна и сыпучих кормов от случайно попавших в них кусочков железа (гвоздей, гаек, опилок), а также от сорняков. Семена очищаются в специальной машине СМЩ-04 (рис. 11).

Рис. 11. Схема электромагнитной семеочистки

Ее основой является полый латунный вращающийся на оси цилиндр 1, внутри которого находится неподвижный электромагнит 2, питаемый постоянным током. Идея очистки состоит в том, что семена сорняков в отличие от семян трав (клевера, люцерны и др.) имеют шероховатую поверхность. И вот смесь семян, например клевера, сорняков и железного порошка из специального бункера 3 поступает на вращающийся барабан и попадает в сильное магнитное поле, создаваемое электромагнитом. Семена клевера, не имеющие на своей гладкой поверхности железного порошка, не притягиваются к барабану и попадают в ящик А, тогда как семена сорняков, покрытые железным порошком, притягиваются к цилиндру и в конечном итоге накапливаются в ящике Б. Железный порошок затем отделяют от семян сорняков и вновь многократно используют.

А КАК «РАБОТАЮТ» НА СЕЛЬСКОЕ ХОЗЯЙСТВО ОПТИЧЕСКИЕ ЯВЛЕНИЯ?

Приведем несколько примеров. Это и освещение теплиц в зимнее время, и «ловушки солнечной энергии» (парники), и уничтожение болезнетворных бактерий ультрафиолетовыми лучами, облучение ими животных для борьбы с рахитом, и сушка древесины, зерна, овощей, сена, борьба с амбарными вредителями с помощью инфракрасного излучения.

И ДАЖЕ АТОМ ПОЛУЧИЛ ЗДЕСЬ ОДНУ ИЗ САМЫХ МИРНЫХ СВОИХ ПРОФЕССИЙ.

В последнее время в сельскохозяйственную практику все шире внедряются «меченые атомы» — атомы радиоактивных изотопов, ядра которых испускают α-, β-частицы или γ-излучение.

При помощи «меченых атомов» осуществляют лабораторные испытания хода биологических процессов в растениях, их питания и развития, исследования по борьбе с вредными насекомыми и болезнями.

Для уничтожения вредных микроорганизмов все шире стали применять радиоактивное излучение (γ-излучение). Оказалось, что облученные фрукты, овощи, молочные продукты значительно дольше сохраняются, а стерилизация консервов (без их нагревания) с помощью облучения более экономична и удобна для массового производства. Картофель, обработанный γ-излучением, не портится и не прорастает, например, более года, а обработка семян растворами солей радиоактивных изотопов повышает их всхожесть и, следовательно, урожайность на 17–20 %.

ПРИГОДИЛСЯ ЗДЕСЬ И УЛЬТРАЗВУК.

Ультразвук — звуковые волны высокой частоты — получил широкое применение в сельском хозяйстве. Он предотвращает образование накипи в паровых котлах низкого давления (в кормозапарниках, например), убивает насекомых, отпугивает гусениц. Ультразвуком облучают семена овощей (урожайность повышается на 20–25 %).

НУ, И ВЕЗДЕСУЩИЙ ЛАЗЕР…

Еще более универсален лазерный луч. Им обрабатывают семена, увеличивая их всхожесть и урожайность, лазер помогает вести геодезические работы, а лазерная установка-анализатор позволяет получить обобщенный показатель микроклимата поля сразу на всей его площади за 10 мин, выполняя суточную работу комплексной лаборатории. Лазер «проверяет атмосферу» (с его помощью измеряют количество газовых примесей в воздухе). Передвижная установка позволяет вести наблюдения за состоянием воздушного бассейна жилых районов, лесных массивов, парков и заповедников на значительных расстояниях и с высоким качеством результатов.

ТАКАЯ ЗАМЕЧАТЕЛЬНАЯ КАРТИНА!..

И все же наука пока еще в долгу перед сельским хозяйством. Сейчас речь должна идти не просто о помощи в отдельных направлениях, а о разработке принципиально новых технологий возделывания сельскохозяйственных культур (яркий пример тому гидропоника — выращивание растений без грунта). Принципиально новых путей нужно искать и в конструировании техники для сельского хозяйства: не только брать необходимое у природы, но и сберегать ее. Требуют новых решений процессы транспортировки и сохранения урожая, его переработки. Как видите, проблем пока еще больше, чем достижений.

 

3. Физика и техника низких температур

В 1908 г. в физической лаборатории Лейденского университета под руководством выдающегося голландского физика Камерлинг-Оннеса был получен жидкий гелий при температурах, близких к Т = 0 К (абсолютному нулю температур).

В 1911 г. Камерлинг-Оннес открыл явление сверхпроводимости (Нобелевская премия 1913 г.).

И вот не прошло и ста лет, как из этих открытий возникла целая наука — физика низких температур, а затем и обширная область — техника низких температур.

Изучение явления сверхпроводимости и других свойств веществ при низких температурах интенсивно продолжается и в наши дни, составляя одно из важнейших направлений физики и техники современности.

Основоположником теории физики низких температур стал дважды Герой Социалистического Труда Нобелевский лауреат акад. Петр Леонидович Капица (1894–1984).

РАССКАЖИТЕ ПОДРОБНЕЕ ОБ ЭТОМ УЧЕНОМ.

Окончив в 1918 г. электромеханический факультет Петроградского политехнического института, Петр Леонидович начал свою научную работу в этом институте на кафедре основателя отечественной физической школы акад. А.Ф.Иоффе (1880–1960).

В 1921 г. П.Л.Капицу направили в научную командировку в Англию. Здесь он работал в знаменитой Кавендишской лаборатории Кембриджского университета под руководством прославленного Э. Резерфорда, а с 1924 по 1932 г. был его заместителем по лаборатории. Уже в те годы у П. Л. Капицы проявился характерный для него революционный подход к любой проблеме, за которую он брался, появились первые научные исследования в области явлений, протекающих в сильных магнитных полях и при низких температурах.

Крупные успехи П. Л. Капицы побудили Лондонское Королевское общество организовать в 1930 г. специальную лабораторию для работы в области низких температур и в сильных магнитных полях, директором которой был назначен Петр Леонидович.

Вернувшись в 1934 г. из Англии в Москву, он организовал Институт физических проблем, который был оснащен полученным из Англии оборудованием, включая и построенные П. Л. Капицей установки. С этого года и до последних дней жизни П. Л. Капица являлся бессменным директором вновь организованного института, вел интенсивную научную и общественную работу. П. Л. Капица был одним из инициаторов создания Московского физико-технического института — одного из ведущих и крупнейших в нашей стране высших учебных заведений.

КАК ПОЛУЧАЛИ НИЗКИЕ ТЕМПЕРАТУРЫ В ТЕ ВРЕМЕНА?

Низкие температуры в 30-е годы начали получать с помощью жидкого гелия на специальных устройствах, работающих на основе эффекта Джоуля — Томсонау — используя охлаждение газа при его дросселировании, т. е. при пропускании газа через вентиль, создававшим большой перепад давления. Охлаждение газа в этом случае связано с его неидеальностыо, и эффект Джоуля — Томсона приводит к охлаждению газа только тогда, когда его температура ниже так называемой температуры инверсии. Для гелия, например, температура инверсии составляет около 15 К, поэтому в ожижителях гелия, работающих на основе эффекта Джоуля — Томсона, необходимо иметь предварительную ступень охлаждения гелия жидким водородом, поскольку температура инверсии у водорода выше, чем у гелия («всего» 100 К).

Рассмотрим несколько подробнее теоретические предпосылки указанного эффекта, возможности получения низких температур и сжижения газов (прежде всего гелия).

Пусть в адиабатном изолированном цилиндре (исключающем теплообмен с окружающей средой) находится идеальный газ (рис. 12).

Рис. 12. В адиабатно изолированном цилиндре газ пропускают через пористую перегородку из одной области в другую

Этот газ через пористую перегородку пропускают из области с большим давлением р 1 в область с меньшим давлением р 2 (из-за трения в этой перегородке поток не испытывает завихрений, и газ по обе стороны от нее однороден). При таком расширении идеального газа с перепадом давлений (р 1 > р 2 ) изменения температуры происходить не должно, так как в этом случае идеальный газ не совершает работы.

НЕ МОЖЕТ БЫТЬ! ВЕДЬ ОБЪЕМ-ТО ИЗМЕНИЛСЯ ОТ V 1 ДО V 2 , А РАБОТА ГАЗА ОПРЕДЕЛЯЕТСЯ КАК W = рΔW ?

И все же никакого противоречия здесь нет. Ведь идеальный газ — газ, в котором энергией взаимодействия молекул можно пренебречь по сравнению с кинетической энергией этих молекул, — существует лишь в нашем воображении. Естественно, если уж молекулы идеального газа не взаимодействовали друг с другом до расширения, то после расширения они не взаимодействуют и подавно (ведь расстояние между молекулами увеличилось еще больше).

Так как процесс адиабатный, то система не получает теплоты извне и не отдает ее через стенки цилиндра (Q = 0). Из первого начала термодинамики Q = ΔU + W следует, что при Q = 0 W = 0, т. е. ΔU = C V ΔT = 0. Так как C V  не равно 0, то ΔT = 0, т. е. изменения температуры в идеальном газе не происходит.

Теперь поместим в цилиндр какой-либо реальный газ. В этом случае адиабатное расширение газа приведет к изменению температуры, так как реальные молекулы всегда взаимодействуют друг с другом и при расширении газа происходит изменение его внутренней энергии.

Это явление изменения температуры газа при его адиабатном расширении и носит название эффекта Джоуля — Томсона.

Теория и практика показали, что для реальных газов:

а) если силы взаимодействия между молекулами малы (водород, гелий и другие инертные газы), то газ нагревается (ΔТ > 0);

б) если силы взаимодействия между молекулами велики (большинство газов), то газ охлаждается (ΔТ < 0);

в) при некоторой температуре Т i реального газа, при его расширении он ведет себя как идеальный, т. е. не меняет своей температуры (ΔT = 0). Эта температура и носит название температуры инверсии. При ней эффект Джоуля — Томсона меняет знак: ниже температуры инверсии (Т i ) водород и гелий охлаждаются (положительный эффект), выше Т i  — эти газы нагреваются (отрицательный эффект).

Подчеркнем еще раз: для того чтобы по методу Джоуля — Томсона охладить гелий и превратить его в жидкость, его температуру необходимо предварительно довести до значения, меньшего Т i , что и делают с помощью кипящего водорода.

Геометрическое место точек инверсии для данного вещества на диаграмме его состояния называют инверсионной или λ-кривой и температуру инверсии обычно называют λ-точкой.

ИНТЕРЕСНО, КАКИМИ СВОЙСТВАМИ ОБЛАДАЕТ ЖИДКИЙ ГЕЛИЙ?

Исследования жидкого гелия при сверхнизких температурах обнаружили, что он не похож ни на какую другую жидкость.

В чем состоит эта непохожесть? Давайте сначала вспомним, какие общие свойства имеют жидкости, например вода.

Обратим внимание на так называемую фазовую диаграмму воды (рис. 13). На ней изображены три кривые, разделяющие три фазы (три состояния) воды. Кривые пересекаются в одной точке — так называемой тройной точке воды. В этой точке граничат сразу три фазы: твердая, жидкая и газообразная, и все три можно наблюдать одновременно.

Рис. 13. Диаграмма состояния воды

От тройной точки вправо и вверх идет кривая, показывающая зависимость давления насыщенных паров от температуры — линия жидкость — пар. Следовательно, если при заданной температуре давление р > р нас , то мы имеем жидкость, при р < р нас — газ.

При р = р нас наблюдается расслоение фаз — внизу собирается вода, а над ней находится пар. При повышении температуры давление пара и его плотность растут, а плотность жидкости падает. В конце концов плотности пара и жидкости уравновесятся в так называемой критической точке при Т кр и р кр . Следовательно, как бы при Т > Тк р ни сжимали газ, жидкость образоваться не может. При О °С вода замерзает и линия I (жидкость — пар) переходит в линию II — твердое тело (лед) — пар, а при Т > 0 °C переходит в линию III — твердое тело — жидкость, разграничивая эти фазы. При Т > Т кр она разделяет области твердое тело — газ. Здесь нет критической точки, так как твердое тело существенно отличается от газа порядком, определяемым расположением атомов в кристаллической решетке.

Тройная точка есть у всех веществ. Если откачивать непрерывно пары жидкости, то температура ее будет падать и жидкость наконец затвердеет.

ВСЕ ЭТО ОЧЕНЬ ИНТЕРЕСНО, НО ПРИЧЕМ ТУТ ГЕЛИЙ?

А притом, что гелий — это исключение: у него нет тройной точки. Если откачивать пары жидкого гелия, то обнаружится необычная картина. При атмосферном давлении и температуре 4,2 К жидкий гелий начинает кипеть. При дальнейшей откачке типичное кипение становится более интенсивным и вдруг при 2,17 К и давлении ~ 5∙103 Па (40 мм рт. ст.) кипение внезапно прекращается. При дальнейшей откачке обнаруживается, что даже при температуре, отличающейся от Т = 0 К на несколько тысячных кельвина, получить твердый гелий не удается. Это означает, что у гелия тройной точки нет.

На диаграмме состояния гелия (рис. 14) найдем линию жидкость — пар и точку, в которой прекратилось кипение гелия (λ-точка).

Рис. 14. Диаграмма состояния гелия (по оси ординат для наглядности масштаб в верхней части рисунка сжат)

Исследования показали, что, несмотря на отсутствие у гелия тройной точки, твердый гелий все же существует.

Если к жидкому гелию приложить давление около 3 МПа (~ 30 атм), он кристаллизуется. Это обстоятельство и нашло отражение на диаграмме состояния в виде кривой жидкость — твердое тело, отделяющей твердую фазу гелия от жидкой.

Дальнейшие исследования выявили ряд замечательных свойств гелия, а также других веществ при сверхнизких температурах.

ЧТО ЖЕ ПРОИСХОДИТ С ГЕЛИЕМ ПРИ ТЕМПЕРАТУРАХ НИЖЕ 2,17 К?

Оказывается, при температурах ниже 2,17 К жидкий гелий приобретает новые свойства — он становится единственной известной нам так называемой квантовой жидкостью. Принято говорить, что при этой температуре гелий I (обычный гелий) переходит в гелий II.

На диаграмме состояния область существования гелия I отделяется от области гелия II λ-линией. Все жидкости в отличие от гелия затвердевают задолго до того, как в них начнут проявляться квантовые свойства. Только гелий II остается жидким, как мы выяснили ранее, даже при температурах, близких к 0 К (как известно, температуры 0 К никакими способами достичь невозможно).

ПРИ ЭТИХ ТЕМПЕРАТУРАХ И ВОЗНИКАЕТ СВЕРХТЕКУЧЕСТЬ ГЕЛИЯ? ОБЪЯСНИТЕ ПОДРОБНЕЕ, ЧТО ЭТО ТАКОЕ.

Одним из замечательных свойств гелия II является его чрезвычайно высокая теплопроводность — намного выше меди и серебра — наиболее теплопроводных металлов. Это обстоятельство достоверно объясняет отсутствие пузырьков пара в гелии II при температурах ниже 2,17 К. Посмотрите на кипящую воду, и вы увидите движение пузырьков пара со дна сосуда. В кипящем сверхохлажденном гелии таких пузырьков нет.

Если теплопроводность жидкости очень высока, в ней невозможно создать разность температур на дне и у поверхности и испарение такой жидкости идет только с ее поверхности. Так и происходит в гелии II.

Исследуя причину такой высокой теплопроводности гелия II, П. Л. Капица установил, что причиной переноса тепловой энергии в нем является конвекция. Если это так, то тепловые потоки в гелии II должны распространяться с чрезвычайной легкостью. А это означает, что вязкость гелия II должна быть ничтожной (она оказалась меньшей, чем вязкость воды при комнатной температуре, в 1013 раз). Так, в 1937 г. академиком П.Л.Капицей было сделано фундаментальное открытие в области низких температур — явление, названное им сверхтекучестью.

А СВЕРХПРОВОДИМОСТЬ СВЯЗАНА СО СВЕРХТЕКУЧЕСТЬЮ?

В 1912 г. Камерлинг-Оннесом было открыто явление сверхпроводимости металлов при температурах ниже Гкр гелия. Сверхпроводимость металлов была объяснена лишь в 1957 г.

После построения акад. Л.Д.Ландау (1908–1968) теории сверхтекучести (внешне явления сверхтекучести и сверхпроводимости очень похожи: и в том, и в другом случаях речь идет о потоке, на который трение не действует) сверхпроводимость можно было представить как сверхтекучесть электронного газа.

Усилиями многих отечественных и зарубежных ученых, в том числе акад. Н. Н. Боголюбова, предложившего новый метод в теории, природа сверхпроводимости полностью разъяснилась.

В 1962 г. Л.Д.Ландау за «пионерские теоретические работы по конденсированному состоянию, особенно жидкого гелия» была присуждена Нобелевская премия.

НАВЕРНОЕ, ДОСТИЖЕНИЕ СВЕРХНИЗКИХ ТЕМПЕРАТУР — ЭТО САМОСТОЯТЕЛЬНАЯ НАУЧНАЯ ПРОБЛЕМА?

Итак, нам осталось выяснить, как в настоящее время осуществляется сжижение газа, в чем транспортируется такая жидкость и какое практическое техническое применение получила физика низких температур.

Как мы уже упоминали ранее, получить жидкий гелий можно в специальных машинах, работающих на эффекте Джоуля — Томсона с предварительным охлаждением гелия жидким водородом. Этот способ хотя внешне и прост, но не совсем удобен.

Если построить машину для получения жидкого воздуха (который в огромных количествах производит и потребляет промышленность), то нужно иметь фактически две машины: для водорода и для гелия, каждую со всем своим хозяйством — мощным компрессором, газовыми коммуникациями, хранилищем газов, средствами очистки газов от примесей. Кроме того, употребляемый в установке водород крайне опасен: при утечке из системы он, смешавшись с воздухом, образует гремучую смесь. Современные машины для сжижения газов работают без водорода. Для этого в компрессоре 1 (рис. 15) гелий предварительно сжимается, затем остывает (ведь при сжатии он нагревается) и направляется в цилиндр 3, где он, как пар в паровой машине, перемещает поршень. Это устройство в холодильной технике носит название детандера. Газ, расширяясь в детандере, охлаждается. Расчеты показывают: чтобы получить температуру 10 К, газ нужно предварительно сжать компрессором до 500 МПа (5 тыс. атм).

Рис. 15. Схема замкнутого цикла для охлаждения газа расширением в детандере:

1  — компрессор; 2 — охлаждение прямого потока до комнатной температуры; 3 — теплообменник; 4 — детандер

Даже если мы хотим получить температуру, достаточную для сжижения воздуха (Ткр = 132 К), то и тогда необходимо создать компрессором давление в сотни атмосфер, что для гелия не так просто. Для того чтобы уменьшить рабочее давление, в систему между компрессором и детандером вводят теплообменник 2 (схема машины приведена на рис. 15). Газ, поступая в детандер, охлаждается обратным потоком гелия, уже успевшего расшириться и охладиться. Поэтому процесс расширения начинается при более низкой температуре, а значит, и исходное давление может быть значительно меньшим.

Необходимо заметить, что в лабораториях и на заводах имеются машины, вырабатывающие сотни литров жидкости в час, но есть и очень маленькие, которые размещаются и работают на борту искусственных спутников и космических кораблей.

Стоимость литра сжиженного гелия исчисляется десятками копеек, что делает его доступным для любых физических лабораторий и промышленных предприятий.

Тот же эффект охлаждения за счет совершаемой газом внешней работы при адиабатном расширении был использован П. Л. Капицей в машине нового типа, предложенной им в 1935 г. для сжижения воздуха с целью промышленного получения кислорода. В этой машине газ совершал внешнюю работу, приводя во вращение высокоэффективную турбину (турбодетандер). В ней воздух предварительно сжимался в турбокомпрессоре всего до 0,4–0,5 МПа (4–5 атм), в то время как в поршневых машинах давление создавалось от 7 до 19 МПа.

Таким образом, в технике получения низких температур стал использоваться только цикл низкого давления, а это позволило стране сэкономить сотни миллионов рублей. Разработанный П. Л. Капицей турбодетандер с КПД 80–85 % предопределил развитие во всем мире современных крупных промышленных установок разделения воздуха для получения жидкого кислорода.

ИТАК, ЖИДКИЙ ГАЗ ПОЛУЧЕН И ВОЗНИКАЮТ ПРОБЛЕМЫ ЕГО ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ?

Задача хранения и транспортировки жидкого гелия также не является простой — ведь разность температур между комнатной и жидкостью составляет почти 300 К!

Оказалось, что ни сосуд Дьюара, ни какой-либо другой с пористой изоляцией непригодны, так как они не в состоянии создать необходимой преграды для теплообмена между гелием и окружающей средой.

Наиболее употребительными оказались металлические сосуды — криостаты. Как они устроены, видно из рис. 16.

Рис. 16. Схема устройства сосуда для хранения и транспортировки жидкого гелия:

1  — трубка для выхода испаряющегося гелия; 2 — отверстие для переливания жидкого гелия, закрытое пробкой; 3 — трубка для заливки жидкого азота; 4 — тонкостенные трубки из нержавеющей стали; 5 — штуцер вакуумной откачки; 6 — медные полированные сферы, каждая из которых спаяна из двух полусфер; 7 — адсорбент; 8 — трубки, соединяющие между собой вакуумные полости и одновременно служащие распорками

Криостат очень похож на сосуд Дьюара, но между ними есть и различия. Полость между сосудом с гелием и внешней стенкой заполнена жидким азотом. Жидкий азот нужен для того, чтобы уменьшить испарение гелия, — именно азот, так как он не взрывоопасен и получение его из воздуха чрезвычайно дешево.

Емкости для гелия и азота выполнены из полированной меди, высокая теплопроводность которой компенсируется подвеской системы на тонкостенных трубках из нержавеющей стали — материала, плохо проводящего теплоту.

Чтобы вакуум в «рубашке» сохранялся длительное время, в вакуумных промежутках помещен адсорбент — поглотитель газов (обычно активированный уголь). Из такого криостата может испариться не более 100 см3 гелия в сутки.

КАК ИСПОЛЬЗУЮТ ЖИДКИЕ ГАЗЫ?

Получение жидкого гелия, кислорода и других веществ — важная задача холодильной промышленности, ведь эти вещества требуются современной науке и производству в огромных количествах.

Так, например, современные соленоиды из меди, создающие постоянные магнитные поля с индукцией 10–20 Тл, требуют для питания источники тока мощностью ~ 1 МВт — такой электростанции достаточно для освещения города с населением в несколько десятков тысяч жителей. Эти соленоиды имеют небольшой объем (всего десятки кубических метров), и если их не охлаждать, они могут расплавиться.

В последние годы получили широкое распространение сверхпроводящие сплавы для создания сверхпроводящих магнитов, позволяющих с очень малой затратой энергии получать сильные магнитные поля напряженностью до 8∙107 А/м (100 кЭ).

В большом количестве жидкого кислорода нуждаются наша металлургия, космонавтика и другие области техники, а также различные научные лаборатории.

Следует особо отметить, что основой прогресса в экспериментальном исследовании металлов явилась возможность получения очень чистых металлов, длина свободного пробега электрона в которых достигает нескольких миллиметров. Таких чистых материалов все больше требуется для нашей промышленности. А их получение связано с физикой низких температур.

Интенсивное развитие науки и техники низких температур существенно поможет решению современных проблем научно-технического прогресса.

 

4. Осмос наоборот и мембранная технология

Осмос, осмотическое давление — эти слова, а также смысл, заложенный в них, известны многим. Однако что такое обратный осмос? И что же такое мембранная технология, о которой в последнее время так часто упоминается в периодической печати?

Осуществление комплекса мероприятий по совершенствованию технологии производства — одна из важнейших задач перестройки нашей экономики. Перестройка экономики включает в себя широкое внедрение в народное хозяйство принципиально новых технологий, позволяющих многократно повысить производительность труда, поднять эффективность использования ресурсов и снизить энерго- и материалоемкость производства.

К числу таких принципиально новых технологий, внедряемых в народное хозяйство, относится и мембранная технология.

О том, что такое мембранная технология, каковы ее физические основы, какие проблемы решают ученые и инженеры по широкому внедрению этой новой технологии в практику, и пойдет речь в этой беседе.

И ВСЕ ЖЕ СНАЧАЛА ИМЕЕТ СМЫСЛ СКАЗАТЬ, ЧТО ТАКОЕ ОСМОС.

Еще в 1748 г., перегородив воду и спирт пленкой из бычьего пузыря, аббат Нолле заметил, что вода проникает через эту перегородку и смешивается со спиртом.

Это явление в дальнейшем получило название осмоса, что в переводе с греческого означает толчок, давление. Осмос — диффузия вещества (обычно растворителя) через полупроницаемую перегородку, разделяющую раствор и чистый растворитель либо же два раствора различной концентрации.

Если мы погрузим в воду плотно закрытый целлофановый пакет с водным раствором высокомолекулярного вещества, например какого-либо белка, молекулы которого больше размеров пор в стенках пакета, то вода начнет диффундировать внутрь пакета и он начнет раздуваться.

При очень высокой концентрации белка стенки пакета могут даже разорваться. Если же внутри пакета находится раствор низкомолекулярной соли, то она диффундирует во внешний объем до выравнивания концентраций. Аналогичные опыты с различными полупроницаемыми пленками или перегородками можно воспроизвести не только в лабораторных, но и в домашних условиях с растворами солей или сахара.

Заметим, что пленки или перегородки получили названия мембран. Они в настоящее время широко используются в лабораторной и промышленной технике. Отсюда и появились мембранные техника и технология.

Многочисленные эксперименты, поставленные в разное время, свидетельствуют, во-первых, о том, что установление направленного потока растворителя в раствор приводит к возникновению осмотического давления. Во-вторых, значение этого давления зависит от природы растворенных веществ, их концентрации и температуры.

ЕСЛИ ЕСТЬ ДАВЛЕНИЕ, ЗНАЧИТ ЕГО МОЖНО И ИЗМЕРИТЬ?

Осмотическое давление измеряют осмометрами, т. е. специальными приборами, весьма разнообразными по конструкции.

Схема одного из них представлена на рис. 17.

Рис. 17. Схема осмометра

Здесь камера А, заполненная чистым растворителем, и камера Б, заполненная раствором, разделены полупроницаемой мембраной М. Уровень жидкости в камерах измеряется соединенными с ними трубками а и б.

Значение осмотического давления может быть определено как р = ρgh, где h — разность уровней в трубках а и б; ρ — плотность растворителя, g — ускорение силы тяжести в том месте Земли, где идет эксперимент. Следовательно, определение осмотического давления может быть осуществлено двумя методами: статическим (используя вышеприведенную формулу избыточного гидростатического давления по значению h) и динамическим.

Этот метод предусматривает подведение к трубке а такого внешнего давления, которое необходимо для поддержания одинаковых уровней в обеих трубках. Отсюда следует, что осмотическое давление может быть определено как такое внешнее давление, которое нужно приложить к раствору, чтобы процесс осмоса прекратился.

Теория показывает, что для достаточно разбавленных растворов осмотическое давление р может быть определено из закона, установленного голландским химиком Дж. Вант-Гоффом (1852–1911):

р = nkT, где n — концентрация молекул растворенного вещества; k — постоянная Больцмана; Т — термодинамическая температура.

Этот же закон может быть представлен и в другом виде:

р = CRT.

Здесь С — молекулярная концентрация раствора, R — универсальная газовая постоянная.

КАКОВА МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ПРИРОДА ОСМОСА И ОСМОТИЧЕСКОГО ДАВЛЕНИЯ?

Как вы уже могли догадаться, она вытекает уже из самого определения осмоса как диффузии растворителя.

Действительно, если по обе стороны мембраны находятся отсеки с чистой жидкостью, то число молекул, проходящих в обе стороны, одинаково и между обеими порциями растворителя устанавливается статистическое равновесие. Если же в одном из отсеков находится раствор, то число молекул растворителя, попадающих за единичное время на мембрану со стороны раствора, окажется меньше, чем со стороны чистого растворителя. Равновесие в этом случае нарушится и молекулы растворителя начнут перекачиваться в отсек с раствором.

СУЩЕСТВУЕТ ЛИ ОСМОС В ЕСТЕСТВЕННЫХ УСЛОВИЯХ ИЛИ ТОЛЬКО В ЛАБОРАТОРНЫХ ПРИБОРАХ?

Осмос и осмотическое давление играют огромную роль в процессах жизнедеятельности, в частности в явлениях распределения воды. Животные и растительные клетки представляют собой в сущности микроскопические осмотические системы. Осмотическое давление в клетках растений составляет 500—1000 кПа, а осмотическое давление крови человека — 746–776 кПа.

Падение осмотического давления в живых клетках (например, при обезвоживании организма) приводит их к сжатию (коллапсу), и, наоборот, обессоливание организма может привести к неравновесному разбуханию и разрыву клеток (осмотический шок).

Так, при сильных кровотечениях наступающий шок обусловлен не собственно потерей крови, а резким падением осмотического давления и сужением сосудов. Поэтому для восстановления осмотического давления и устранения шока пострадавшим от потери крови вводят инертные высокомолекулярные заменители вместо плазмы крови.

Осмотическое давление пресной воды в реках и озерах обычно меньше 100 кПа, для соленой воды морей и океанов оно в 25–35 раз больше этой величины, а для клеточного сока семян растений может достигать 10 МПа — вот почему семена высасывают необходимую для прорастания воду даже из очень сухой почвы.

Осмос широко используют не только в научной практике, но и в промышленных целях: существуют, например, осмотические методы определения молярной массы веществ, разделения газов, так как и для газовых смесей можно, как оказалось, подобрать осмотические ячейки с соответствующими мембранами.

А ЧТО ТАКОЕ ОБРАТНЫЙ ОСМОС?

Естественно задать вопрос: что будет, если к раствору приложить давление, превышающее осмотическое?

Оказалось, что в этом случае вода из водного раствора пойдет в обратном направлении — из раствора, причем тем быстрее, чем больше перепад давлений. На этом и основан новый метод разделения растворов, получивший название обратный осмос или осмос наоборот.

Открытие обратного осмоса оказалось весьма перспективным во всех отношениях: расход энергии здесь определяется в основном работой на продавливание воды через мембрану из полимерных материалов, пришедших ныне на смену бычьему пузырю.

Расход энергии оказался во много меньше, чем в большинстве известных методов разделения, связанных с испарением, конденсаций, плавлением и т. п., что весьма важно в эпоху НТР.

Кроме того, аппарат обратного осмоса с колоссальной поверхностью мембран (десятки тысяч квадратных метров в 1 м3 объема) занимает всего лишь небольшую комнату, а способен перерабатывать, например, сточные воды крупного завода.

ЭТА ПРОБЛЕМА ВЕСЬМА АКТУАЛЬНА…

Известно, что старые очистные сооружения, используемые в ряде случаев еще и до настоящего времени, занимают территории в несколько гектаров, очищают сточные воды длительное время, из них возможна утечка, они отравляют окружающую атмосферу. Таким образом, только замена громоздких, экономически невыгодных существующих очистных сооружений на машины обратного осмоса — задача современного научно-технического прогресса, решение которой затрагивает весь комплекс вопросов НТР: от природоохранительных до социально-экономических.

КАКИЕ КРИТЕРИИ НАИБОЛЕЕ ВАЖНЫ ПРИ ВЫБОРЕ И СОЗДАНИИ МЕМБРАНЫ?

Перед создателями промышленных осмотических установок встали прежде всего такие проблемы: какие полимеры пригодны для использования их в качестве мембран, каковы должны быть размеры пор, их количество, т. е. какой должна быть поверхность мембран?

Первоначальное предположение о том, что мембрана работает, как сито, не подтвердилось. Оказалось, что поры должны быть много крупнее молекул воды, молекул и ионов растворенных в ней веществ. Ученые пришли к выводу о том, что внутри пор и на поверхности мембраны образуется слой воды, связанный физико-химическими силами с материалом мембраны.

В этом случае вода теряет свою растворяющую способность и становится как бы преградой на пути растворенных веществ.

Следовательно, дело не только в размерах пор, но и в материале для изготовления мембран, т. е. в выборе такого материала, к которому вода хорошо «прилипает» (например, гидрофильные полимеры хорошо набухают в воде).

С другой стороны, «толстые» мембраны (0,01 — 0,1 мм) обладают небольшой производительностью, а очень «тонкие» пленки (менее 0,01 мм) совершенно непрочны и неспособны, следовательно, выдержать давление 50—100 кПа (~50—100 атм).

Эту трудность все же удалось обойти, изготовив двухслойные ацетатцеллюлозные мембраны. Один слой у них «толстый», обеспечивающий механическую прочность мембраны (каркас мембраны), а другой — тонкий активный, с мельчайшими порами. Кроме того, необходимо добиваться, чтобы поры мембран, пропускающие, например, только воду, были одного размера.

При создании аппаратов обратного осмоса обязательным требованием к их конструкции должно быть осуществление большой скорости протекания раствора и отсутствие падения давления раствора у мембраны вследствие повышения концентрации задерживаемого вещества. Последнее как раз и достигается лучшим перемешиванием раствора с повышением скорости течения жидкости.

НАВЕРНОЕ, ИМЕЕТ ЗНАЧЕНИЕ И ТО, КАК УЛОЖЕНЫ МЕМБРАНЫ.

Наиболее проста плоскопараллельная укладка мембран (рис. 18). «Бутерброды» из пористой подложки и мембраны укладывают один на другой и стягивают болтами. Конструкция предусматривает быструю замену вышедшей из строя мембраны.

Рис. 18. Аппарат с плоскопараллельной укладкой мембран

Разделяемый раствор с достаточно высокой скоростью протекает в узком зазоре между «бутербродами». Дальнейшее усовершенствование аппаратов пошло по линии разработки новых систем мембран и их укладки, повышения плотности упаковки мембран (более 500 м2 на 1 м3 объема).

Наиболее перспективными и получившими применение считаются аппараты с мембранами в виде полых волокон толщиной с человеческий волос. Здесь поверхность мембран может составлять уже десятки тысяч квадратных метров в 1 м3 объема.

Кроме использования аппаратов обратного осмоса для очищения промышленных, в том числе и сельскохозяйственных, сточных вод следует отметить получение с их помощью пресной воды на кораблях дальнего плавания, регенерирование воды экипажами космических кораблей. Сгущенное молоко, фруктовые и овощные; соки еще вкуснее и полезнее, если их концентрирование производилось обратным осмосом, позволяющим сохранить все вещества, содержащиеся в натуральных продуктах.

РАССКАЖИТЕ О ПРОМЫШЛЕННОЙ РЕГЕНЕРАЦИИ ВОДЫ.

Приведем схему такой установки (рис. 19). Она не требует особых пояснений, отметим лишь главное. Установка обратного осмоса позволяет очищать стоки (в отличие от методов отстойников) от любых загрязнений: органических и неорганических веществ, бактерий и вирусов. Очищенную воду очень высокого качества можно вновь использовать на производстве. Происходит, кроме того, концентрация стоков, а это облегчает извлечение растворенных в них ценных веществ, превращая любое производство в безотходное.

Многие проблемы еще предстоит решить. И решение каждой из них будет открывать новые заманчивые перспективы исследований и внедрения их результатов в производство. Важно то, что освоение обратного осмоса вышло за пределы лабораторий и осмос все шире работает на людей, являясь реальным результатом научно-технического прогресса.

Рис. 19. Схема промышленной установки регенерации воды

 

5. Настоящее и будущее солитонов

В августе 1834 г. вблизи английского города Эдинбурга молодым человеком по имени Джон Скотт Рассел (1808–1882) было сделано одно из самых интересных открытий в физике, значение которого не только не было по достоинству оценено его современниками, но про которое вообще не вспоминали более 130 лет.

Что же за открытие произвел Рассел, увидевший в, казалось бы, обычном явлении то, что не заметили другие и что сейчас стало темой тысяч научных работ в физике, математике, гидромеханике, астрофизике, океанографии, биологии?

ПОСЛЕ ТАКОГО ВСТУПЛЕНИЯ МОЖНО ЖДАТЬ ЧЕГО-ТО СВЕРХЪЕСТЕСТВЕННОГО…

Выполняя поручение одной из компаний, Рассел исследовал возможность движения по каналу, соединяющему Эдинбург с Глазго, паровых судов вместо небольших барж, перемещавшихся с помощью лошадей. Рассел проводил испытания с баржами различной формы, движущимися с различными скоростями.

И вот в одном из опытов баржа, которую быстро тянула по узкому каналу пара лошадей, неожиданно остановилась. Рассел обратил внимание на то, что вода, которую баржа привела в движение, при этом продолжала перемещаться. Вода катилась вперед, принимая форму большого одиночного возвышения в виде округлого, гладкого и четко выраженного холма, который с постоянной скоростью, не меняя своей формы, двигался вдоль канала.

Экспериментатор последовал за этим водяным холмом на лошади, сопровождая его одну-две мили (в Великобритании морская миля равна 1,8532 км), а затем потерял его в изгибах канала.

Рассел отметил, что скорость движения холма составила 8–9 миль в час, высота его — от одного до полутора футов (один фут равен 30,48 см), тогда как профиль этого возвышения имел длину около 30 футов.

О своем наблюдении Рассел доложил в 1838 г., а описание этого события (равно как и явления о выполненных им экспериментах) было опубликовано в 1844 г. («Доклад о волнах»).

Именно Расселу принадлежит приоритет не только в обнаружении нового явления в волновом движении, но и в присвоении ему названия волны трансляции, или уединенной волны. Им было установлено, что такие волны играют важную роль почти во всех случаях, когда жидкость оказывает сопротивление движению.

ЧЕМ ЖЕ УЕДИНЕННАЯ ВОЛНА РАССЕЛА ОТЛИЧАЕТСЯ ОТ ОБЫЧНЫХ?

Все мы, конечно, не раз видели, как от брошенного в водоем камня на воде распространяются волны. Создается впечатление, что здесь мы имеем дело с обычными поперечными волнами, т. е. такими волнами, при распространении которых каждая частица воды совершает колебательное движение перпендикулярно направлению распространения волны (вверх-вниз).

Так в свое время объяснял механизм распространения волн и Ньютон, хотя, как было показано позднее, это не соответствует истине.

В 1802 г. чешский ученый Франтишек Иозеф Герстнер (1756–1832) нашел точное и простое решение уравнений, описывающих волны на воде. В волне Герстнера (рис. 20), которая образуется на «глубокой воде» (когда длина волны много меньше глубины сосуда) частицы жидкости движутся по окружностям. Эта волна не синусоидальна, колебания частиц воды не являются гармоничными.

Рис 20. Волна Герстнера

При движении частиц жидкости по окружностям поверхность воды приобретает форму циклоиды, т. е. кривой, которую описывает какая-либо точка колеса, катящегося по ровной дороге. В случае мелких волн (высота волны много меньше ее длины) циклоида очень похожа на синусоиду и волна Герстнера практически становится синусоидальной. Здесь частицы воды, хотя и движутся по окружностям, все же мало отклоняются от положения равновесия.

Известно, что скорость распространения волн v = λ/Т, где λ — длина волны, Т — период колебаний в каждой точке, тогда как для волн на воде v пропорциональна не λ, а √λ.

Теоретические расчеты показали, что выражение для скорости распространения волны с учетом кругового движения частиц воды может быть принято в следующем виде:

Заметим, что с такой скоростью распространяются волны лишь на «глубокой воде», когда глубина h много больше λ. В случае же «мелкой воды» (когда h =< λ) скорость волны зависит лишь от глубины:

ЕСТЕСТВЕННО, ЧТО ТЕРМИН «МЕЛКАЯ ВОДА» (ВПРОЧЕМ, КАК И ПОНЯТИЯ «МНОГО» — «МАЛО», «ВЫСОКИЙ» — «НИЗКИЙ» И ДР.) ВЕСЬМА УСЛОВЕН И ОТНОСИТЕЛЕН. НАПРИМЕР, ДЛЯ ДЛИННЫХ ВОЛН, ВОЗНИКАЮЩИХ ПРИ ЗЕМЛЕТРЯСЕНИЯХ В ОКЕАНЕ, ЕГО СРЕДНЯЯ ГЛУБИНА (ОКОЛО 5 КМ) УЖЕ ОКАЗЫВАЕТСЯ МАЛОЙ. ВОЗНИКАЮЩИЕ В ЭТОМ СЛУЧАЕ ВЕСЬМА ОПАСНЫЕ ВОЛНЫ НОСЯТ НАЗВАНИЕ «ЦУНАМИ».

Для уединенных волн Рассел установил следующие свойства:

1) постоянство скорости и неизменность формы отдельной уединенной волны;

2) зависимость скорости v от глубины канала h и высоты волны а в виде v = √(g(a + h)), где g — ускорение свободного падения, при этом a < h;

3) распад достаточно большой волны на две (или более) уединенные волны;

4) наблюдаются только волны повышения.

Необходимо отметить существенное отличие волн на воде от звуковых, световых и радиоволн. Последние можно складывать на основе принципа Гюйгенса, они обладают свойством дифракции и интерференции.

При наложении двух когерентных волн возникает новая волна, форма которой определяется алгебраическим или векторным сложением двух первичных волн. Это свойство волн, как известно, лежит в основе радиосвязи и телевидения. На языке математики это вытекает из линейности уравнений, описывающих эти волны.

Это значит, что к одному решению можно прибавить другое и получить новое решение.

Если волны имеют малую амплитуду (высоту), то при некотором ее увеличении форма и скорость распространения волны не изменяются.

Для волн в жидкости это уже не соблюдается, т. е. складывать волны можно лишь очень малых амплитуд.

Если сложить волны Герстнера, то в этом случае мы не получим новой волны, которая могла бы реально существовать.

Таким образом, уравнения гидродинамики нелинейны.

Исследования акустических, световых и радиоволн с большой амплитудой выявили также их нелинейность. И лишь в середине нашего столетия, особенно после создания лазера, появились нелинейная оптика, нелинейная акустика, нелинейная радиофизика и другие «нелинейные науки».

ПОЧЕМУ УЕДИНЕННУЮ ВОЛНУ НАЗВАЛИ СОЛИТОНОМ?

Существует еще одна интересная особенность уединенной волны. Еще Рассел заметил, что две уединенные волны после столкновения полностью сохраняют свою форму и скорость движения. Однако от его внимания ускользнуло, что если взаимодействуют две волны — высокая и низкая, то большая замедляется и уменьшается, а малая — ускоряется и растет. Когда малая волна вырастет до размера большой, а большая соответственно уменьшится, то они отрываются друг от друга и далее бывшая малая уходит вперед, а бывшая большая отстает.

Короче говоря, уединенные волны проявляют очень большое сходство с частицами, т. е. две волны не проходят друг через друга: они сталкиваются и отталкиваются друг от друга подобно резиновым мячам.

Это обстоятельство (подобия уединенных волн и частиц) привело к тому, что в 1965 г. уединенная волна получила название солитона, созвучного электрону, протону, фотону и другим названиям элементарных частиц, подчеркивающего тем самым общность их волновых и корпускулярных свойств.

ЗАЧЕМ НАДО ИЗУЧАТЬ СОЛИТОНЫ?

Выдающийся ученый Герман Гельмгольц (1821–1894) сделал одно из фундаментальных открытий, казалось бы, в далеких друг от друга областях естествознания — физиологии и гидродинамике.

Им была измерена скорость распространения нервного импульса, в наше же время убедительно доказано, что нервный импульс есть не что иное, как своеобразная уединенная волна. Гельмгольцем было показано также, что вихри в воде обладают также свойствами, которые делают их похожими на частицы. Иначе говоря, вихри — это солитоноподобные возбуждения, и их исследование, изучение характера их взаимодействия имеют важное практическое значение.

Значение открытия солитона трудно переоценить. Были обнаружены вихри в космосе в виде спиральных структур гигантских галактик (к спиральным галактикам относится и наша Галактика). Существование вихрей в космосе позволило по-новому взглянуть на проблему рождения, эволюции звезд и галактик, т. е. способствовало новому подходу к решению ряда космических проблем, в частности появлению вихревой космогонии (космогония — раздел астрономии, в котором изучают вопросы происхождения и развития небесных тел).

СУЩЕСТВУЮТ ЛИ СОЛИТОНЫ В ТВЕРДОМ ТЕЛЕ?

Благодаря работам выдающегося советского ученого Я.И.Френкеля (1894–1952) была разработана атомная модель движущейся дислокации (модель Френкеля — Канторовой) — дислокации ФК, сыгравшей огромную роль в современной физике твердого тела, а следовательно, в современной науке и производстве, связанных с холодной и горячей обработкой металлов (ковкой, резанием, литьем и т. д.).

Общеизвестна модель строения большинства твердых тел, имеющих кристаллическую структуру. В узлах кристаллической решетки находятся атомы или ионы, совершающие колебательное движение относительно положения равновесия. Фундаментальная идея, высказанная Я. И. Френкелем, заключается в том, что некоторые атомы или ионы могут покидать узлы решетки и блуждать по кристаллу, а их место становится вакантным, т. е. пустым.

Это пустое место получило название вакансии; самое же важное в том, что она может также перемещаться по кристаллу подобно частице. По выражению самого Френкеля, эти вакансии можно рассматривать как своего рода «отрицательные атомы». Представление о вакансиях как частицах оказалось исключительно важным.

Оно было применено выдающимся физиком-теоретиком Полем Дираком в 1928 г. для создания теории антиэлектронов, т. е. позитронов. Впоследствии идея о вакансиях-дырках получила применение и в теории полупроводников.

Таким образом, согласно модели Френкеля — Канторовой, дислокация ФК — это особого рода дефект в кристаллической структуре твердого тела или солитон со всеми его особенностями.

Предельный случай дислокации — это вакансия в кристаллической решетке. Как уже отмечалось, она может перемещаться по кристаллу, но это перемещение может осуществиться тогда, когда какой-либо атом переместится на свободное место, преодолев силы притяжения со стороны окружающих его атомов. Гораздо легче осуществляется перемещение дефекта, в котором атомы вокруг вакансии также смещены. Этот дефект и есть дислокация, которая может перемещаться по кристаллу как частица, не изменяя своей формы.

ГДЕ ЕЩЕ ПРИМЕНЯЮТ СОЛИТОНЫ?

Наука о нелинейных колебаниях и солитонах является одной из самых молодых, ибо только в последнее десятилетие осознана общезначимость солитонов и сделан ряд физических и математических открытий, а сама теория солитонов появилась лишь во второй половине XX в. Потребуется, видимо, не менее 20–30 лет, чтобы наука о солитонах «окрепла и твердо стала на ноги».

То, что она имеет большое будущее, ни у кого не должно вызывать сомнений, так как нигде единство природы и универсальность ее законов не проявляются так наглядно и убедительно, как в колебательных и волновых процессах.

Оглянитесь вокруг! Везде вы столкнетесь с колебательным движением, а весь мир пронизан электромагнитными волнами. Колебания кустов и деревьев; качелей и маятника в часах; биение сердца и колебание зданий, станков и механизмов; колебательные процессы в телевизоре, саксофоне, океанском лайнере и самолете… И все это изучает единая наука — теория колебаний и волн, в которой все больший вес приобретают нелинейные процессы и эффекты.

Сейчас изучают солитоны в кристаллах, магнитных материалах, сверхпроводниках и живых организмах, в атмосфере Земли и планет, в Галактиках. Есть предположение о том, что элементарные частицы (например, протон) тоже можно рассматривать как солитоны, что могут существовать солитоны, несущие магнитный заряд.

Уже начинается применение солитонов для хранения и передачи информации, а это со временем может привести к существенным и даже революционным изменениям, например, в технике связи, принципах работы ЭВМ и других областях человеческой деятельности.

Нам трудно сейчас судить о других технических и промышленных возможностях использования солитонов. В жизни было много случаев, когда использование тех или иных теоретических и экспериментальных открытий было проблематичным. Даже великие Рентген и Герц не только не увидели, но и подвергли сомнению вероятность практического применения открытых ими целительных лучей и электромагнитных волн!

Итак, солитон — это волна. Но этот же солитон похож на частицу. Решение солитонного типа, как показано недавно советским физиком В. И. Патвиашвили, есть и у уравнений, описывающих атмосферу. Образование, которое соответствует этому решению, по своим свойствам очень близко антициклону. Там, где есть вихри, могут, следовательно, возникать солитоны. С другой стороны, сами вихри и более сложные объекты, построенные из вихрей, можно рассматривать как многомерные солитоноподобные образования.

В 1958 г. акад. Р. 3. Сагдеев показал, что уединенные волны могут распространяться и в плазме. Таким образом, изучая солитоны, мы входим в круг вопросов о самом мироздании, а в этом не только познавательный, но и глубокий философский аспект науки о солитонах.

 

6. К чему привело открытие электрона

Электрон — одна из электрически заряженных элементарных частиц класса лептонов, обладающая массой покоя 9,109534∙10-31 кг и отрицательным элементарным электрическим зарядом 1,6021829∙10-19 Кл, — был экспериментально открыт в 1897 г. известным английским физиком Дж. Дж. Томсоном, хотя идеи о существовании электрона высказывались многими учеными значительно раньше, а простейшие электрические и магнитные явления были известны еще в глубокой древности.

Само слово «электрон», как известно, по-гречески означает янтарь. Для обозначения электричества оно было введено У. Гильбертом в 1600 г., так как первые сведения об этой частице сводились к тому, что некоторые тела (например, янтарь) при трении «электризуются», т. е. начинают притягивать к себе легкие предметы.

РАССКАЖИТЕ ПОДРОБНЕЕ ОБ ИСТОРИИ РАЗВИТИЯ ЭЛЕКТРИЧЕСТВА И МАГНЕТИЗМА. ОНА ИНТЕРЕСНА ТЕСНЫМ ПЕРЕПЛЕТЕНИЕМ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ С ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИЕЙ ПОЛУЧАЕМЫХ РЕЗУЛЬТАТОВ.

Учение об электричестве, долгое время представлявшее собой совокупность несистематизированных фактов и противоречивых гипотез, за последние сто лет превратилось в одну из обширных, фундаментальных областей физики и современной техники.

К середине XIX в. основные экспериментальные законы, описывающие поведение электрических зарядов, были хорошо известны. Так, открытие Грэем электрической проводимости как будто бы подтверждало идею о том, что электричество фактически является «веществом» особого рода, веществом, которое может двигаться через проводники. Открытие Дюфе (1734) факта существования двух видов электричества осложнило проблему.

Природа этого «вещества» продолжительное время являлась предметом интенсивных теоретических и экспериментальных исследований.

Только в 1775 г. француз Ш. О. Кулон (1736–1806) поставил первый количественный эксперимент. В эти же годы разрабатывались и источники электрической энергии. Так, 1745 год отмечен изобретением лейденской банки, в 1782 г. появился конденсатор Вольта, а в 1801 г. — вольтов столб.

В начале XIX в. русский ученый В. В. Петров (1761–1834) изготовил гальваническую батарею большой мощности, что позволило получить в 1802 г. электрическую искру при разрыве цепи батареи. В место разрыва им были помещены угольки, дающие возможность получать яркое пламя. В. В. Петров использовал полученную дугу в качестве первого источника электрического освещения. Одновременно им было предложено использование электрической дуги для плавления металлов в так называемых дуговых печах. Эти открытия послужили началом создания нового прикладного направления в науке — электротехники.

А ДУГОВОЙ РАЗРЯД УСПЕШНО «РАБОТАЕТ» И СЕЙЧАС.

В настоящее время дуговой разряд используют в качестве мощного источника света в прожекторах, проекционных аппаратах и киноаппаратах. В металлургии широко применяют электропечи, в которых источником теплоты служит дуговой разряд. Дуговой разряд используют и для сварки металлов.

ВЕРНЕМСЯ К ИСТОРИИ. ВЕДЬ ИССЛЕДОВАНИЯ ЭЛЕКТРИЧЕСТВА ТЕСНО СВЯЗАНЫ С ИЗУЧЕНИЕМ СТРОЕНИЯ ВЕЩЕСТВА?

В начале XIX в. имелись веские доказательства того, что химические процессы и поведение газов можно наилучшим образом объяснить исходя из «атомной» структуры вещества. К 1825 г. казалось достаточно ясным, что тысячи различных химических соединений следует рассматривать как вполне определенные комбинации атомов сравнительно небольшого числа элементов.

Разложение воды с помощью электрического тока (гальванической батареи Вольта) на кислород и водород было воспринято как одно из доказательств того, что движущееся электричество фактически идентично электричеству, обусловленному трением (т. е. статическому электричеству), поскольку еще с 1750 г. было известно, что последнее может вызвать химическое разложение.

В 1833 г. Майкл Фарадей (1791–1867) установил законы электролиза, в основу которых были положены строгие количественные соотношения.

Было установлено, что между количеством электричества, прошедшего через раствор, и количеством выделенного на электродах вещества существуют определенные строгие соотношения. Может быть, и электрический заряд тоже состоит из отдельных «атомов электричества?» Тогда можно было бы предположить, что и каждый атом вещества несет с собой один или несколько «атомов электричества». И если это действительно так, то легко можно объяснить результаты опыта. Видимо, электрический заряд состоит из мельчайших неделимых порций положительного и отрицательного электричества.

Эти электрические частицы тесно связаны с атомами любых веществ. При растворении эти электрические частицы перемещаются от одного атома к другому. При этом одна частица имеет положительный заряд, другая — отрицательный. Такие заряженные частицы были названы ионами — от греческого слова «ион» — идущий, странствующий. Отсюда следовало, что электрический ток в растворах представлял собой два потока положительных и отрицательных ионов.

Работы Фарадея хотя и не дали научного ответа на природу электричества, однако послужили убедительным подтверждением предположения, что вещество по своей природе имеет атомную структуру и в процессе электролиза каждый атом получает вполне определенное количество электричества.

ЭЛЕКТРОЛИЗ ЖЕ С ТЕХ ПОР ПОЛУЧИЛ РАБОЧУЮ ПРОФЕССИЮ…

Электролиз широко применяют в настоящее время в технике для различных целей. Электрическим способом поверхности одного металла покрывают тонким слоем другого (никелирование, хромирование, омеднение и т. п.). Это прочное покрытие защищает поверхность от коррозии.

При помощи электролиза осуществляют очистку металлов от примесей. Так, полученную из руды неочищенную медь отливают в форме листов, которые затем помещают в ванну в качестве анодов. При электролизе медь анода растворяется, примеси, содержащие ценные и редкие металлы, выпадают на дно, а на катоде оседает чистая медь.

При помощи электролиза получают алюминий из расплава бокситов. Именно этот способ получения алюминия сделал его дешевым и наряду с железом самым распространенным в технике и быту металлом.

Если принять меры к тому, чтобы электрическое покрытие хорошо отслаивалось от поверхности, на которую осаждался металл, можно получить копию с рельефной поверхности. В полиграфической промышленности такие копии (стереотипы) получают с матриц. Процесс получения отслаиваемых покрытий (гальванопластика) был разработан русским ученым акад. Б. С. Якоби (1801–1874) в 1836 г.

РАССКАЖИТЕ ОБ ИССЛЕДОВАНИЯХ МАГНЕТИЗМА

Примерно за 10 лет до этого датский ученый X. X. Эрстед (1777–1851) открыл явление, связанное с возникновением магнитного поля в пространстве вблизи проводника с током (рис. 21, а — в). Араго и Ампер в 1820 г. подтвердили открытие Эрстеда. Они же изготовили первый соленоид для получения мощного источника магнитного поля. Задача превращения электричества в магнитное поле была решена.

Рис. 21. Эксперимент, подтверждающий, что вокруг с током образуется магнитное поле

Источник ЭДС отключен ( а ); в цепи протекает электрический ток ( б ); ток протекает в противоположном направлении ( в )

Далее Фарадей делает попытку найти аналогию между действием электрического тока и эффектом, известным в электростатике как «индукция заряда». Здесь отрицательно заряженный предмет, будучи поднесенным к незаряженному изолированному проводнику, притягивает положительные заряды ближайшей по отношению к себе части проводника и отталкивает отрицательные заряды. Фарадей задался целью: нельзя ли таким же образом с помощью одного тока вызвать появление другого тока?

Пытаясь проследить за возникновением индуцированного тока во второй цепи, он обнаружил возникновение только коротких импульсов тока, появляющихся в момент включения или выключения тока в первой цепи. Им же было обнаружено, что ток индуцируется в проводнике или в катушке с намотанным на нее проводником, если катушка движется относительно магнита (рис. 22) или если магнит перемещается относительно неподвижных витков катушки (рис. 23).

Рис. 22. Возникновение ЭДС при пересечении проводником силовых линий постоянного магнита

Рис. 23. Возникновение ЭДС при перемещении постоянного магнита по отношению к неподвижным виткам катушки

На основании полученных данных Фарадей ввел представление о линиях магнитной индукции (силовых магнитных линиях) (рис. 24).

Рис. 24. Распределение линий магнитной индукции (силовых линий) между двумя разноименными ( а ) и одноименными ( б ) полюсами

В том же десятилетии Георг Ом (1787–1854) установил соотношение между разностью потенциалов на проводнике и проходящим через него током. Таким образом, примерно к 1835 г. были сделаны основные открытия в области электричества и магнетизма, благодаря которым была заложена база развития электротехнической промышленности. Человечество вступило в новую эпоху — эпоху электротехники, электроники и гигантских электростанций.

Якоби в 1838 г. создал первую практическую модель электрической машины, которая могла работать или в режиме двигателя, или в режиме генератора. Резкий рывок в развитии электрических машин был получен благодаря заслугам русского ученого Доливо-Добровольского, который в 1885 г. изобрел совершенно новый тип машины — трехфазный асинхронный двигатель, который и в настоящее время является массовым двигателем.

КАКИЕ ТЕОРЕТИЧЕСКИЕ ОБОБЩЕНИЯ БЫЛИ СДЕЛАНЫ ТОГДА ИЗ ИМЕВШИХСЯ ЭКСПЕРИМЕНТАЛЬНЫХ ФАКТОВ?

Первым, кто достиг успеха в разработке фундаментальной теории электричества и магнетизма, был Дж. Максвелл (1831–1879).

По его мнению, понятие силовых линий, предложенных Фарадеем в качестве некоторого аналога для описания поведения магнитных полей, могло послужить основой для математической формулировки закона Ампера о взаимодействии магнитного поля с электрическим током. Максвелл обобщил закон Фарадея для индукции токов при изменении магнитных полей, связывающий напряженность электрического поля с электрическими зарядами, а также закон, описывающий обычные магнитные поля, и выразил их в виде математических уравнений.

Из анализа этих уравнений он смог сделать важный вывод: любое возмущение, названное им электромагнитной волной, обязанное существованию электрического и магнитного полей, должно распространяться в пространстве со скоростью 3∙108 м/с, т. е. со скоростью света.

Что это, случайное совпадение? Нет, Максвелл не верил в случайность. Он стремился в разных явлениях найти взаимную связь. И он сделал такой вывод: если электромагнитные волны движутся со скоростью света, значит свет — это тоже электромагнитная волна.

Примерно в 1885 г. Г. Герц (1857–1894) наряду с другими исследованиями попытался получить более точные теоретические обоснования уравнений Максвелла. Однако некоторые экспериментальные данные, полученные в то время, не могли быть объяснены. В частности, на протяжении XIX в. продолжались эксперименты по электролизу и предпринимались попытки построения теории для объяснения этих экспериментов. В 1881 г. немецкий ученый Гельмгольц писал: «Если мы примем гипотезу атомной структуры элементов, мы не можем не прийти к выводу о том, что электричество (как положительное, так и отрицательное) также разделяется на элементарные порции или атомы электричества».

Так существуют ли все же атомы электричества?

Изучая ионы различных веществ, ученые никогда не обнаруживали ионов с дробным элементарным зарядом.

Казалось бы, существует элементарный электрический заряд, который уже не делится на более мелкие части, или, другими словами, в природе действительно есть электрические атомы.

С помощью сконструированного прибора удалось доказать, что предполагаемый «электрический атом» несет в себе целое число элементарных зарядов, получивших название электронов. Однако природа электрона была все же не ясна.

В 1838 г. Фарадей, пропуская ток от электростатической машины через стеклянную трубку с воздухом при низком давлении, наблюдал фиолетовое свечение, исходящее из положительного электрода (анода). Это свечение распространялось почти до самого отрицательного электрода (катода) на другом конце трубки. Сам катод также светился, а между светящимся катодом и фиолетовым столбом имелось темное пространство.

НЕ ОТСЮДА ЛИ БЕРЕТ НАЧАЛО МНОГОЦВЕТЬЕ ВЕЧЕРНИХ УЛИЦ НАШИХ ГОРОДОВ?

Фиолетовый столб — это «дедушка» современных неоновых и флуоресцентных световых трубок. Окраска испускаемого такой трубкой света зависит от вида заполняющего ее газа. Неон при давлении приблизительно в одну сотую атмосферы испускает яркий оранжевый свет при пропускании через него тока, гелий — розовато-белый, пары ртути — зеленовато-голубой.

НАБЛЮДЕНИЕ ФАРАДЕЯ ПРИВЕЛО К СЕРЬЕЗНЫМ ТЕОРЕТИЧЕСКИМ ВЫВОДАМ.

Дальнейшие исследования показали, что между катодом и анодом распространяется излучение (названное катодным), представляющее собой поток электронов. Было установлено, что пробег катодного излучения в воздухе при нормальном давлении и нормальной температуре составляет примерно 1 см, и сделано смелое предположение: излучение состоит из частиц, являющихся компонентами атомов всех элементов.

Дж. Дж. Томсон писал: «Таким образом, катодные лучи представляют собой новое состояние вещества, существенно отличное от обычного газообразного состояния…; в этом новом состоянии материя представляет собой вещество, из которого построены все химические элементы».

Лоренц и Зееман предположили существование внутри атома маленьких заряженных частиц, вращающихся по орбитам внутри атома и способных испускать электромагнитные волны, к которым относится и свет.

На основании полученных уширенных спектральных линий удалось оценить значение отношения заряда к массе (е/m) предполагаемой составной частицы атома.

Было установлено, что действительная масса находящейся в атоме частицы составляет около 1∙10-8 массы атома. Примерно такая же масса получилась в расчетах Томсона для носителей электричества в катодных лучах.

1897 год, когда впервые была измерена масса электрона, принято считать датой открытия электрона.

ОТКРЫТИЕ ЭЛЕКТРОНА ПОМОГЛО ПОНЯТЬ СТРУКТУРУ АТОМА?

Начиная с 1897 г. стало ясно, что необходимо задуматься о структуре атома в целом, ибо открытие Зееманом частиц, обнаруженных в катодных лучах, еще не означало, что атом состоит только из таких частиц. Атом уже не мог больше рассматриваться как мельчайшая и самая фундаментальная частица.

Герц (1887) и Томсон (1897) экспериментально установили, что ультрафиолетовое излучение вызывает эмиссию отрицательно заряженных частиц из некоторых металлов (рис. 25).

Рис. 25. Принцип работы фотоэлемента

Измерения показали, что эти частицы по своим параметрам близки к частицам катодного излучения, т. е. в процессе эмиссии были обнаружены частицы, которые можно было отождествлять с катодным излучением. В те же годы Томсон определил массу отрицательно заряженных частиц, испускаемых нагретым до температуры плавления металлом, и значение отношения е/m обнаруженных частиц. Полученное отношение удовлетворительно согласуется со значением этого отношения для частиц катодных лучей.

Таким образом, изучение природы электрических явлений уже к 1890 г. дало возможность накопить много убедительных фактов, позволяющих утверждать, что электрон является составной частью атома. Теперь усилия физиков были направлены на изучение свойств электрона, ставились эксперименты и развивались теории, которые помогли бы осмыслить роль этой частицы в многочисленных химических и физических явлениях.

КАК ПОВЛИЯЛО ОТКРЫТИЕ ЭЛЕКТРОНА НА ДАЛЬНЕЙШЕЕ РАЗВИТИЕ НАУКИ?

Открытие электрона и логически связанные с ним открытия рентгеновского излучения и явления радиоактивности выявили новые возможности для экспериментальных исследований. Когда была усовершенствована техника эксперимента и увеличена точность наблюдений, стало ясно, что классические теории физики, например теория электромагнитных полей Максвелла, не способны объяснять поведение очень малых частиц. «Электрон так же неисчерпаем, как атом», — сказал В. И. Ленин в самом начале нашего века. И все дальнейшее развитие физики подтвердило мудрость ленинских слов. Но это стало возможным благодаря развитию современной теоретической физики.

В целом полученные теоретические и экспериментальные данные, достигнутые на основе квантовой механики, дали возможность ответить на следующие вопросы:

1) каким образом атомы поглощают или испускают излучение?

2) каковы свойства проводников, изоляторов и полупроводников?

3) какие существуют способы соединения различных атомов в молекулы? и т. д.

НУ, И КОНЕЧНО, НУЖНО ОБЯЗАТЕЛЬНО СКАЗАТЬ, ЧТО ДАЛО ОТКРЫТИЕ ЭЛЕКТРОНА ПРАКТИКЕ!

Следствием открытия волновой природы электронов стало изобретение Руденбергом в 1930 г. электронного микроскопа (рис. 26).

Рис. 26. Общий вид электронного микроскопа УЭМ-100

За годы, прошедшие со дня изобретения, электронный микроскоп стал незаменимым исследовательским прибором в медицине, в промышленности и в исследовательской работе.

Электрон используют в качестве «трудолюбивой рабочей лошади» в самых различных сферах. Построены различного рода установки, позволяющие ускорять электроны до энергии в несколько миллиардов электрон-вольт и с их помощью исследовать структуру вещества. Чтобы почувствовать масштаб этих цифр, достаточно вспомнить, что электроны в атомах, участвующие в процессах поглощения и испускания видимого света, а также в процессах химических взаимодействий между атомами, имеют энергии порядка нескольких электрон-вольт. В радиолампах электроны (рис. 27) достигают энергий нескольких сотен электрон-вольт.

Рис. 27. Трехэлектродная лампа ( а ) с нитью накала H , сеткой С , анодом А и изображения триода на радиосхемах ( б )

В катодно-лучевых или телевизионных трубках (рис. 28) энергия электронов равна примерно десяти тысячам электрон-вольт, а в некоторых современных рентгеновских установках она доходит до миллиона электрон-вольт. Современные ускорители позволяют получить энергию в тысячи и десятки тысяч раз больше, чем миллионы электрон-вольт (рис. 29).

С помощью полученных на ускорителях сверхбыстрых электронов можно изучать структуру протонов, нейтронов и других частиц.

Рис. 28. Схематическое изображение электронно-лучевой трубки

Рис. 29. Линейный ускоритель ионов до энергии 10 МэВ (Харьков)

ЭЛЕКТРОННАЯ ЛАМПА — ТЕМА ОСОБОГО РАЗГОВОРА…

Электронные лампы, или радиолампы — одни из наиболее широко применяемых электронных приборов. Одна из самых простых ламп имеет три электрода: катод, испускающий электроны, анод, который их улавливает, и сетку, которая находится между катодом и анодом и управляет электронами (см. рис. 27).

Впервые трех-электродная лампа была предложена французским изобретателем Луи де Форестом в 1906 г. Электронно-вакуумные лампы — усилители и детекторы — обязательная часть всех радиостанций. В настоящее время электронно-вакуумные приборы переживают «вторую молодость». Они вновь занимают свое место в бытовых высококачественных усилителях для воспроизведения звукозаписи и в радиоприемниках, предназначенных для работы в комплекте с ними (тьюнер), вместо транзисторных устройств, имеющих принципиальные недостатки. Мощные ламповые генераторы используют на заводах для поверхностной закалки деталей, плавки металлов, сушки дерева и т. п.

Достигнув металла, электроны в нем резко тормозятся, и вся кинетическая энергия превращается в тепловую. При этом луч создает на глубине 0,001—0,1 мм энергию в сотни раз большую, чем любой источник теплоты.

Применение электронного луча преобразовало всю технологию сварки.

ЗДЕСЬ ЭЛЕКТРОННЫЙ ЛУЧ ВЫСТУПАЕТ В КАЧЕСТВЕ ИНСТРУМЕНТА…

Новые возможности открыла электронная плавка. Она позволила путем расплавления и кристаллизации получать сверхчистые вещества. В таких веществах нуждается ракетная и атомная техника, да и сама электроника.

А вот электронный луч совсем в ином применении — с его помощью печатаются книги. Установка похожа на телевизор, но вместо экрана — бумажная лента, на которой луч прочерчивает строку за строкой. От него на бумаге остается заряд. Распыленная типографская краска и наэлектризованная бумага встречаются внутри камеры, бумага притягивает частички краски и текст проявляется, как на фотопленке.

Наиболее искусно электронами управляют в электронно-лучевых трубках (рис. 28). Такая электронно-лучевая трубка — основная часть телевизоров, радиолокаторов, фототелеграфа.

Электроника, радиоэлектроника и радиотехника, электронная оптика и электронная техника, электронография и электрооптика, электроорганический синтез и электрострикция — вот далеко не полный перечень наук и технических применений, предмет которых — процессы в приборах, основанные на движении электронов в вакууме и в веществе. Специальные области техники занимаются разработкой, производством и применением электронных приборов и устройств; в многочисленных научных институтах исследуют процессы, происходящие при формировании, распространении и фокусировке электронных и ионных пучков и т. д. Вот к чему привело открытие электрона.

 

7. Бездымная и бездоменная металлургия

— Ну что же, давайте пофантазируем, — подумает читатель, — когда-то это будет?

Однако заводы и комбинаты без высоких дымящих труб, без домен и мартенов — это не мечта, а реальность. Принципиальные изменения происходят сейчас даже в тех технологиях, которые, казалось бы, устоялись в веках. Причины тому — не только необходимость повышения качества металлопродукции, но и требования экологии: производство не должно отравлять окружающей среды.

Одним из реальных шагов в выполнении решений XXV–XXVII съездов КПСС о повышении качества металлопродукции является создание Оскольского электрометаллургического комбината (ОЭМК) (г. Старый Оскол Белгородской области). Но прежде чем говорить об особенности работы,

ДАВАЙТЕ СНАЧАЛА ВСПОМНИМ О ТРАДИЦИОННОМ СПОСОБЕ ПОЛУЧЕНИЯ СТАЛИ.

Металлургическое производство возникло на заре развития человеческого общества. В древности железо получали не в жидком, а в размягченном состоянии в сыродувных горнах, где в качестве топлива использовали древесный уголь (рис. 30, а).

По мере развития техники и увеличения потребности в металлах для получения железа использовали более высокие горны, а для подачи воздуха в горн стали применять воздуходувные устройства (рис. 30, б). Это привело к ухудшению механических свойств полученного сплава. Металл стал хрупким, но с хорошими литейными свойствами. Этот сплав был назван чугуном. При таком способе производства появилась возможность для хорошего отделения отходов (шлаков) от металла.

Сначала чугун выбрасывали, а с XIII в. начали вторично переплавлять с рудой (рис. 30, в).

Рис. 30. Способы выплавки железа:

а — древний горн для получения железной крицы;  б — горн с воздушным дутьем (XVI в.); в — доменная печь (конец XVIII в.)

Полученный сплав, в котором углерода, кремния, марганца и некоторых других элементов содержалось меньше, чем в чугуне, назвали сталью. Так зародился двухступенчатый способ производства железа из руды: сначала в шахтной печи — домнице (домне) выплавляли железоуглеродистый сплав — чугун, а затем его перерабатывали на сталь в так называемых кричных горнах.

Значительно позже, вероятно, лишь в XIV в., чугун начали использовать еще и для литья готовых изделий.

Такая двухстадийная схема производства стали и в настоящее время является основной. Техника выплавки чугуна и производства стали постепенно совершенствовалась и развивалась. В частности, с 1735 г. для выплавки чугуна стали применять твердое топливо — кокс. Кокс получают путем сухой перегонки специальных сортов (коксующихся) каменных углей без доступа воздуха при температуре 1000–1100 °C в так называемых коксовых батареях. С 1828 г. для ускорения процессов получения чугуна в доменном производстве стали применять дутье нагретого до 1000–1200 °C воздуха. Крупным усовершенствованием доменного процесса стало обогащение воздушного дутья кислородом (до 30 %), а также использование в качестве топлива природного газа.

КАК ГОТОВЯТ РУДУ К ПЛАВКЕ?

Перед плавкой железные руды подвергают специальной обработке с целью увеличения содержания железа в шихте, повышения ее однородности по крупности кусков и химическому составу.

Руда в основном проходит следующие стадии подготовки: дробление и сортировку по классам крупности, обогащение, усреднение, окускование.

Крупность добываемых руд в естественном виде очень различна. При открытой добыче размер отдельных кусков достигает 1000—12 000 мм, а при подземном — 300–800 мм. Для дальнейшего использования руда такой крупности должна быть предварительно подвергнута дроблению (рис. 31, а — г).

Рис. 31. Схематическое изображение основных способов дробления: раздавливание ( а ), истирание ( б ), раскалывание ( в ), удар ( г )

Применяемые в настоящее время дробильные устройства позволяют получать продукт крупности до 6—15 мм. Однако такая руда плохо поддается обогащению. В целях улучшения процесса обогащения раздробленная руда проходит еще стадию помола. Размеры кусков руды после такого измельчения в среднем равны 1 мм. Для тонкого измельчения применяют главным образом мельницы, в которых удар сочетается с истиранием. В качестве дробящих тел применяют шары и стержни, а иногда твердые окатанные куски горной породы (гальку). В процессе вращения барабана (рис. 32) и происходит разбивание шарами кусков руды с одновременным истиранием.

Рис. 32. Схематическое изображение шаровой мельницы

Измельченная руда через решетку поступает в разгрузочное устройство.

Дробление и измельчение руды — энергоемкий и дорогостоящий процесс. На горных обогатительных фабриках (ГОК) стоимость процесса дробления и измельчения руды составляет от 35 до 70 % расходов на весь цикл обогащения, а стоимость дробильных устройств достигает 60 % стоимости оборудования фабрики.

Под обогащением руд понимают такой процесс обработки полезных ископаемых, целью которого является повышение содержания полезных примесей путем отделения рудного минерала от пустой породы. Все применяемые на практике способы обогащения руд являются, по существу, их механической обработкой и основаны на использовании различий в физических и физико-химических свойствах слагающих руду минералов.

В процессе обогащения руда проходит следующие стадии обработки: а) промывка водой с целью отделения песчано-глинистой породы и отделения веществ с существенно меньшей плотностью, чем металл; б) применение магнитной сепарации, основанной на использовании наличия у железосодержащих минералов магнитной восприимчивости. Обогащенная руда проходит при этом дальнейший процесс распределения (усреднения) по размерам.

Очищенная (обогащенная) руда перерабатывается в кусковые материалы необходимых размеров агломерацией или окатыванием.

Агломерация заключается в спекании руды (40–50 %), известняка (15–20 %) при температуре 1300–1500 °C в специальных агломерационных машинах. При этом из руды удаляется часть примесей, в ней разлагаются карбонаты, при этом образуется пористый офлюсованный материал — агломерат.

Вторым возможным продуктом являются окатыши. Процесс производства окатышей впервые был опробован в нашей стране в 1936 г. Тонко измельченный концентрат вместе с флюсами и топливом увлажняют и загружают во вращающуюся чашу (гранулятор) или в пустотельный барабан, где и образуются окатыши — шарики диаметром 25–30 мм. Готовые окатыши высушивают при 1200–1350 °C. Основная цель обжига окатышей сводится к упрочнению их до такой степени, чтобы они в дальнейшем выдерживали транспортировку, перегрузку и доменную плавку без значительных разрушений.

ИТАК, РУДА ПОДГОТОВЛЕНА К ПЛАВКЕ И ЗАГРУЖЕНА В ДОМНУ ЧТО ПРОИСХОДИТ ДАЛЬШЕ?

Доменная печь работает по принципу противотока: шихтовый материал движется сверху вниз, а навстречу ему поднимается поток горячих газов — продуктов сгорания топлива. При этом протекают следующие процессы: горение топлива, восстановление и науглероживание железа, восстановление других элементов, образование шлаков.

Основным продуктом доменного процесса является чугун. В зависимости от химического состава и назначения чугуны делят на передельные, которые предназначены для передела их в сталь, и литейные, предназначенные для переплава и получения фасонных отливок. Кроме чугуна доменный процесс позволяет получать ферросплавы — железо с повышенным содержанием других элементов.

Как говорилось выше, чугун отличается большой хрупкостью и поэтому не нашел широкого применения в современном машиностроении. Механические свойства чистого железа, в частности его прочность, ниже подобных свойств сплавов железа. В чистом виде железо — дорогой материал, и обычно его используют для специальных целей.

В технике и в быту в основном используют сталь. Значение стали в народном хозяйстве чрезвычайно велико. Нельзя назвать практически ни одной отрасли хозяйства, где бы ее не применяли. Уровень экономической мощи государства определяется в значительной степени количеством выплавленной стали. Годовое производство стали, приходящееся на душу населения в странах с развитой промышленностью, составляет 400–600 кг и более. В СССР на душу населения в настоящее время выплавляется около 600 кг стали в год.

КАКИМ ОБРАЗОМ ЧУГУН ПРЕВРАЩАЮТ В СТАЛЬ?

Техника производства стали в основном отработана в XIX в.

При любом сталеплавильном переделе чугуна в сталь происходит избирательное окисление примесей чугуна с переводом их в шлак и газы.

Простой и дешевый способ получения стали в больших количествах продувкой чугуна воздухом был предложен в 1855 г. английским механиком Бессемером.

Продувку чугуна вели в агрегате — конвертере. Такой способ получения стали называют конвертерным (бессемеровским).

В 50-х годах XX в. в ряде стран были разработаны и внедрены многочисленные варианты конвертерного процесса с применением кислорода. Эти процессы получили названия кислородно-конвертерных процессов.

Исходным сырьем для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом, а также незначительное количество железной руды, извести, бокситов и других веществ.

В 1864 г. во Франции братьями Мартенами был осуществлен процесс переплавки чугуна и железного лома в сталь в так называемых регенеративных плазменных печах.

Способ получения стали в таких печах получил название мартеновского. Температура в такой печи достигает 1750–1800 °C за счет сгорания газа над плавильным пространством.

Во второй половине XIX в. появились предложения по использованию для плавки стали электрической энергии. В конце XIX — начале XX в. в ряде стран были созданы и пущены в эксплуатацию электропечи. Особенно бурными темпами электросталеплавильное производство развивается в последние десятилетия.

В настоящее время основными способами выплавки стали являются конвертерный (более 55 %), мартеновский (около 20 %), электроплавильный (около 25 %).

Количество стали, выплавляемой в конвертерах и крупных электропечах, непрерывно возрастает, соответственно доля стали, выплавляемой в мартеновских печах, постепенно уменьшается.

Помимо вышеназванных способов производства стали существует ряд способов выплавки стали более дорогих и менее производительных, но обеспечивающих получение металла очень высокого качества с особыми свойствами. К ним относятся вакуумно-дуговой переплав, вакуумно-индуктивный переплав, переплав в электро-лучевых, плазменных печах и др.

Поскольку в этих процессах осуществляется переплав стали, предварительно выплавленной каким-либо способом, такие процессы часто называют переплавными.

Сегодня производство стали переплавными методами достигло приблизительно 1,0 % от его общего производства. Возможно, вскоре мы можем стать свидетелями появления совершенно новых технологий.

НЕ ТАКОЙ УЖ КОРОТКОЙ ОКАЗАЛАСЬ ЦЕПОЧКА ОТ ДОБЫЧИ РУДЫ ДО ВЫПЛАВКИ СТАЛИ…

Как следует из сказанного выше, современное производство черных металлов включает в себя:

1) шахты по добыче руд и каменного угля;

2) горно-обогатительные комбинаты, где осуществляется дробление и обогащение руд, окускование богатых концентратов;

3) коксохимические цехи или заводы с отделениями для подготовки углей, их коксование и извлечение из них химических продуктов;

4) энергетические цехи для получения кислорода, сжатого воздуха и очистки газов металлургического производства;

5) доменные цехи для выплавки передельного и литейного чугуна, а также некоторых ферросплавов;

6) сталеплавильные цехи для производства стали;

7) заводы для производства различных ферросплавов;

8) прокатные цехи.

Рассмотренный традиционный способ получения стали требует больших затрат труда, времени, тепловых и материальных ресурсов. При этом необходимо учитывать и то, что сталеплавильное производство является одним из самых интенсивных загрязнителей атмосферы.

Возникли определенные сложности в замене кокса в доменном процессе более дешевыми видами энергии — природным газом, нефтепродуктами и некоксующимися углями. Под влиянием этих факторов (экономика и экология) в начале 50-х годов нашего столетия во многих странах начали работать над получением металла способом прямого восстановления железа непосредственно из руды и передела его в сталь в электродуговых печах.

Методы прямого получения железа из руды известны давно, но до сих пор не нашли широкого применения. Опробовано более 70 различных способов прямого восстановления железа, но лишь немногие из них осуществлены в промышленных масштабах.

Под процессами прямого восстановления железа понимают такие химические, электрохимические и химико-термические процессы, которые дают возможность получать железо непосредственно из руды минуя доменную печь. Такие процессы, во-первых, можно вести, не расходуя металлургический кокс, и, во-вторых, они позволяют получать очень чистый металл. Получение за способом прямого восстановления непосредственно из руды исключает необходимость строительства доменных печей, а следовательно, дает возможность обойтись без дорогого доменного и коксохимического производства.

В последние годы интерес к этой проблеме возрос еще и потому, что помимо возможности замены кокса другими видами топлива разработаны технологические процессы очень глубокого обогащения руд, обеспечивающие не только получение высокого содержания железа в концентратах, но и почти полное освобождение его от серы и фосфора.

НО ВЕДЬ РУДЫ РАЗНЫХ МЕСТОРОЖДЕНИЙ ОТЛИЧАЮТСЯ ДРУГ ОТ ДРУГА?

Хорошими свойствами обладают руды Курской магнитной аномалии (КМА). Прежде всего это гигантская природная кладовая железных руд. Природа накопила здесь многие миллиарды тонн отличного металлургического сырья — свыше половины разведанных запасов железа всего земного шара. Богатые железные руды КМА являются первоклассным металлургическим сырьем, в них содержится 55–63 % железа и более. Они могут без обогащения направляться на плавку в доменные печи после их дробления и сортировки до кондиционных размеров.

Содержание железа в кварцитах составляет 30–36 и даже 40 %, а остальное — это кварц. Поэтому перед использованием кварцитов они должны пройти процесс обогащения на ГОК.

Достоинством богатых руд КМА является то, что они легко восстановимы, а железистые кварциты легко обогащаются методом магнитной сепарации. Руды эти, как правило, чистые по фосфору (0,09 %) и содержат только 0,1–0,6 % серы. На Лебединском месторождении КМА этих вредных веществ еще меньше. При доменном же процессе эти вещества (фосфор и сера) вносятся в большом количестве коксом.

НА КОНКРЕТНОМ ПРИМЕРЕ РАССКАЖИТЕ, КАК ПРОХОДИТ ПРОЦЕСС ПРЯМОГО ВОССТАНОВЛЕНИЯ ЖЕЛЕЗА.

В настоящее время на базе КМА построен Оскольский электрометаллургический комбинат, рассчитанный на выпуск более 4 млн. т высококачественной стали в год. Он работает на железе, полученном прямым восстановлением из руды. В отличие от традиционной металлургии для производства стали здесь используют не коксующийся уголь, а природный газ и электроэнергию.

В настоящее время комбинат выходит на проектную мощность, а его цехи и службы размещены на площади около 70 га.

Технологическая схема процесса бездоменного получения стали приведена на рис. 33.

Рис. 33. Схема процесса бездоменного получения стали

Сырьем для получения стали служит концентрат с 70 % железа, полученный на обогатительном комбинате 1 и в виде пульпы перекачанный по трубопроводу 2 длиной 27 км под давлением 1∙107 Па в цех окомкования, т. е. в цех по производству окатышей. После отстоя пульпы образовавшийся осадок концентрата обезвоживают на дисковых вакуум-фильтрах 3–4, смешивают в барабанном окомкователе 4–5.

Полученные окатыши обжигают в печи 6 с одновременным их окислением, т. е. с увеличенным содержанием кислорода. Окисленные окатыши поступают в цех 8 металлизации, в котором получают металлизованные окатыши. В этом цехе в шахтной печи происходит процесс прямого восстановления железа. Снизу в печь поступает под давлением газ-восстановитель с температурой 760 °C, образующийся в установке (реформере) 7 в процессе взаимодействия природного, состоящего в основном из водорода и колошникового (оксид углерода) газов.

Процесс освобождения окатышей от кислорода и восстановления в них железа заключается в том, что газ отнимает кислород от окатышей, при этом вместо окисленных окатышей получают почти чистое железо, а также воду и углекислый газ как отходы производства.

После такого технологического процесса содержание железа в окатышах с 67–70 % повышается до 90–95 %, т. е. окатыши становятся состоящими как бы сплошь из металла — железа. Содержание углерода в полученных металлизованных окатышах составляет от 0,2–0,5 до 2 %. Кроме того, имеется незначительное количество невосстановленных оксидов железа, пустой породы и других примесей. Это облегчает процесс выплавки и получения стали высокого качества и высокой степени чистоты.

Металлизованные охлажденные окатыши непрерывно выгружают в бункер емкостью около 5 тыс. т, где их хранят в инертной атмосфере перед плавкой в дуговых печах. В технологический процесс добавляют стальной лом (30–40 % от массы шихты), который загружают в электропечь в начале процесса.

Окатыши поступают в электропечь 9 (см. рис. 33) емкостью 150 т, где под действием электрической дуги расплавляются, металл очищается от примесей, а затем его разливают (10). По ходу плавления в печь загружают известь и другие вещества для получения качественной легированной стали требуемого состава. Полученные слитки подогревают в печи 11 и прокатывают на валках 12.

ЧТО ДАЕТ ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОПЕЧЕЙ?

При традиционном способе «доменная печь — конвертер» можно получить менее ценные виды стали.

По сравнению с другими плавильными агрегатами электропечи обладают рядом преимуществ. В них можно:

а) быстро достигать заданной температуры до 2000 °C и поддерживать ее. Это позволяет вводить в печь большие количества легирующих добавок;

б) создавать окислительную, восстановительную или нейтральную атмосферу, а также вакуум;

в) плавно и точно регулировать температуру металла;

г) получать сталь с низким содержанием серы и др.

В связи с тем что в дуговых печах выплавка стали обходится несколько дороже, чем в мартеновских и конвертерных, они до недавнего времени служили только для выплавки легированных и высококачественных сталей, которые трудно получать в других печах. Однако с увеличением емкости печи снижается и себестоимость полученной стали, а поэтому удельный вес электростали в общей выплавке стали в мире непрерывно растет.

КАК РАБОТАЕТ ЭЛЕКТРОПЕЧЬ?

Источником теплоты в таких печах служит электрическая дуга, возникающая между электродами. Температура дуги превышает 3000 °C.

Общий вид электропечи представлен на рис. 34, а схематическое ее изображение — на рис. 35.

Рис. 34. Дуговая сталеплавильная печь емкостью 200 т

Рис. 35. Схема дуговой электропечи

Плавку стали ведут в рабочем пространстве, ограниченном сверху куполообразным сводом 1, снизу — сферическим подом 6, с боков — стенками 2. Через три симметрично расположенных в своде отверстия в рабочее пространство вводят токоподводящие электроды 9, которые с помощью специального механизма могут перемещаться вверх и вниз. Электроды изготовляют из углерода в виде цилиндрических секций диаметром от 100 до 610 мм и длиной до 1500 мм. Печь питается от источника трехфазного тока с рабочим напряжением на электродах 100–800 В. Электрическая дуга 5 возникает между электродами и жидким металлом или металлической шихтой. Готовую сталь и шлак выпускают через отверстие 4 и желоб 3, для этого печь наклоняют. Рабочее окно 7, закрываемое заслонкой 8, предназначено для контроля за ходом плавки, ремонта и загрузки материалов.

Под днищем печи устанавливают специальное устройство — вытянутый сердечник (статор) с двумя обмотками. Обмотки статора питаются двухфазным током низкой частоты (0,5–2 Гц), с помощью которого в металле создают бегущее магнитное поле. Взаимодействие перемещающегося магнитного потока с наводимыми им в металле вихревыми токами вызывает перемещение металла.

НАВЕРНОЕ, НА ЭТОМ КОНКРЕТНОМ ПРИМЕРЕ МОЖНО СРАВНИТЬ БЕЗДОМЕННУЮ МЕТАЛЛУРГИЮ С ОБЫЧНОЙ?

Эксплуатация Старооскольского электрометаллургического комбината дает возможность сделать некоторые выводы.

Капитальные затраты на производство металлизованных окатышей — более чистого заменителя передельного чугуна — здесь сопоставимы с затратами на производство чугуна в цехах с доменными печами объемом 5000 м3 и меньше. С увеличением единичной мощности печей металлизации новая металлургия по этому показателю не уступит лучшим достижениям традиционной металлургии.

Капитальные затраты в электроплавильных цехах находятся на одном уровне с затратами в современных электросталеплавильных цехах, работающих на металлоломе.

Затраты труда на производство металлизованных окатышей здесь ниже, чем на большинстве металлургических предприятиях страны. Это обусловлено заменой железнодорожного транспорта конвейерным, автомобильным или трубопроводным, исключением коксохимического производства, снижением температуры процесса, отсутствием жидких продуктов плавки — чугуна и шлака — и связанных с ними трудозатрат.

Резко улучшаются условия труда, так как процесс поддается автоматизации и управлению при помощи ЭВМ.

В настоящее время на комбинате управление непрерывным процессом окомкования осуществляют при помощи микропроцессорной техники, успешную работу которых обеспечивают электронщики. Так, технологическим процессом окомкования, металлизации и водоснабжения управляют 13 свободнопрограммированных и 54 жесткопрограммированных микропроцессоров. Технологией сталеплавильного цеха и сталепрокатных станов управляют 51 ЭВМ, 238 свободнопрограммированных и 86 жесткопрограммированных микропроцессоров.

Электрометаллургия оказывает незначительное влияние на окружающую среду. Она практически не загрязняет ее соединениями серы, фенолами, циамидами, пылью — неизбежными спутниками традиционной металлургии.

Повышение качества металлопродукции, увеличение производительности и улучшение условий труда металлургов, хорошая защита окружающей среды, снижение затрат ставят бескоксовую металлургию в число интенсивных способов получения сталей.

 

8. Полупроводниковая техника

Стоит ли здесь говорить о том, что в целом ряде электрических приборов теперь применяют полупроводники?

Едва ли для кого-нибудь это является открытием.

С первых шагов изучения электрических явлений и применения их на практике использовали материалы двух категорий: проводники и изоляторы.

Были известны и такие материалы, которые по своим свойствам не подходили ни к той, ни к другой категории. Их назвали полупроводниками, хотя с таким же успехом могли назвать и полуизоляторами. Подобными свойствами обладают чистые элементы: кремний, селен, германий, теллур. Такие же свойства имеют оксиды и сплавы некоторых металлов.

Свойства полупроводников были известны давно. Но ни электротехника, ни электроника долгое время не проявляли к ним интереса.

РАССКАЖИТЕ О ПЕРВЫХ ПРИМЕНЕНИЯХ ПОЛУПРОВОДНИКОВ

Сначала нашли себе применение некоторые оксиды, в частности два кристалла: цинкит и халькопирит. Было обнаружено (1874), что эти кристаллы обладают чудесным качеством — они могут выпрямлять переменный электрический ток.

В самых первых радиоприемниках для детектирования использовали настоящие полупроводники. Так, А.С.Поповым в 1895 г. был применен порошковый когерер, в котором использовались нелинейные свойства зернистых систем. Однако объяснить, почему только отдельные точки кристалла могли выделять звуковые сигналы и вообще почему эти кристаллы детектировали сигналы, долгое время не удавалось.

В этот период успешно развивалась техника электровакуумных приборов, которые позволяли выпрямлять и усиливать электрические сигналы.

Очень долго ламповые диоды и триоды удовлетворяли запросы всех областей техники. Но по мере перехода в высокочастотный диапазон так называемая паразитная емкость, существующая между катодом и анодом и другими составными элементами вакуумных ламп, оказывала все большее и большее влияние на их работу. Вот тут и вспомнили о кристаллах.

Впрочем, был еще один эпизод, когда кристаллы нашли практическое применение. В 1922 г. сотрудник Нижегородской лаборатории Бонч-Бруевича О. В. Лосев впервые в истории электроники получил усиление без применения ламп. Основой прибора, который Лосев назвал кристодином, был полупроводниковый кристалл.

Американский журнал «Радио Ньюс» и другие называли кристодин «изобретением, делающим эпоху», и предрекали, что кристаллы со временем займут место вакуумных ламп.

Но в те годы этого не случилось. Электронная лампа удовлетворяла запросы, период расцвета вакуумной техники еще только начинался.

Что касается полупроводниковых кристаллов, то наука в то время только приступала к изучению их структуры, а техника еще не могла создать для нужд электроники чистые, лишенные примесей кристаллы.

СНАЧАЛА СТАЛИ ИСПОЛЬЗОВАТЬ ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ?

В годы Великой Отечественной войны были разработаны точечные высококачественные и сверхвысококачественные германиевые и кремниевые диоды. Это позволило значительно повысить качество работы радиолокационных станций. В 1942 г. в СССР был начат выпуск полупроводниковых термоэлектрических генераторов для непосредственного преобразования тепловой энергии в электрическую. Термогенераторы использовали для питания переносных радиостанций партизанских отрядов.

Создание и производство этих и многих других приборов стало возможным благодаря фундаментальным теоретическим и экспериментальным исследованиям свойств полупроводников, проведенным группой ученых под руководством академика А. Ф. Иоффе, а также учеными Ториката и Йокояма (Япония), К.Брауном (Германия) и Иклзом (Англия). Физики уже понимали, что в кристаллах можно создать ток разной природы: либо поток отрицательных электронов, либо движение «положительных зарядов».

Техники научились получать чистые кристаллы кремния и германия, а затем добавлять в них нужные примеси, создающие n- и р-проводимости.

Чтобы представить себе, чего стоила эта победа, достаточно привести следующие цифры: в кристаллах, употребляемых для создания полупроводниковых приборов, допускается лишь один атом примесей на один миллиард атомов германия или один атом примесей на 1000 миллиардов атомов кремния!

ПОТОМ ПРИШЛА ОЧЕРЕДЬ ПОЛУПРОВОДНИКОВОГО ТРИОДА?

Первый полупроводниковый триод был создан в 1948 г. американскими учеными Д. Бардином и В. Браттейном. В кристалл германия, обладающий n-проводимостью, были впаяны два точечных контакта с р-проводимостью. Впоследствии такие триоды получили название точечных. Первый образец плоскостного триода был создан В. Шокли в 1951 г. (рис. 36).

Рис. 36. Плоскостной ( а ) и точечный ( б ) полупроводниковые триоды

Мир оценил значение этих открытий. Нобелевская премия, выданная создателям первых полупроводниковых триодов, ознаменовала этот важный этап. В 50-х годах были разработаны разнообразные типы транзисторов, мощных германиевых и кремниевых выпрямительных диодов, тиристоров, фотодиодов, кремниевых фотоэлементов, туннельных диодов и других полупроводниковых приборов.

Полупроводниковые приборы нашли широкое применение в различных отраслях народного хозяйства. В настоящее время трудно представить жизнь современного человека без телевидения, радио. В телевизорах, радиоприемниках, магнитофонах и других бытовых приборах нашли широкое применение полупроводниковые приборы.

ГДЕ ПРИМЕНЯЮТ ФОТОДИОДЫ?

Полупроводниковый диод нашел себе применение во множестве областей. Так, фотодиоды используют для преобразования световой энергии в электрический ток. На многих установках и обрабатывающих станках стоят фотодиоды, обеспечивающие безопасность рабочего: стоит лишь по рассеянности протянуть руку в опасную зону, как световой луч прерывается и сигнал фотодиода мгновенно останавливает станок.

Фотодиоды в сочетании с электрическими счетчиками ведут учет изготовленной продукции или количества пассажиров в метро. Они могут вести контроль за некоторыми параметрами изготовляемой продукции. С помощью полупроводниковой техники в настоящее время электроэнергию можно получать непосредственно из различных форм лучистой энергии — радиоактивной или тепловой. Солнечные батареи очень удобны для спутников: в космосе никогда не бывает пасмурно. Если полупроводниковый диод расположить рядом с радиоактивными материалом, получим атомную батарею, которая способна давать электрическую энергию в течение многих лет.

НЕТ ТАКОГО МЕСТА, ГДЕ НЕ ИСПОЛЬЗУЮТ ПОЛУПРОПРОВОДНИКИ?

До изобретения полупроводникового триода физика твердого тела была главным образом теоретической университетской наукой и являлась областью исследований специализированных институтов и лабораторий. На примере стремительного развития исследований полупроводников видно, как могут взаимно обогатить друг друга «чистая» наука и практические разработки. Областей применения полупроводников существует сейчас так много, что даже простой перечень их занял бы много страниц.

Полупроводниками интересуются специалисты множества областей. И не только специалисты. Полупроводники нужны всем. Научно-технический прогресс немыслим без электроники, использующей полупроводниковые приборы. В свою очередь, интенсивное развитие электроники связано с появлением новых разнообразных полупроводниковых приборов и интегральных схем, которые находят широкое применение в автоматике, радиотехнике, телевидении, в измерительной технике, биологии, в вычислительной технике и т. д.

ЧЕМ ЖЕ ОБУСЛОВЛЕН ТАКОЙ ИНТЕРЕС К ПОЛУПРОВОДНИКОВОЙ ТЕХНИКЕ?

Главным достоинством полупроводниковых устройств, вызвавшим такой большой интерес практиков, является возможность создания в малом пространстве многофункциональных элементов и целых схем, работающих практически безынерционно. Компактность и быстродействие полупроводников позволили перейти на качественно новый уровень исследований и работы, просто невозможный до «полупроводниковой эры». Яркий тому пример — ЭВМ. Только с использованием в них элементной базы на полупроводниках стали они тем, чем являются сейчас, — подлинным катализатором научно-технического прогресса.

Использование полупроводников позволило уменьшить размеры, а также вес радиоэлектронной аппаратуры в десятки и сотни раз, резко увеличить ее надежность.

При создании полупроводниковых устройств с заданными свойствами можно управлять распределением электроактивных примесей (мышьяка, бора, алюминия и т. д.) в кристаллических решетках чистых кристаллов и тем самым создавать в них микрозоны, выполняющие роль диодов, триодов, конденсаторов, сопротивлений, т. е. размещать всю сложнейшую радиоэлектронную схему в одном миниатюрном кристалле. Когда эта задача будет осуществлена полностью, представится возможность не собирать из отдельных деталей, а, что называется, выращивать целиком электронно-вычислительные машины, телевизоры и средства связи.

Влияние, которое оказала полупроводниковая электроника на столь многие отрасли науки и техники, явилось, как мы уже говорили, прямым результатом появления возможности обработки с ее помощью огромного количества информации любого сорта. На первых этапах автоматизация производства и процессов контроля развивалась медленно из-за опасения, что производство окажется в зависимости от центральной ЭВМ, и из-за высокой стоимости управляющих звеньев.

И ЭТУ СТОИМОСТЬ УДАЕТСЯ ПОНИЗИТЬ?

Непрерывное понижение стоимости одной вычислительной операции достигается путем размещения на одной пластинке кремния все большего числа компонентов — диодов, транзисторов, конденсаторов и резисторов. Этому способствуют развитие физики твердого тела и совершенстование технологических процессов изготовления кремниевых пластин, на некоторых из них сейчас можно разместить больше действующих элементов, чем их содержало самое сложное электронное устройство в 60-е годы. Так, если в 1960 г. монокристалл кремния содержал одну деталь схемы, в 1965 г. — 10, в 1970 г. — 1000, то к 1975 г. — уже 32 000. И если нынешние темпы повышения сложности схем будут сохраняться, то через 20–30 лет могут появиться схемы (из называют интегральными) с числом элементов порядка 109.

При этом стоимость одного монокристалла повышалась весьма умеренно и стоимость одного элемента резко упала. Поэтому легко понять, почему полупроводниковая электроника не только сделала возможным создание очень больших вычислительных машин, но и проникла во многие отрасли народного хозяйства. Это позволило контролировать и собирать информацию даже от отдельных небольших этапов технологического процесса.

ЭТИМ ЗАНИМАЮТСЯ МАЛЫЕ И ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ?

Малые компьютеры, скомпонованные, приспособленные и запрограмированные для выполнения конкретных задач, стали теперь повсеместной принадлежностью лабораторий, промышленных предприятий. Однако возможности одного персонального компьютера ограничены. В инженерной практике существуют задачи различной, в том числе и большой, сложности.

Персональный компьютер можно сделать частью вычислительной системы (сети), включающей в себя много компьютеров. Каждый из них будет что-то делать сам, а другие данные получать от других частей системы.

Компьютеризация большинства сфер нашей деятельности — необходимейшая и неотложная задача. Для ее решения нам предстоит ликвидировать так называемую компьютерную неграмотность и научить практически все население страны пользоваться вычислительной техникой.

КАКОВЫ ОСОБЕННОСТИ СОВРЕМЕННОГО ЭТАПА РАЗВИТИЯ ПОЛУПРОВОДНИКОВОЙ ТЕХНИКИ?

Этот этап характеризуется в нашей стране большим объемом научно-исследовательских и технологических работ, направленных на дальнейшее совершенствование имеющихся и создание новых полупроводниковых приборов.

В последние десятилетия были проведены фундаментальные исследования тонких поликристаллических полупроводниковых пленок. Особенно обещающим является внедрение полупроводниковых пленок, созданных методом облучения подложки в высоком вакууме раздельными атомными и молекулярными пучками от нескольких источников, интенсивность которых позволяет выращивать пленки с заданным составом и свойством.

Такой метод нашел широкое применение при изготовлении полупроводникового материала для специальных диодов — полевых транзисторов, лазеров и интегральных оптических схем.

Современные интегральные схемы отличаются весьма незначительными размерами составных элементов. Дальнейшая миниатюризация включает в себя уменьшение линейных размеров размещенных на пластинке элементов, ширины соединительных линий и диаметров отверстий. Для размещения всех составных элементов на пленке применяют литографический способ. Наиболее употребительная форма литографии — фотолитография, при которой фотоэкспозиция меняет свойств, а светочувствительного вещества пленки. Световая экспозиция, естественно, не может передавать изображение, размеры которого меньше, чем длина волны используемого света. Поэтому еще недавно размеры порядка 1 или 0,5 мкм были крайним пределом размеров микроструктуры интегральной схемы.

В настоящее время в качестве метода, обеспечивающего создание значительно более тонкой структуры схемы, используют электронный или протонно-ионный пучки.

Увеличение плотности элементов на единичной площади монокристаллов приводит к уменьшению времени, необходимого для распространения сигнала от одной цепи к другой. Однако при этом возникают новые сложности. Известно, что каждая схема превращает определенное количество энергии в теплоту. Теплота в конечном итоге должна быть передана какому-то потоку, обычно воде или воздуху, которые выносят ее из системы. При миниатюризации процесс теплоотвода усложняется. Для обеспечения нормального охлаждения монокристаллы должны быть разнесены, но это увеличивает время прохождения сигнала от одного кристалла к другому.

А КАКОВЫ ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭТОЙ ОТРАСЛИ?

Существует несколько интересных предложений для устранения вышеуказанных проблем. Среди них — переход от полупроводниковой к сверхпроводящей электронике, предполагающий, что работа кремниевых устройств будет происходить при низких температурах (обычно при 77 К), т. е. при температуре кипения жидкого азота.

При низких температурах прежде всего возрастает проводимость. Понижение сопротивления металлов позволит сделать более узкими соединительные линии и снизит, таким образом, пространственные требования.

При низких температурах уменьшается мощность рассеяния энергии. А это значит, что для обеспечения тепло- отвода потребуется меньшая площадь. Еще над одним направлением в совершенствовании полупроводниковой техники работают физики. Это замена кремния и германия полупроводниковыми элементами III и V групп таблицы Менделеева. Подвижность электронов в полупроводниковых элементах этих групп значительно выше, чем в других. Так, в сравнении с кремнием подвижность электронов в них в 20 раз больше. В настоящее время арсенид галлия и фосфид индия уже применяют в микроволновых транзисторах и интегральных микроволновых схемах.

Полупроводниковую технику все шире и шире внедряют во все отрасли народного хозяйства. Особенно это показательно для развития микропроцессорной техники и ЭВМ, которые стали важным и надежным инструментом в организации производства, технологических процессов и в конструировании. Это обусловливает необходимость ускоренного развития малых ЭВМ высокой производительности, а также персональных ЭВМ, которые призваны автоматизировать не только производственные процессы, но сделать более производительными и инженерный труд, и учебный процесс на всех уровнях, и быт людей.

 

9. Электроэнергетика

Все больше и больше времени проходит с того дня 1921 г., когда в нетопленном зале Большого театра, заполненном молодыми бойцами Красной Армии, рабочими и крестьянами, где проходил VIII Всероссийский съезд Советов, прозвучали слова В. И. Ленина о том, что план, разработанный Государственной комиссией по электрификации России (ГОЭЛРО), является второй программой партии. Это были не менее неожиданные слова, чем другое знаменитое высказывание В. И. Ленина: «Коммунизм — это есть Советская власть плюс электрификация всей страны».

И сейчас еще можно услышать вопросы: почему именно электрификация стала частью этой формулы? Почему не машиностроение? Не металлургия?

Ленин так обосновал названную формулу:

«Коммунизм предполагает Советскую власть как политический орган, дающий возможность массе угнетенных вершить все дела… Этим обеспечена политическая сторона, но экономическая может быть обеспечена только тогда, когда действительно в русском пролетарском государстве будут сосредоточены все нити крупной промышленной машины, построенной на основах современной техники, а это значит — электрификация…».

Так начинает раскрываться перед нами глубина формулы: не одна какая-нибудь отрасль экономики, а вся экономика, вся индустрия, все ее ключевые отрасли должны получить развитие на базе новой техники и высшей производительности труда, причем развитие максимальное, комплексное, основанное на глубоко продуманном размещении производительных сил в стране.

ИНТЕРЕСНО БЫЛО БЫ ПРОСЛЕДИТЬ ЗА ТЕМ, КАК РЕАЛИЗОВЫВАЛСЯ ЭТОТ ПЛАН.

Планом, рассчитанным на 10–15 лет, предусматривалось сооружение 30 электростанций общей мощностью 1750 МВт. Мощности эти должны были «набираться» из агрегатов колоссальной по тем временам единичной мощности — до 25 МВт. Таких машин не знала еще ни российская, ни европейская практика, но к их разработке смело приступили инженеры ленинградского завода «Электросила». Среди первенцев наших электростанций были Шатурская ГРЭС (1922) мощностью 5 МВт, Волховская ГЭС (1928) мощностью 30 МВт, Каширская ГРЭС (1922) и др. Самой крупной электростанцией была Днепровская ГЭС мощностью 200 МВт.

Практически каждые 10 лет в стране утраивается мощность электростанций. Соответственно выработка электроэнергии растет на 11 %. И если в 1913 г. выработка электроэнергии в России составила 8 % от выработки в США, то в 1973 г. — 44 %, а в 1984 г. — более 50 %. За время 1913–1974 гг. США увеличили производство электроэнергии в 74 раза, СССР — в 457 раз.

Выдвинутая Лениным задача «сэкономить труд централизацией», задача всемирной концентрации производства электроэнергии, создания мощных высокопроизводительных машин нашла свое развитие в тенденции роста мощностей станции и единичных мощностей агрегатов. Если в начале осуществления плана ГОЭЛРО на станциях устанавливались в основном турбогенераторы мощностью 10–16 МВт, то уже в 1927 г. их единичная мощность достигла 24 МВт. В 1937 г. был создан турбогенератор с рекордной для того времени мощностью 100 МВт, а в 1980 г. на Костромской ГРЭС был запущен блок мощностью 1200 МВт.

Дальнейшее повышение мощностей агрегатов будет связано с широким использованием достижений современной науки — физики и техники сверхнизких температур, физики твердого тела, физики плазмы.

Мы вправе гордиться успехами советской энергетики. В СССР построены крупнейшие в мире тепловые, атомные и гидравлические электрические станции, эксплуатируются и сооружаются линии высокого и сверхвысокого напряжения, ведутся разработки новых способов производства, преобразования и передачи электроэнергии.

КАКАЯ ОТРАСЛЬ ЭЛЕКТРОЭНЕРГЕТИКИ СЕЙЧАС ЯВЛЯЕТСЯ ОСНОВНОЙ?

Основная доля электроэнергии вырабатывается на тепловых электростанциях (ТЭС). В последние годы количество выработки электроэнергии на ТЭС уменьшается (84 % в 1970 г. и 80 % в 1980 г.). Однако их роль в энергетике будет еще долгое время оставаться определяющей. Основным химическим топливом на ТЭС являются уголь, нефть, газ, торф, сланец и др.

Большинство крупных тепловых электрических станций в настоящее время работает на угле. Особенно богаты угольные запасы в Сибири. Так, балансовые запасы угля в Канско-Ачинском бассейне составляют 115 млрд. т. На базе этого месторождения планируется построить ТЭС общей мощностью в 5∙104 МВт. Экибастузское месторождение располагает запасами угля в 9,2 млрд. т. На базе этого бассейна планируется строительство ТЭС общей мощностью (1,6÷2,0). 104 МВт.

КАКОВ ВКЛАД ГИДРОЭЛЕКТРОСТАНЦИЙ?

Вторым по значению источником электрической энергии в общем балансе страны являются гидравлические электрические станции (ГЭС).

Электрическая энергия ГЭС самая дешевая, а мобильность ГЭС, т. е. способность в считанные минуты входить в режим, во много раз выше, чем у тепловых и атомных станций. Это особенно важно при автоматизированном уровне управления энергосистемами. Немаловажную роль имеет, несмотря на существенные первичные затраты и длительность строительства, самоокупаемость.

Так, Братская ГЭС дала первый ток в 1961 г. Полная мощность после пуска всех агрегатов составила 4,425∙103 МВт. В 1977 г. станция уже в 67 раз окупила затраты на свое сооружение. Одновременно произошло сокращение обслуживающего персонала почти на 50 %.

Образование водохранилищ при бережном учете всех факторов должно способствовать улучшению обработки земель, принести воду в засушливые районы. К сожалению, развитие гидроэнергетики далеко не всегда сопровождалось у нас бережным отношением к природе. Печальные результаты этого хорошо известны: затопление большого количества плодородных земель при строительстве равнинных гидроэлектростанций, нарушение водного баланса целых регионов, например Арала и др.

Важное достоинство ГЭС заключается в неиссякаемости энергоресурсов рек и весьма низкой себестоимости вырабатываемой ими электроэнергии. Уже построены Красноярская (6∙103 МВт), Братская (4,5∙103 МВт), Иркутская (0,65∙103 МВт), Богучанская (4∙103 МВт), Усть-Илимская (4,3∙103 МВт), Саяно-Шушенская (6,4∙103 МВт) и др. Вводится ряд крупных ГЭС в Средней Азии и на Дальнем Востоке. Для обеспечения электроэнергией промышленных районов в пиковые часы вводятся гидроаккумулирующие станции — Чебоксарская (2,2∙103 МВт), Загорская (1,2∙103 МВт), Днепровская (0,21∙103 МВт).

И все же энергия рек, видимо, не сможет стать основой энергетики будущего. Специалисты считают, что уже через сто лет практически все гидроресурсы в развитых странах будут задействованы. Даже при этом гидроэлектростанции дадут не более 1/5 всей потребной энергии.

ВЫ СКАЗАЛИ О НЕИСЧЕРПАЕМОСТИ ЭНЕРГИИ РЕК. ЭТОГО НЕ СКАЖЕШЬ О ТОПЛИВЕ ДЛЯ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ.

К сожалению, и запасы нефти, газа, угля — наиболее популярных в современной энергетике топлив — отнюдь не бесконечны.

Миллионы лет понадобились природе, чтобы создать эти запасы, расходуются же они несравненно быстрее. По оценкам экспертов, всех разведанных на Земле запасов угля, нефти и газа хватит примерно на 175 лет. Конечно, могут быть разведаны новые месторождения, могут быть разработаны новые методы извлечения топлива из земных недр, но скорее всего возрастет и потребление энергии.

ЗНАЧИТ, НУЖНЫ НОВЫЕ ИСТОЧНИКИ ЭЛЕКТРОЭНЕРГИИ?

В поисках новых источников ученые давно исследуют ресурсы, таящиеся в водах Мирового океана. Одно из направлений — использование энергии приливов. Советские исследователи считают, что современное состояние техники в СССР позволяет построить приливные электростанции с общей годовой выработкой 108 МВт электроэнергии.

В 1968 г. дала первый ток советская приливная электростанция (ПЭС) мощностью 0,4 МВт в заливе Кислая Губа вблизи Мурманска. Она стала прообразом приливных электростанций, проектируемых в нашей стране.

В СССР используют и другие источники для получения электрической энергии. К ним относятся тепло подземных вод, энергия Солнца, ветра и др. Уже сейчас по стоимости киловатта мощности установки, использующие энергию ветра, могут конкурировать с энергией, вырабатываемой на тепловых электростанциях. Однако названные источники энергии вряд ли в ближайшем будущем смогут удовлетворить все возрастающие потребности в электроэнергии.

ВЫ НИЧЕГО НЕ СКАЗАЛИ ОБ АТОМНОЙ ЭНЕРГЕТИКЕ. ЧТО, ПОСЛЕ ЧЕРНОБЫЛЯ В НЕЙ ПОЯВИЛИСЬ СОМНЕНИЯ?

Катастрофа на Чернобыльской АЭС показала, как далеко зашло человечество во взаимоотношениях с тем миром, в котором оно существует, насколько высокой бывает цена халатности и ошибки. Какой вывод из этого надо сделать? — Остановиться в движении вперед? Или двигаться так, чтобы исключить подобные ошибки?

Использование энергии расщепления атомного ядра — естественный шаг на пути расширения энергетической базы, попытка уменьшить непроизводительную трату невозобновляемых земных ресурсов: нефти и газа.

В некоторых случаях атомная электростанция — единственная возможность создания промышленной энергетической базы (например, в условиях Заполярья). Уже сейчас атомная энергетика, хотя и является молодой отраслью науки и техники, составляет заметную долю в энергетическом комплексе страны. Первая в мире атомная электростанция (АЭС) мощностью около 5 МВт была пущена в СССР в 1954 г. Мощность станции небольшая, но с ее пуском была доказана возможность мирного использования энергии атома.

В СССР разработана долговременная программа строительства АЭС. В конце 1985 г. в СССР построено или находится в стадии строительства свыше 30 АЭС общей мощностью 26 803 МВт, среди которых Ленинградская имени В. И. Ленина, Нововоронежская имени 50-летия СССР, Курская, Смоленская и др.

Ведутся разработка и освоение производства энергоблоков мощностью 800 тыс. кВт с реакторами на быстрых нейтронах. Решаются научно-технические проблемы, связанные с созданием энергоблоков мощностью 1500 тыс. кВт с реакторами на тепловых нейтронах и мощностью 1600 тыс. кВт с реакторами на быстрых нейтронах.

Нет сомнений в том, что атомная энергетика заняла прочное место в энергетическом балансе. Но надолго ли хватит урана? Не встанет ли перед человечеством та же проблема, что и сейчас, — проблема ограниченности запасов природных источников энергии? По подсчетам ученых, атомного топлива хватит очень надолго. На несколько сотен лет хватит урана, находящегося в земной коре. А дальше? Около 4 млрд. т урана растворено в воде Мирового океана. Правда, извлечение его из морской воды пока еще недостаточно освоено. Однако нет никаких сомнений, что эта техническая задача будет решена.

И ВСЕ ЖЕ НЕОБХОДИМ НЕИССЯКАЕМЫЙ ИСТОЧНИК ЭНЕРГИИ.

Наиболее перспективным источником электроэнергии станет использование термоядерного синтеза. Теоретическая схема высвобождения термоядерной энергии совершенно ясна. Да и практически ядерный синтез осуществлен в земных условиях при взрывах водородных бомб. Получить же управляемый термоядерный синтез оказалось крайне сложной задачей. Плазма оказалась очень капризной субстанцией, сопротивляющейся всем попыткам ограничить ее свободу. Большие трудности предстоит преодолеть ученым при осуществлении термоядерной реакции. Солнце на Земле пока еще остается мечтой ученых. Но многие достижения последнего времени свидетельствуют о том, что эта мечта станет явью. Видимо, уже в XXI в. человечество получит в свое распоряжение неиссякаемый источник энергии.

В настоящее время успешно продвигаются работы по управлению термоядерной реакцией на основе магнитного удержания высокотемпературной плазмы. В 80-е годы был достигнут большой прогресс в этой области, в особенности на установках типа ТОКАМАК, разработанных советскими учеными. Например, в ТОКАМАК Т-10 ведутся исследования физических свойств плазмы при температуре в девяносто миллионов градусов. Эта температура была получена в 1987 г.

Полным ходом сооружается более крупный ТОКАМАК Т-15, предназначенный для изучения плазмы с параметрами реального термоядерного реактора.

В отличие от существующей энергетики термоядерная энергетика будет работать на водороде, точнее, на изотопе водорода — дейтерии. Кроме того, в термоядерном реакторе будет использоваться литий.

Переработка воды и добыча из нее дейтерия будут производиться не на самой электростанции, а централизованно для всех станций страны. Процесс этот давно и хорошо отработан и уже сейчас настолько дешев, что затраты на дейтерий не идут ни в какое сравнение с затратами на добычу обычного топлива. А если учесть, что максимальная энергия, которую можно производить на Земле, не рискуя вызвать климатической катастрофы, ограничена примерно 1 % падающей на Землю солнечной энергии, то при такой мощности электростанций запасов дейтерия в воде океанов хватит примерно на 300 млн. лет.

ХОТЯ ЭЛЕКТРОЭНЕРГИЮ ЛЕГКО ПЕРЕДАВАТЬ НА РАССТОЯНИЕ, ПРОБЛЕМЫ ЕЕ ПЕРЕДАЧИ ВСЕ ЖЕ СУЩЕСТВУЮТ?

Сегодня каждый школьник знает, что электроэнергия передается по проводам откуда угодно и куда угодно. Передавать электроэнергию приходится на большие расстояния. Это связано, во-первых, с тем, что около 3/4 энергетических ресурсов находятся у нас на Востоке страны, более 70 % потребителей энергии и около 80 % населения — в европейской части. В ближайшем будущем это соотношение вряд ли существенно изменится.

Во-вторых, переработка больших количеств электроэнергии необходима нам из-за огромной протяженности страны с востока на запад. Когда на востоке страны наступает ночь, за Уралом начинается трудовой день и потребление энергии там резко возрастает. Как известно, электрическую энергию еще не научились запасать впрок в сколько-нибудь значительных количествах. Производственную энергию нужно сразу потребить. Да и выключить «на время» современную электростанцию невозможно.

Проблема передачи больших количеств электрической энергии на большие расстояния необычайно сложна. Часть энергии при передаче расходуется на нагревание проводов, т. е. теряется бесполезно. Чтобы уменьшить эти потери, приходится повышать напряжение, при котором передается энергия. После ввода в 1922 г. Каширской ГРЭС, а затем в 1925 г. Шатурской были построены первые в стране линии передачи напряжением 110 кВ. В годы первых пятилеток напряжение в линиях электропередачи повысилось до 220 кВ.

Ввод в действие Куйбышевской и Волгоградской ГЭС потребовал для передачи больших количеств энергии и перехода на новые напряжения. К 1958 г. была построена линия передачи на 500 кВ. Уже более 60 лет продолжается своеобразная «гонка напряжений»: каждые 10–15 лет напряжение в линиях передачи увеличивается в среднем в 1,75 раза.

ЧЕГО НАМ ЖДАТЬ В БЛИЖАЙШИЕ ГОДЫ?

Сейчас в СССР применяют линии передачи на переменном токе с напряжением 750 кВ и на постоянном — 80 кВ. Ведутся работы по созданию линии электропередачи Казахстан — Центр протяженностью 2,7 тыс. км на постоянном токе с напряжением 1,5-106 кВ и линии передачи на 1,15∙106 кВ на переменном токе. Эта линия свяжет мощные тепловые электростанции, построенные в Экибастузском угольном районе, с энергопотребляющими районами Центра европейской части СССР. В дальнейшем для передачи электроэнергии из Восточной Сибири в европейскую часть страны, по всей вероятности, потребуется сооружение линий электропередачи на постоянном токе с напряжением 2,2–2,4 млн. кВ.

РАССКАЖИТЕ О ЕДИНОЙ ЭНЕРГОСИСТЕМЕ СТРАНЫ.

Одним из главных достижений советской энергетики является создание крупнейших энергетических систем. Такие системы, управляемые из одного центра, позволяют маневрировать мощностями, «перебрасывать» энергию на большие расстояния туда, где в данный момент она нужнее всего.

В Единую энергосистему страны (ЕЭС) объединено около 94 % всех энергомощностей страны, суммарная мощность входящих в нее электростанций около 300 ГВт.

Велики достижения советской энергетики. Еще грандиозней ее перспективы.

Часто можно услышать, что в нашей стране «море электричества». Сейчас установленная мощность в стране несколько превысила 300 ГВт, т. е. на одного жителя нашей страны приходится более 1 кВт (или немного более одной лошадиной силы). В сравнении со многими странами мира это много, но если исходить из потребностей, то это не очень густо. По старым понятиям с таким тяглом крестьянин не считался даже середняком. К тому же мощность еще не работа. Поэтому по-прежнему актуально звучит ленинский призыв о строгой экономии электроэнергии. Подсчитано, что до 10 % экономии ресурсов можно получить бережным отношением к расходованию электроэнергии. С помощью 1 кВт∙ч электроэнергии можно выплавить 104 кг чугуна, смолоть 12,5 кг зерна, выстирать 60 кг белья, выпечь 90 кг хлеба, произвести 2 пары обуви, вывести 30 цыплят и т. д.

Являясь ключевой отраслью экономики, энергетика служит одним из главных рычагов ускорения прогресса науки и техники, органического соединения достижений научно-технической революции с социалистической системой хозяйствования.

 

10. От робота к робототехнике

Первые роботы у нас появились в 1970 г. Через пять лет их насчитывалось 250, в 1983 г. — около 7 тыс., в 1985 г. — около 40 тыс. Количество их непрерывно растет и к 1990 г. должно достичь несколько сотен тысяч.

В связи с этим возникает вопрос: а много это или мало? Для иллюстрации скажем, что число выпущенных нашей промышленностью роботов больше, чем в США и Японии вместе взятых. Следовательно, наша промышленность более автоматизирована, т. е. обладает более высоким потенциалом? Тогда почему многие наши заводы, особенно перешедшие на хозрасчет и самофинансирование, отказываются от установки роботов и около половины изготовленных роботов в одиннадцатой пятилетке были отправлены на склад? А ведь стоимость каждого робота-манипулятора составляет несколько десятков тысяч рублей.

МОЖЕТ БЫТЬ, РОБОТЫ ДЕЙСТВИТЕЛЬНО НЕ НУЖНЫ?

Прежде чем ответить на поставленный вопрос, посмотрим, как решаются вопросы роботизации производства, какие проблемы стоят перед учеными и инженерами, каков экономический эффект от внедрения роботов и какими путями должна идти механизация и автоматизация на современном этапе и ближайшем будущем.

Сокращение ручного труда в народном хозяйстве является одной из важнейших социально-экономических задач. В то время, когда страна испытывает нехватку трудовых ресурсов, только в промышленности ручным трудом на 1985 год занято около 9,5 млн. человек — это более 36 % от общей численности рабочих. Еще больший процент от общего числа работающих в отрасли — в сельском хозяйстве, строительстве, бытовом обслуживании.

В настоящее время задача стоит несколько шире: не только сократить применение тяжелого и монотонного ручного труда, но и сделать труд более содержательным, безопасным, привлекательным.

Известно, что один станок с числовым программным управлением позволяет высвободить 3–4 рабочих, комплексно-автоматизированная линия — до 30, автоматизированный участок — до 60 человек. Вот почему поставлена задача: в двенадцатой пятилетке перейти от производства отдельных машин к созданию технологических линий и комплексов с высокой степенью автоматизации. Они способны коренным образом изменить материальную основу производства: в энергетике — за счет преимущественного строительства АЭС; в металлургии — с помощью метода прямого восстановления железа, плазменной плавки, горизонтальной разливки стали; в машиностроении — за счет обработки взрывом, за счет использования лазерной, электрохимической и роторной техники, матричной сборки, промышленных роботов…

ЧТО ТАКОЕ РОБОТ?

Промышленный робот, или автоматический манипулятор, — это агрегат, состоящий из исполнительного многозвеньевого механизма (например, механической руки), каждое звено которого приводится в движение управляемым приводом, и из системы управления, включающей в себя аппаратуру совместного управления приводами всех звеньев, программное устройство с блоком памяти и ЭВМ.

КОГДА ПОЯВИЛИСЬ ПЕРВЫЕ РОБОТЫ?

Прообразом современных механических роботов можно считать оборонительную машину Архимеда, которая «хватала» приблизившийся к крепостной стене вражеский корабль и опрокидывала его. Механические руки начали применять в промышленности с конца XIX в.: ковочные манипуляторы, механические лопаты экскаваторов…

Мощный толчок к созданию и совершенствованию манипуляторов дало в середине 40-х годов развитие атомной техники. В машиностроении распространены шарнирно-балансирные манипуляторы для переноса тяжелых деталей в пределах рабочего места. Манипуляторы устанавливают на машины лесной промышленности, строительные, транспортные, горные.

В настоящее время манипулятор является составной частью робота.

Роботы с автоматическим управлением промышленного назначения делят на три поколения: программные, адаптивные и интеллектные.

Термин «поколение» здесь звучит чисто условно. Эти три поколения роботов исторически не сменяют друг друга. Новые поколения появляются постепенно по мере накопления достижений науки и техники. Первое же поколение при этом продолжает существовать и приобретает все более широкое массовое применение. Но оно все время совершенствуется конструктивно, повышая свои качественные показатели и эффективность действия.

Различные виды роботов каждого поколения имеют свои области применения.

ДАВАЙТЕ РАССМОТРИМ ВСЕ ТИПЫ РОБОТОВ ПО ПОРЯДКУ. НАЧНЕМ С ПРОГРАММНЫХ.

Первое поколение — программные роботы — характеризуется действием системы управления по многократно повторяемой жесткой программе (взять деталь с определенного места, перенести ее под пресс, вынуть из-под пресса, перенести в другое место, возвратить в исходную позицию). Программный робот легко переналаживается на различные программы действия. Но после каждой переналадки он способен только повторять многократно одни и те же жестко запрограммированные движения. Роботы первого поколения могут перемещать груз массой от десятков граммов до нескольких тонн, а закладываемые в их запоминающие устройства программы могут включать более 1000 движений.

ТЕПЕРЬ ПЕРЕЙДЕМ К АДАПТИВНЫМ РОБОТАМ.

Второе поколение — адаптивные роботы — отличаются тем, что они обладают простейшими видами «органов чувств» манипулятора: тактильное (осязание), силовое (реакция на значение рабочего усилия), локационное (реакция на расстояние до предмета и скорость приближения к нему), световое (реакция на попадание предмета в луч света), тепловое (реакция на изменение температуры по пути движения). Сигналы от датчиков очувствления обрабатываются во встроенной ЭВМ и используются ею для формирования сигналов управления на приводы звеньев манипулятора, чтобы робот в результате выполнил заложенную в его память задачу в соответствии с данной обстановкой, зафиксированной датчиками очувствления.

Другими словами, робот в своих действиях приспосабливается (адаптируется) к незапрограммированной обстановке: при неопределенном положении деталей, при движении их, при сборке, сварке и т. п.

По сравнению с роботами первого поколения адаптированные роботы обладают повышенной маневренностью и возможностью хранить в запоминающем устройстве большее число более сложных программ. Работа промышленных роботов второго поколения с высокой степенью точности синхронизируется с работой основного технологического и другого оборудования, повышенная надежность системы числового программного управления обеспечивает длительную бесперебойную эксплуатацию.

И НАКОНЕЦ, ИНТЕЛЛЕКТНЫЕ РОБОТЫ…

Третье поколение — интеллектные роботы — располагает более богатыми средствами очувствления, распознавания обстановки, отработки информации для принятия решения и его реализации с помощью приводов, т. е. обладает определенной долей «искусственного интеллекта». Особое значение приобретают здесь зрительное очувствление и цифровое моделирование обстановки на этой базе в ЭВМ робота, а также комплексирование различных средств очувствления.

Надо иметь в виду, что термин «искусственный интеллект» в такой же мере условен, как и широко применяемые уже термины «память машины», «техническое зрение». Он отражает лишь внешнее сходство функционирования робота с действиями человека в процессе трудовой деятельности.

Кроме приведенной выше классификации промышленные роботы отличаются друг от друга по типу привода (гидравлические, пневматические, электрические), по количеству степеней подвижности в манипуляторе (от трех до восьми), по грузоподъемности (от граммов до сотен килограммов), по областям применения (машиностроительное, приборостроительное и другие производства).

ГДЕ СЕЙЧАС ПРИМЕНЯЮТ РОБОТЫ?

Уже сегодня, когда роботизация делает лишь первые шаги, можно смело говорить о ее эффективности. Так, на часовых заводах роботы успешно применяют на сборке механизмов часов, на автозаводах роботы сваривают кузова автомобилей, а в Орловском объединении «Промприбор» с их помощью изготовляют терморегуляторы для бытовых холодильников и др.

Современные промышленные роботы успешно используют вместо человека в основных процессах литейного производства — от подготовки исходных материалов до операций очистки и термообработки.

Роботы производят сегодня вспомогательные работы на металлорежущих станках — токарных, фрезерных, расточных, сверлильных и др. Их можно использовать для автоматизации таких работ, как, например, изготовление образцов для анализа химического состава сплавов и других материалов, подготовка образцов к контролю, установка их в оборудование для контроля, их испытание, удаление и др.

Промышленные роботы могут пригодиться в строительной, легкой и других отраслях промышленности, при ведении научно-исследовательских работ, в быту и т. п. Например, в швейной промышленности роботы используют для автоматизации процессов манипулирования кусками материи, сшивания кусков больших размеров, пришивания мелких деталей: пуговиц, пряжек, крючков, воротников, карманов и т. п. В сфере обслуживания роботы могут выполнять обязанности сторожа, садовника, могут мыть посуду, стирать и гладить белье, обслуживать бензозаправочные станции, собирать бытовой мусор, торговать штучным товаром, комплектовать продуктовые заказы. Роботы также могут входить в автоматические системы пожаротушения, регулировать уличное движение.

Перечень предприятий, где уже применяются или где можно применять роботы, можно продолжить. Так, на одной из международных выставок демонстрировался робот-официант.

КАК ОН РАБОТАЛ?

В столовой в проходах между столами на полу наклеивается узкая лента из алюминиевой фольги, которая образует замкнутый маршрут передвижной тележки. Из кухни выезжает роботизированная тележка с установленными на ней подносами с тарелками. Тележка оснащена фарой и двумя фотоэлектрическими датчиками, воспринимающими отраженный от фольги свет фары. Таким образом, тележке задается маршрут движения. Она подъезжает к столику и плавно останавливается, так как часть ленты у каждого столика перекрыта полосой черного цвета. После снятия с подноса первого блюда тележка едет к следующему столику. Через несколько минут появляется тележка со вторым блюдом и т. д. Тележка оснащена бортовой мини-ЭВМ и по заданной программе может делать остановки у определенных столиков в определенное время.

Разумеется, такие же тележки можно использовать и на небольших предприятиях для развоза деталей по цеху, на складах, в библиотеках, архивах.

РАСШИФРУЙТЕ ПОДРОБНЕЕ ТЕРМИН «РОБОТИЗАЦИЯ»

Важно не только создавать робот как таковой, но и комплексно связывать его со всем остальным технологическим оборудованием в сочетании с другими современными средствами автоматизации. Наибольшая технико-экономическая эффективность достигается при использовании роботов в роботизированных комплексах. На их основе будут создаваться автоматизированные линии, цехи и заводы. Такие примеры в машиностроительной и приборостроительной промышленности уже есть.

Так, на Петродворцовом часовом заводе в Ленинградской области внедрено свыше 150 промышленных роботов. На 63 автоматических линиях они осуществляют по заданной программе все операции по сборке часов. Внедрение роботизированного комплекса позволило в несколько раз повысить производительность труда и высвободить около 500 человек.

На Ковровском механическом заводе после внедрения 60 промышленных роботов в штамповочном и механо-обрабатывающем цехах производительность труда на роботизированных операциях повысилась в целом в 3 раза (а по отдельным участкам в 5–6 раз), высвобождено около 100 рабочих и достигнута годовая экономия более 300 тыс. руб.

В Центральном научно-исследовательском институте «Электроника» сконструирован автоматический участок для механической обработки поверхности экранов кинескопов.

Робот-перекладчик передает кинескоп от станка к станку — их четыре, а затем проводит через две моечные установки. Такой роботизированный участок позволяет совершенно исключить ручной труд. Производительность на нем выше, чем на обычных участках, в 2,5 раза.

Одним из достижений роботизации стало создание обрабатывающих центров — замкнутых циклов производства, работающих в запрограммированном автоматическом режиме.

Планируется создание роботов нового поколения: самообучающихся, способных различать графические символы, реагировать на звуки, сигналы, человеческую речь.

Много нам даст и многостороннее сотрудничество в разработке и производстве промышленных роботов в рамках СЭВ.

НЕ СЛИШКОМ ЛИ МЫ УВЛЕКЛИСЬ ДОСТОИНСТВАМИ? А ЕСТЬ ЛИ У РОБОТОВ НЕДОСТАТКИ?

Прежде всего необходимо подчеркнуть, что установка роботов-манипуляторов целесообразна только тогда, когда она дает реальный экономический эффект (на сборке часов, монтаже микросхем и т. д.). Действительно, пусть робот устанавливает деталь на металлообрабатывающий станок, а затем после обработки снимает ее. Следовательно, пока станок работает, робот-манипулятор «спит» и снова приходит в действие лишь когда рабочий закончит обработку детали.

Другой пример. Современный пресс обрабатывает 100 деталей в минуту, а «человекоподобный» механизм может подавать лишь 7—15 деталей в минуту, снижая производительность пресса в 10–15 раз. Шарнирность, нежесткость таких манипуляторов, необходимость больших помещений и обусловливают «тихоходность» робота в целом.

ГДЕ ЖЕ ВЫХОД ИЗ СОЗДАВШЕЙСЯ СИТУАЦИИ?

Ученые видят его в том, что более высокий уровень производительности труда призван обеспечить в будущем новый класс технологических машин — роторные и роторно-конвейерные линии. В них технологические операции осуществляются в процессе непрерывного совместного транспортирования предметов обработки и инструментов (простейший пример роторной линии — разлив молока в бутылки). Этот класс машин обеспечивает автоматизацию производства при одновременной быстрой окупаемости, т. е. при высвобождении одного человека за счет минимальных затрат — 3–5 тыс. руб., что в сотни раз меньше, чем при применении «человекоподобного» робота-манипулятора.

Создание новой техники — задача настоящего и недалекого будущего, задача, значение которой неизмеримо возрастает в условиях хозрасчета и самофинансирования предприятий.

 

11. О чем не мог даже мечтать

А.С. Попов

Радио, телевидение, радиолокация — разве можно удивить этим современного человека? А ведь каких-то 100 лет назад люди об этих чудесах не имели ни малейшего представления! Еще живы радиолюбители, которые с наушниками в 20-е и 30-е годы нашего века, затаив дыхание, пытались поймать советскую радиостанцию «Коминтерн» часто на самодельные детекторные приемники. Впрочем, все по порядку.

НАЧАЛО НАЧАЛ — ЭТО ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН.

В середине XIX в. великий английский ученый Дж. Максвелл высказал предположение о существовании электромагнитных волн и об электромагнитной природе света. Но ведь электромагнитных волн никто еще не наблюдал (исключая, конечно, световые, природа которых тогда не была известна). Теория Максвелла требовала экспериментального подтверждения. Самым главным подтверждением этой теории было бы экспериментельное наблюдение электромагнитных волн.

Для получения электромагнитных волн нужно было создать источник их излучения такой мощности, чтобы полученные волны можно было обнаружить.

Такой источник впервые был создан немецким физиком Генрихом Герцем в 1887 г. и получил название вибратор Герца. С помощью этого вибратора было доказано существование электромагнитных волн, а также изучены некоторые их свойства. В частности, было доказано, что они обладают теми же свойствами, что и световые волны. Скорость электромагнитных волн оказалась равной скорости света. Этим самым Герц подтвердил и другой вывод Максвелла об электромагнитной природе света.

ВАЖНЫМ ОТКРЫТИЕМ СТАЛО ИЗОБРЕТЕНИЕ РАДИО.

Еще при жизни Герца к нему обратился один немецкий инженер с вопросом: не считает ли он возможным использовать открытие электромагнитных волн для связи (для беспроволочного телеграфа)? В своем ответе Герц высказал сомнение по поводу этой возможности. Однако идея о применении электромагнитных волн для связи вскоре (1895 г.) была осуществлена на практике русским ученым А. С. Поповым.

Приемник первоначально регистрировал радиосигналы, источником которых было атмосферное электричество. Затем Попов сконструировал первый в мире передатчик радиосигналов и в 1896 г. произвел первую в мире демонстрацию передачи радиограммы.

Передатчик и приемник находились на расстоянии 250 м. Первая радиотелеграмма состояла из двух слов: «Генрих Герц».

Излучать, т. е. посылать сигналы без проводов, — вот каков смысл латинского слова «радио», обозначившего наступление новой эры в развитии техники вообще, в развитии техники связи в первую очередь.

КАКОВЫ БЫЛИ ПЕРВЫЕ ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ НОВОГО ВИДА СВЯЗИ?

Не каждый обладает способностью оценить значение новых открытий. Когда Попов обратился в Морское ведомство с просьбой выделить для продолжения опытов 1000 руб., морской министр ответил: «На такую химеру отпускать деньги не разрешаю».

Тем не менее с помощью этой «химеры» Попов два года спустя обеспечил связь между двумя кораблями на расстоянии 40 км, а в 1900 г. передавал по радио указания из Кронштадта на остров Гогланд, где велись работы по спасению броненосца, севшего на мель.

Создание первой линии радиотелеграфной связи случайно совпало с каким-то торжественным юбилеем царской семьи. Местные власти решили, что первая радиограмма будет прекрасным подарком царской фамилии, и заготовили поздравительный текст. Но вместо этого Попов, на свой страх и риск, передал сообщение о том, что шторм унес в море льдину, на которой остались 27 рыбаков. Вышедший навстречу корабль вовремя подошел им на помощь. Беспроволочная связь помогла спасти людям жизнь.

Так радио стало получать признание.

КАК РАЗВИВАЛОСЬ РАДИО ПОСЛЕ ЭТОГО?

Существовавшие в это время приборы и оборудование позволяли передавать радиосигналы на относительно небольшие расстояния. Необходимо было создать усилитель для электрических сигналов любой частоты.

Еще в 1833 г. Т.Эдисон, занимаясь усовершенствованием электрических осветительных ламп, обнаружил явление термоэлектронной эмиссии. Дальнейшее изучение физиками этого явления привело к изобретению двухэлектродной лампы — диода. В 1909 г. английский физик Ф. Флеминг предложил использовать диод в качестве детектора в радиоприемных устройствах.

В 1907 г. американский ученый Ли де Форест разработал трехэлектродную лампу, что дало возможность, используя ее в качестве усилителя, осуществлять передачу электромагнитных сигналов на большие расстояния и принимать слабые.

Классическая схема лампового генератора была предложена в 1913 г. австрийским радиотехником Мейснером. Важные усовершенствования в генераторную лампу были внесены нашими соотечественниками Н. Д. Папалекси и М. А. Бонч-Бруевичем.

СЛЕДУЮЩИЙ ШАГ-ИЗОБРЕТЕНИЕ ТЕЛЕВИДЕНИЯ.

К 20-м годам XX столетия оказались налицо все необходимые предпосылки для осуществления многочастотной передачи неподвижных и движущихся изображений как по проводам, так и по радио. Радио, сделав возможной беспроволочную связь на практически любых расстояниях, породило совершенно новые виды передачи информации — радиовещание, а затем и телевидение.

Изобретение же полупроводниковых электронных приборов принесло новые успехи и позволило осуществлять передачу сигналов уже не только в земных, но и в космических масштабах.

Добавление изображения к радиопрограммам является одним из чудес современной науки и техники. Важнейшей проблемой, перед которой стоят сегодня инженеры, является передача телевизионных волн на дальние расстояния. Частоты, применяемые в телевидении, настолько высоки, что ионосферные слои, отражающие сравнительно длинные радиоволны, по отношению к коротким телевизионным волнам являются форменным «решетом». Телевизионные волны просто уходят сквозь эти слои в мировое пространство и уже не возвращаются на Землю.

Поэтому телевизионные сигналы невозможно передавать дальше, чем на расстояние «прямого видения», а это расстояние из-за кривизны земной поверхности обычно не очень велико. Кроме того, очень короткие радиоволны сильно ослабляются вследствие поглощения их в земной атмосфере.

Проблема дальних телевизионных передач решается путем создания ретрансляционных станций или спутников связи.

РАССКАЖИТЕ О РАДИОЛОКАЦИИ.

Свойство радиоволн отражаться от предметов было использовано в радиолокации. Точность определения направления движения объекта, его размеров, скорости перемещения повышается, когда антенна станции излучает волны узким лучом. А создать такой луч можно только в том случае, если размеры антенны значительно больше, чем длина излучаемых волн.

Первые радиолокационные станции — радары (это было в начале 40-х годов) собирали в луч метровые волны с помощью огромных антенн. Луч нащупывал в небе противника и указывал, куда направить снаряд зенитного орудия. Долго мириться с таким положением летчики не могли. Необходимо было как можно скорее снабдить локаторами и самолеты. Только как это сделать? Ведь антенну размером с двухэтажный дом не взгромоздить на самолет! Эту задачу можно было решить от противного: вместо того, чтобы увеличивать размеры антенны, уменьшили длину волн.

Когда длину волн укоротили до сантиметров, а затем и до миллиметров, появилась возможность создания компактных и эффективных самолетных антенн. Нормальное воздушное сообщение при достигнутых в настоящее время высоких скоростях полета и больших плотностях потоков самолетов оказывается возможным только благодаря оснащению современной службы управления воздушным движением радиолокационными станциями, под бдительным надзором которых самолеты находятся во всей зоне аэродрома.

Радиолокаторы стали первыми помощниками при проводке кораблей. Радары, установленные на морских и речных судах, значительно облегчают плавание в условиях плохой видимости, особенно в узких местах: проливах, устьях рек и т. п. Более того, навигация часто оказывается просто невозможной без радиолокаторов, позволяющих ночью и в туман видеть береговую черту, встречные суда, скалы, айсберги. Со временем радиолокацию стали использовать в метеорологии для прослеживания за распространением гроз и штормов, а также для наблюдения за полетом шаров-зондов, которые по радио передают на наземную метеостанцию полные сведения о погоде.

Без радиолокации в наше время просто невозможна нормальная деятельность многих отраслей народного хозяйства, науки и техники. Особенно многосторонне ее применение в авиации, морском и речном флоте, в космической технике; с помощью радиолокационных средств осуществляется картографирование земной поверхности.

СЕЙЧАС НИКОГО НЕ УДИВЛЯЮТ СЛОВА «КОСМИЧЕСКАЯ РАДИОЛОКАЦИЯ».

Радиолокация настолько вошла в нашу жизнь, что сообщения о тех или иных ее использованиях уже перестали являться какой-то сенсацией. Ярким примером может служить полет двух советских автоматических межпланентных станций «Вега» к комете Галлея. Уникальные данные, полученные в ходе прямых измерений характеристик и свойств космического вещества, передача на Землю изображений кометы имеют мировое научное значение и расширяют представления ученых о начальных стадиях формирования планетных систем.

Успешная реализация крупного проекта по исследованию космического пространства, в котором приняло участие большое количество ученых и специалистов социалистических и капиталистических стран, подтверждает мнение о возможности мирного освоения космоса объединенными усилиями различных государств.

Без радиолокации немыслимы полеты космических аппаратов. Приходится не только создавать сложнейшие наземные комплексы, в которые входят мощные радары и радиотелескопы, осуществляющие наблюдения за космическими аппаратами, но и оборудовать радарами сами корабли, особенно пилотируемые.

Радиолокация обеспечивает сближение и стыковку космических кораблей, с ее помощью осуществляют измерение расстояний до Луны и планет Солнечной системы.

Очень многое могут дать радиолокационные методы для исследования природных ресурсов Земли из космоса.

Радиолокаторы помогают определить физические свойства огромных пространств Земли, покрытых льдом, снегом, сельскохозяйственными культурами и лесами.

Эти оптические непрозрачные покровы являются радиопрозрачными.

Применения радиолокации — одного из величайших творений человеческого гения XX в., стоящего по своей значимости в одном ряду с использованием ядерной энергии и ракетной техники, — поистине универсальны.

КАК ОБСТОИТ ДЕЛО С ИСПОЛЬЗОВАНИЕМ РАДИОВОЛН ДЛЯ СВЯЗИ С ЖИТЕЛЯМИ ДРУГИХ МИРОВ?

Что говорить, заманчиво было бы вступить с ними в общение и познакомиться с цивилизацией, которая, возможно, опередила нашу, скажем, на несколько тысяч лет!

Мечта эта родилась еще до появления электроники. Но ни одному из предложенных проектов не суждено было осуществиться. Появление радио дало новую почву старой мечте. От жителей Вселенной стали ждать теперь радиосообщений. И вот… Американский инженер Янский уловил сигналы, повторяющиеся ровно через 23 ч 56 мин.

Исследование этих сигналов принесло разочарование: электромагнитные волны посылают не люди, а их излучают Луна, Солнце, Меркурий, Юпитер, Сатурн. Позже удалось принять излучение из других галактик, удаленных от нас на миллиарды световых лет.

Жажда общения с жителями Вселенной до настоящего времени осталась неудовлетворенной. Зато появилась новая область применения электроники — радиоастрономия.

Если наши собратья по разуму не торопятся посылать сообщения, то, может быть, необходимо самим дать им знать о себе?

Радиосигналы посылают в космическое пространство. Преодолев огромное расстояние, сигнал должен прийти к определенным звездным системам. И если жители одной из планет этой системы уловят сигнал и захотят вступить с нами в общение, то они ответят на наши позывные.

Много ли шансов, что такая беседа состоится?

Трудно что-либо предрекать. А пока гигантские зеркала радиотелескопов непрерывно прощупывают те космические объекты, которые сами не посылают сигналов, можно «прощупывать» отраженной волной. Такие сигналы помогли уточнить состав, например, Луны и Венеры, а заодно измерить расстояние до них.

РАДИОСВЯЗЬ НАСТОЛЬКО РАСПРОСТРАНЕНА, ЧТО В ЭФИРЕ СТАНОВИТСЯ ТЕСНО.

Все возрастающее количество радиостанций, вещательных и служебных, мощных радиолокационных установок привело к возникновению в земных условиях помех, к ситуации, получившей наименование «тесноты в эфире».

Каждый, кто пользовался радиоприемником, сталкивался с такой трудностью: принимаемые станции «наползают» одна на другую. Это прежде всего указывает на то, что радиостанции работают на близких друг по отношению к другу частотах. А во-вторых, на то, что передатчики имеют недостаточно высокую стабильность и «заходят» в чужую полосу частот. Значит, требуются генераторы с высокой стабилизацией частоты или же необходимо переходить на другую частоту излучения.

Это дало толчок интенсивному освоению новых, все более коротковолновых диапазонов радиоволн. В середине 60-х годов были найдены новые пути, которые открыли широкие возможности усиления чрезвычайно слабых сигналов и генерации исключительно стабильных по частоте радиоволн. Но при этом пришлось перейти на новый уровень понимания физических процессов.

СУЩЕСТВУЮТ И ДРУГИЕ ОБЛАСТИ ПРИМЕНЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН.

Электромагнитные волны нашли широкое применение в промышленности и в быту. Трудно найти семью, в которой не было бы или радиоприемника, или телевизора, или магнитофона. С помощью высокочастотных электромагнитных волн размягчают стекло, прессуют пластмассу, вулканизируют резину, сушат хлопок и шерсть. Широко использует высокочастотное «пламя» пищевая промышленность. На нем коптят ветчину, сушат табак и сахар, уничтожают личинки мучных червей. При помощи электромагнитного излучения «сшивают» края надувных матрацев, лодок, водоплавающих игрушек, непромокаемых чехлов и плащей! Способность магнитного поля проникнуть внутрь металла позволила осуществлять плавку настолько быстро, что металл не успевает окислиться, а это весьма улучшает качество плавки. Приварить металл к стеклу можно быстро и надежно с помощью все тех же высокочастотных электромагнитных полей.

НЕЛЬЗЯ НЕ ОБРАТИТЬ ВНИМАНИЕ НА ОЧЕНЬ ИНТЕНСИВНОЕ РАЗВИТИЕ ЭТОЙ ОБЛАСТИ НАУКИ И ЕЕ ПРИМЕНЕНИЯ.

Первая радиостанция, созданная А. С. Поповым, связала Кронштадт с островом Гогланд в 1900 г. И с тех пор каждое десятилетие порождало новую ветвь на могучем древе науки.

Десятые годы нашего века — радио учиться говорить. Двадцатые — дальние передачи, освоение ультракоротких радиоволн. Тридцатые — освоение телевидения. Сороковые — использование радиоволн в радиолокации. Пятидесятые — широкое внедрение радиоволн в промышленность, быт, сельское хозяйство. Шестидесятые — освоение квантовых генераторов.

Что принесут ближайшие десятилетия? Судить об этом не так-то просто, но можно с уверенностью сказать: электромагнитные процессы будут активными участниками в реализации творческой мысли человека.

 

12. Что такое волоконная оптика

Пытались ли вы быстро связаться по телефону с нужным вам человеком в другом городе? Проявив терпение и выдержку, вы, безусловно, своего добьетесь и разговор состоится, но сплошь и рядом быстро сделать это вам вряд ли удастся.

Перегрузка существующих электрических линий связи ограничивает как количество одновременных разговоров, так и их качество. А если вы хотели бы не только поговорить, но и увидеть близкого вам человека?

РАЗГОВОР ПОЙДЕТ О СПОСОБАХ ПЕРЕДАЧИ ИНФОРМАЦИИ?

Передача информации и широкий обмен ею — одно из непременных условий жизни и деятельности современного человеческого общества.

Еще в XVIII в. для передачи сообщений использовали оптический телеграф, основанный на применении зеркал. Затем появились телеграф, телефон, радио, телевидение, сделав возможной связь, т. е. передачу информации, на любых расстояниях.

Не потеряли своего значения и даже, наоборот, получили развитие оптические каналы передачи информации, использующие направляющие системы: линзовые, зеркальные, диэлектрические.

В оптическом диапазоне в отличие от радиодиапазона: а) можно реализовать на одной несущей волне множество каналов связи; б) весьма затруднен перехват информации, передаваемой лучом; в) заметно уменьшается потребление энергии на питание приемопередающих устройств, уменьшаются их вес и габариты; г) увеличивается точность (например, для локационных измерений при дальности в 20 км точность составляет до 10-8).

Говоря о передаче информации в оптическом диапазоне, следует иметь в виду, что наличие модуляторов и приемников излучения является непременным условием осуществления не только этого, но и любого канала передачи информации.

С изобретением лазеров — оптических квантовых генераторов — появилась новая возможность передачи практически неограниченных потоков информации. Однако уже первые опыты выявили, что поглощение оптического излучения в атмосфере из-за ее неоднородности, турбулентности и других особенностей, интенсивных осадков существенно ограничивает расстояние, на которое можно передавать информацию с помощью таких открытых систем. Мысль ученых обратилась к возможности создания так называемых закрытых оптических каналов связи — волноводов.

ЧТО ТАКОЕ СВЕТОВОД?

Для передачи оптических изображений применяют волноводы, выполненные в виде тонкой жилы или пучка волокон. Сначала это были волокна из стекла, а затем и из других прозрачных материалов.

Такие оптические волноводы получили название световодов. В 50-х годах нашего века родился новый раздел физики — волоконная оптика, получивший довольно широкое развитие в ряде областей науки и техники (медицина, машиностроение, связь и др.). Еще большие перспективы имеет в своем развитии волоконная оптика в ближайшем будущем.

При передаче информации по световоду задача заключается в том, чтобы удержать свет внутри диэлектрика и передать его на большие расстояния без существенных потерь.

ДАВАЙТЕ ВСПОМНИМ ЗАКОНЫ РАСПРОСТРАНЕНИЯ СВЕТА В ДИЭЛЕКТРИКАХ.

Особенности распространения света внутри диэлектрика могут быть продемонстрированы даже в школьных условиях на опыте, схема которого представлена на рис. 37.

Рис. 37. Луч света, направляемый через сосуд и попавший в струю воды, распространяется внутри струи, многократно испытывая полное отражение от ее поверхности

В этом опыте свет, испытывая полное отражение, распространяется внутри изогнутой струи воды. Напомним, что если луч света падает на границу двух прозрачных сред различной плотности, то он может испытывать преломление и отражение на этой границе (рис. 38, а). Если же угол падения луча равен или превышает некоторый угол, названный предельным, свет не выходит за пределы первой среды. Он либо распространяется внутри второй среды вдоль поверхности раздела сред (αпад = αпр), либо целиком отражается (рис. 38, б) от нее (αпад > αпр). Это явление известно нам как явление полного отражения света. Для стекла (крон), например, αпр ~= 42°, для воды αпр ~= 48°,5.

Рис. 38. Отражение и преломление света на границе двух прозрачных сред

РАЗВЕ СТЕКЛО — НЕ ИДЕАЛЬНЫЙ МАТЕРИАЛ ДЛЯ СВЕТОВОДА?

При использовании первых стеклянных световодов возникали серьезные трудности, связанные с недостаточной прозрачностью стекла.

Действительно, стоит посмотреть в торец обычного оконного стекла, чтобы убедиться в его непрозрачности, обусловленной примесями малых количеств железа и меди в стекле.

В состав даже самых чистых стекол, изготовляемых для астрономических и фотографических объектов, всегда входят заметные количества окрашиваемых примесей.

ИТАК, СВЕТ ПОПАЛ В ВОЛНОВОД…

Излучение, распространяющееся по волноводу, удобно представлять в виде совокупности парциальных волн, называемых модами.

Каждая мода удовлетворяет уравнениям электродинамики, полученным Максвеллом, и некоторым граничным условиям, связанным с геометрией и оптическими характеристиками волновода.

В волноводе полное число мод

N = 2πS/λ2

где S — площадь поперечного сечения волновода, а λ — длина волны излучения.

Как следует из приведенного соотношения, с уменьшением λ число мод быстро возрастает, а для уменьшения этого числа можно воспользоваться двумя путями. Во-первых, создать такие условия, чтобы значительная часть мод быстро затухала с расстоянием. Во-вторых, использовать волноводы с малой площадью поперечного сечения S. Такие одномодовые волноводы в оптическом диапазоне должны иметь диаметр порядка микрометров. Второй путь представляется наиболее привлекательным, так как практика как раз требует использования волноводов с малым поперечным сечением.

Однако волноводы с малым поперечным сечением пропустят и небольшую световую мощность. Использование большого числа тонких волноводов, скомпонованных в многожильный жгут, решает проблему сохранения мощности излучения.

Мы остановимся подробнее лишь на одном типе волокон — диэлектрическом — как наиболее перспективном виде оптических волноводов.

ОХАРАКТЕРИЗУЙТЕ ДИЭЛЕКТРИЧЕСКИЕ ВОЛНОВОДЫ

Диэлектрические волноводы получили широкое распространение. Их выполняют в виде пленок, стержней, толстых и тонких нитей (волокон) из прозрачного диэлектрика. На рис. 39 показано оптическое волокно в разрезе.

Рис. 39. Оптическое волокно в разрезе

Здесь 1 — сердцевина волокна диаметром d1 и показателем преломления n1, 2 — оболочка волокна (наружный диаметр d2, показатель преломления n2). Сердцевину волокна обычно изготовляют из высокопреломляющих тяжелых флинтов, тогда как для оболочки используют легкие кроны.

Показатели преломления n1 и n2 должны удовлетворять условию

n1 > n2

Диаметр сердцевины может в широком интервале: от миллиметров до микрометров.

Направляющие свойства оптических волокон обусловлены, как мы уже установили ранее, полным отражением света от поверхности, разграничивающей сердцевину волокна и его оболочку.

Если d1 >> λ, то волокно называют толстым, а при d1 ~< λ — тонким.

Волокна могут быть собраны в жгуты, в которых содержится 106 и более отдельных волокон. При плотной упаковке волокон в жгуте возможно просачивание световой энергии из одного волокна в другое. Хотя этому препятствует оболочка волокна, но более надежно предохраняют от просачивания света наносимые на волокна специальные покрытия.

ЧЕМ РАСПРОСТРАНЕНИЕ СВЕТА В ТОЛСТОМ ВОЛОКНЕ ОТЛИЧАЕТСЯ ОТ РАСПРОСТРАНЕНИЯ СВЕТА В ТОНКОМ ВОЛОКНЕ?

Распространение света в толстом волокне подчиняется законам геометрической оптики . Для простоты будем рассматривать световые лучи, которые распространяются в диаметральных плоскостях, пересекая ось волокна (меридиональные лучи). На рис. 40 изображен один из меридиональных лучей, падающих на границу между сердцевиной и оболочкой волокна под предельным углом полного отражения α2. Угол α, под которым луч падает из внешней среды на торец волокна, носит название максимального угла падения входного луча.

Рис. 40. Распространение света в толстом волокне

Если I0 и I1 — интенсивности соответственно входящего и выходящего из волокна световых потоков, то Т = I1/I0 называют светопропусканием волокна. Оно зависит от ряда факторов: степени прозрачности сердцевины, волокна и оболочки, отражающей способности поверхности раздела сердцевины и оболочки, потерь отраженного света на торцах волокон. Результаты, полученные для светопропускания и других характеристик прямого волокна, оказываются справедливыми и для изогнутого волокна, если его радиус изгиба R удовлетворяет эмпирическому условию R/d1 > 60. Элемент, такого изогнутого световода представлен на рис. 41.

Рис. 41. Передача изображения в световоде

Исследуя распространение света в случае тонких волокон, уже необходимо использовать представления волновой оптики и рассматривать картину распространения по волокну различных мод. Для достаточно тонких волокон (d1 ~= λ) в соответствии с ранее приведенным выражением для N может быть реализован одномодовый режим. Условие осуществления одномодового режима может быть представлено в виде

Следовательно, для получения одномодового режима необходимо уменьшить не только диаметр волокна, но и разницу в показателях преломления сердцевины и оболочки.

Следует отметить существенное различие в распространении света в тонких и толстых волокнах. Так как при полном отражении интенсивность светового поля в среде с меньшей оптической плотностью не равна нулю и уменьшается по мере удаления от границы раздела, но в тонком волокне часть световой мощности распространяется не по сердцевине, а по оболочке. И в тонких волокнах в отличие от толстых доля световой мощности, распространяющейся в оболочке, весьма существенна.

Если в толстых волокнах светопропускание определялось прозрачностью в основном сердцевины волокна, то в тонких волокнах более важную роль играют свойства оболочки волокна.

ГДЕ ПРИМЕНЯЮТ ОПТИЧЕСКИЕ СВЕТОВОДЫ?

За короткое время, прошедшее после создания первых образцов световодов, проблема из научной перешла в техническую. Началась разработка световодных кабелей и аппаратуры (источников и приемников излучения и др.), которые удовлетворяли бы практическим целям передачи информации на значительные расстояния. Появились и так называемые активные волокна, способные усиливать проходящее через них излучение.

Как звуковая волна в переговорной трубке или трубе духового музыкального инструмента от источника его возникновения передается к слушателю, так и свет бежит по световоду, неся информацию либо в виде изображения тех или иных объектов, либо закодированную цифровую информацию.

Первое применение световоды получили в медицине. Появилась возможность для просматривания желудка и других внутренних органов вводить туда тонкие жгутики из двух световодов (по одному подают свет, а по другому — изображение рассматриваемого объекта). Световоды используют также в технике, с их помощью рассматривают внутренние части машин, недоступные для визуального осмотра.

Использование в качестве световодов диэлектриков с оптическими свойствами более высокими, чем у стекла, сделало световоды серьезными конкурентами традиционным линиям связи (в тех случаях, когда речь не идет о связи между движущимися объектами). Это относится прежде всего к системам промышленного контроля и управления, а также низовым телефонным сетям внутри ЭВМ.

КАКОВЫ ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ВОЛОКОННОЙ ОПТИКИ?

Наибольший эффект применение волоконно-оптических линий связи (из-за их помехоустойчивости, малого веса, будущей дешевизны) даст там, где может быть использована их большая пропускная способность.

Сюда относятся прежде всего внутриобъектные системы, например самолетные, где решающими являются помехозащищенность и вес системы. Эти же показатели привлекают конструкторов корабельных систем и систем передачи информации между блоками в электронных вычислительных машинах. Не исключено применение световых кабелей для телевидения, передачи через абонентский телевизор изображений газетных, журнальных и книжных страниц из библиотек, учетных центров и специальных информационных служб.

Соединив кабельное телевидение с видеотелефонной сетью, можно обмениваться визуальной информацией, а магнитная лента позволит абоненту использовать информацию, полученную в его отсутствие.

Соединив световодными кабелями автоматические телефонные станции не только внутри городов, но и между городами, осуществив трансляцию по ним телевизионных передач, мы получим колоссальную экономию массы дефицитных материалов, сократим расходы на оборудование и содержание ретрансляционных станций.

Развитие волоконно-оптических систем передачи информации приведет к существенной перестройке измерительных и управляющих комплексов.

Вместо электрических микрофонов появятся оптические, уже разрабатываются разнообразные подобные приборы, приспособленные для присоединения к свето- водным кабелям.

Применение гибких световодов поможет передаче достаточно больших мощностей или импульсов света с большой энергией, тем самым повысит возможности лазерной технологии и медицины.

ЧТО ТАКОЕ ОПТИКО-ЭЛЕКТРОННЫЕ ПРИБОРЫ?

Дальнейшее развитие волоконной оптики привело к созданию принципиально новых приборов — оптико- электронных приборов, или ОЭП.

Их применяют там, где возможности человека ограничены (при работе в ультрафиолетовом и инфракрасном диапазонах в области недостаточной чувствительности глаза), и там, где человек по какой-то причине находиться не может (в условиях высоких температур и радиационной опасности). В этих устройствах мы имеем дело не только со световыми сигналами и их передачей, но и с взаимодействием световых лучей с электрическим полем, т. е. взаимодействием фотонов и электронов.

Большие возможности перед ОЭП открылись после создания лазеров. Часто ОЭП предназначаются для решения тех же задач, где используют и однотипные по назначению радиоэлектронные приборы. Однако радиоэлектронные и оптико-электронные приборы работают в различных диапазонах спектра электромагнитных волн.

Итак, оптико-электронными называют приборы, в которых информация об исследуемом или наблюдаемом объекте переносится оптическим излучением, а ее первичная обработка сопровождается преобразованием энергии излучения в электрическую энергию.

В обобщенную схему ОЭП входят источник излучения, оптическая система, приемник излучения и выходной блок. Источник излучения создает материальный носитель информации — поток излучения. В некоторых случаях источник излучения дополняют передающей оптической системой, которая направляет поток на исследуемый объект или непосредственно в приемную оптическую систему.

Приемная оптическая система собирает поток, испускаемый наблюдаемым объектом или отраженный от него, формирует этот поток и направляет на приемник излучения. Приемник превращает сигнал, переносимый потоком излучения (оптический сигнал), в электрический.

Выходной блок (система вторичной обработки информации) формирует сигнал, по своим параметрам удовлетворяющий требованиям исполнительной автоматической системы.

ИСПОЛЬЗУЮТ ЛИ ВОЛОКОННУЮ ОПТИКУ В ЭВМ?

Уже созданы электронно-вычислительные машины, все элементы которых работают на лучах света, обмениваясь ими через нити — световоды. Имеются и автоматические телефонные станции, на которых нет ни одного электрического или электромагнитного реле.

По оптико-электронным линиям можно передавать и телефонный разговор, и программу цветного телевидения, и любой другой вид информации.

ЧТО ДАЕТ СОЕДИНЕНИЕ ЛАЗЕРА С ВОЛОКОННОЙ ОПТИКОЙ?

Лазерные лучи когерентны, поэтому оптико-электронные системы, соединенные с лазером, обладают колоссальной информационной емкостью и четкой направленностью сигнала. Достаточно сказать, что один лазерный луч эквивалентен 200 телевизионным каналам.

Волоконная оптика — одна из самых молодых наук современности, наука-младенец, и перспективы, открывающиеся сегодня перед ней, — это лишь незначительная часть того, что может возникнуть и возникнет в недалеком будущем.

 

13. Современный гиперболоид

В 1925–1926 гг. советский писатель А.Н.Толстой написал и опубликовал первый вариант романа «Гиперболоид инженера Гарина». В нем автор рассказал о некоем инженере Гарине, укравшем идею у своего коллеги, который изобрел аппарат, позволяющий получить сверхмощное световое излучение. Сила излучения была такова, что оно было в состоянии разрушать горы, превращать в пар огромные массы воды, проникать в глубь Земли до жидкого гипотетического оливинового пояса — «кладовой золота». Свое изобретение инженер Гарин использовал прежде всего во зло людям в стремлении стать мировым диктатором, добыв из земных недр несметное количество золота. Это произведение А.Н.Толстого можно по праву назвать научно-фантастическим романом, опередившим свое время на четверть века.

А КАК ВСЕ ПРОИСХОДИЛО В ЖИЗНИ?

В 1951 г. А.М.Прохоровым были проведены исследования по радиоспектроскопии: изучалось поведение молекул в электромагнитных полях радиочастотного диапазона.

Вскоре после этого молодыми учеными Н. Г. Басовым и А. М. Прохоровым (ныне известными академиками) была выдвинута идея создания молекулярного генератора, который основан на индуцированном (вынужденном) испускании электромагнитных колебаний сверхвысоких частот (СВЧ) молекулами или атомами под действием поля излучения. Необходимо заметить, что существование такого излучения наряду со спонтанным (самопроизвольным) было предсказано А. Эйнштейном еще в 1916 г.

И вот через три года упорного труда, в 1954 г., были разработаны и исследованы молекулярные квантовые генераторы — мазеры — в СССР Н. Г. Басовым и А. М. Прохоровым, а независимо от них в США — Ч. Таунсом.

Создание молекулярного генератора ознаменовало рождение новой области физики — квантовой электроники, стоящей на стыке между радиофизикой и оптикой.

Эта область интенсивно развивается в настоящее время, причем ведущую роль в этом развитии играют советские физики, о чем свидетельствует присуждение в 1964 г. Нобелевской премии Н. Г. Басову и А. М. Прохорову (совместно с американцем Ч. Таунсом).

В конце 60-х годов выявились возможности создания квантового генератора оптического диапазона — лазера — этого своеобразного «гиперболоида XX века».

Само слово «лазер» образовано от начальных букв английской фразы «Light Amplification by Stimulated emission of Radiation», что означает «усиление света путем индуцированного испускания излучения».

МЫ УЖЕ СТОЛЬКО РАЗ ПРОИЗНОСИЛИ ЭТО СЛОВО «ЛАЗЕР». ПОРА ПОГОВОРИТЬ И О САМОМ ЛАЗЕРЕ.

Изобретение принципиально новых источников света — лазеров — вдохнуло новую жизнь в оптику, к этому времени считавшуюся завершенной наукой.

Свет получил множество новых применений, так как приобрел совершенно новые качества: высокую монохроматичность (предельно высокую цветовую чистоту), острую пространственную направленность, огромную спектральную яркость. С точки зрения классической оптики был создан как бы точечный источник с огромной температурой, который позволял получать не только узкие нерасходящиеся лучи, но и концентрировать в них огромную мощность. Именно эти характеристики привели к рождению и бурному развитию нового раздела в самой оптике — нелинейной оптики.

В настоящее время созданы оптические квантовые генераторы (ОКХ) различных видов: на кристаллах и стеклах (твердотельные квантовые генераторы), полупроводниковые генераторы, генераторы на жидких красителях, на газовых смесях.

ТАК ЧТО ЖЕ ТАКОЕ ЛАЗЕР? ЧТО ПРЕДСТАВЛЯЕТ СОБОЙ ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ?

Прежде всего раскроем физический смысл понятия «индуцированное излучение».

Индуцированное (вынужденное) излучение возникает в результате согласованного по частоте, фазе и направлению почти одновременного испускания электромагнитных волн огромным количеством атомов, ионов или молекул под действием внешнего электромагнитного поля. Оно может происходить во всех диапазонах длин волн электромагнитного излучения: радио, инфракрасном, видимом, ультрафиолетовом и рентгеновском.

Если в обычных генераторах и усилителях электромагнитных волн (в вакуумных электронных лампах и транзисторах) используют свободные электроны, движение которых описывается классической физикой, то в квантовых генераторах мы имеем дело со связанными электронами, входящими в состав атомов, молекул, ионов, кристаллов.

Движение таких электронов подчиняется законам квантовой механики. Отсюда и появились названия «квантовая электроника», «квантовые генераторы», «квантовые усилители» и т. п.

Согласно законам квантовой механики, энергия электрона в атоме не произвольна: она может иметь лишь определенный (дискретный) ряд значений E0, Е1, E2…, Еn, называемых уровнями энергии. Значения эти различны для разных атомов. Набор дозволенных значений энергии носит название энергетического спектра атома.

В нормальных условиях (при отсутствии внешних воздействий) большая часть электронов в атомах веществ пребывает на самом низком невозбужденном уровне E0, т. е. атом обладает минимальным запасом внутренней энергии; остальные уровни Е1, E2…, Еn соответствуют более высокой энергии атома и называются возбужденными (рис. 42).

Рис. 42. Энергетический спектр атома

При переходе электрона с одного уровня энергии на другой атом может испускать или поглощать электромагнитные волны, частота которых vm.n определяется соотношением

v m.n = (Е m — E n )/h.

Здесь h — постоянная Планка (h = 6,62∙10-34 Дж∙с), Еn — конечный, Еm — начальный уровень. Чем больше разность энергий состояний, между которыми происходит переход, тем больше частота электромагнитной волны, испускаемой или поглощаемой при таком переходе, тем больше энергия волны hv.

Именно дискретностью энергетического спектра, как нам известно, объясняется линейчатый характер спектра испускания или поглощения электромагнитных волн атомами.

Приведенная выше формула выражает закон сохранения энергии при элементарных актах испускания или поглощения фотонов атомами.

Возбужденный атом может отдать свою некоторую избыточную энергию, полученную от внешнего источника или приобретенную им в результате теплового движения электронов, двумя различными способами.

Всякое возбужденное состояние атома неустойчиво, и всегда существует вероятность его самопроизвольного перехода в более низкое энергетическое состояние с испусканием кванта электромагнитного излучения. Такой переход называют спонтанным (самопроизвольным). Он носит нерегулярный, хаотический характер.

Если одновременно возбудить большую группу атомов, то при известной вероятности спонтанных переходов можно утверждать, что по истечении некоторого времени какая-то часть атомов в среднем должна совершить акты спонтанного испускания. При этом в силу случайного характера явления само излучение может испускаться в окружающую среду по любым равновероятным направлениям. Все обычные источники (лампы накаливания, газоразрядные трубки и т. п.) дают свет в результате спонтанного испускания.

Таков первый механизм испускания электромагнитного излучения атомами. Подведя итог вышеизложенному, можно утверждать, что мы имели дело с двухуровневой схемой испускания света и что в этом случае никакого усиления излучения добиться не удастся. Действительно, если атом поглотил какое-то количество энергии hv, то через некоторое время этот атом выделил энергию в виде кванта, но той же самой энергии hv. В этом случае мы имеем дело с самопроизвольным процессом, не связанным ни с какими внешними воздействиями и присущим изолированному атому, т. е. со спонтанным испусканием. Следовательно, при двухуровневой системе в газе каждый атом может находиться только в двух состояниях: Е1 — основное состояние, Е2 — возбужденное состояние.

В этом случае говорят о термодинамическом равновесии, в котором находится газ. В состоянии равновесия процессы возбуждения из-за постоянно действующих внутренних (микроскопических) процессов возбуждения (например, столкновений атомов газа) всегда уравновешены обратными процессами девозбуждения.

Перейдем к рассмотрению более сложной модели — трехуровневой схеме, представленной на рис. 43.

Рис. 43. Трехуровневая схема испускания атомом

Заметим, что существует и четырехуровневая схема, но она значительно сложнее трехуровневой (хотя принципиальная картина процессов, происходящих в атоме, остается той же самой), и мы ее рассматривать не будем.

В атомах вещества при термодинамическом равновесии на каждом последующем возбужденном уровне находится меньше электронов, чем на предыдущем.

Если теперь подействовать на систему возбуждающим излучением с частотой, попадающей в резонанс с переходом между уровнями 1 и 3 (схематично 1 —> 3), то атомы будут поглощать это излучение и переходить с уровня 1 на уровень 3. Если интенсивность излучения достаточно велика, то число атомов, перешедших на уровень 3, может быть весьма значительным и мы, нарушив равновесное распределение населенностей уровней, увеличим населенность уровня 3 и уменьшим, следовательно, населенность уровня 1.

С верхнего третьего уровня возможны переходы 3 —> 1 и 3 —> 2. Оказалось, что переход 3 —> 1 приводит к испусканию энергии Е3 — Е1 = hv31, а переход 3 —> 2 не является излучательным: он ведет к заселению «сверху» промежуточного уровня 2 (часть энергии электронов при этом переходе отдается веществу, нагревая его). Этот второй уровень носит название метастабального, и на нем в итоге окажется атомов больше, чем на первом. Именно на этом уровне происходит накопление возбужденных атомов. Поскольку атомы на уровень 2 поступают с основного уровня 1 (через верхнее состояние 3), а обратно на основной уровень возвращаются с «большим запаздыванием», то уровень 1 «обедняется».

В результате и возникает инверсия, т. е. обратное инверсное распределение населенностей уровней. Если N1 — число атомов в состоянии 1, a N2 — число атомов в состоянии 2, то при инверсии N2 > N1 и генерируются фотоны с энергией hv21 = E2 — Е1. Следовательно, инверсия населенностей энергетических уровней создается интенсивным вспомогательным излучением, называемым излучением накачки, и приводит в конечном итоге к индуцированному (вынужденному) размножению фотонов в инверсной среде. Это индуцированное излучение явилось физической основой создания лазера — источника, в котором рождаются «кванты-близнецы», т. е. когерентные, строго направленные узким пучком электромагнитные волны.

На рис. 44 приводится схема, поясняющая поглощение и испускание спонтанного и индуцированного излучения.

Рис. 44. Схема, поясняющая явление поглощения ( а ), спонтанного ( б ) и индуцированного ( в ) излучений

Частица (атом или ион), находящаяся в основном энергетическом состоянии (находится на уровне 1) и изображенная черным кружочком на рис. 44, а, поглощает фотон (волнистая стрелка) и возбуждается, т. е. переходит на более высокий энергетический уровень Е2 (белый кружок). Возбужденная частица (белый кружок на рис. 44, б) может спонтанно выделить энергию в виде фотона и возвратиться в основное состояние.

Но возбужденную частицу (белый кружок на рис. 44, в) можно заставить испустить фотон под действием внешнего фотона (волнистая стрелка слева). Тогда кроме этого стимулирующего фотона появится второй фотон с той же частотой (волнистые стрелки справа), а частица снова возвратится в основное состояние. Так в результате индуцированного испускания рождаются кванты-близнецы, т. е. при большом числе возбужденных атомов происходит лавинообразный процесс значительного усиления слабого, подлежащего усилению сигнала.

ИТАК, ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ ПОЛУЧЕНО. ОСТАЕТСЯ СФОРМИРОВАТЬ ЕГО В ПУЧОК.

Действительно, индуцированное размножение фотонов в инверсной среде является лишь необходимым, но не достаточным условием создания и действия лазера — генератора когерентной электромагнитной волны.

Для формирования высокой временной и пространственной когерентности излучения среду, в которой оно возникает, получившую название активной среды, необходимо поместить в оптический резонатор — систему двух сферических или плоских зеркал. Резонатор обладает свойствами не только накапливать внутри себя фотоны, испускаемые активной средой, т. е. создавать дополнительное усиление излучения, но и осуществлять «выбор» волн определенных частот из диапазона hv21 = ΔE/h, обладающих высокой монохроматичностью.

Дело в том, что каждый энергетический уровень представляет собой не узкую линию (рис. 44), а полосу шириной А£ (в случае трехуровневой схемы ΔE3, ΔE2).

ДАВАЙТЕ РАССМОТРИМ ДЕЙСТВИЕ РЕЗОНАТОРА ПОДРОБНЕЕ

В резонаторе (рис. 45) элемент активной среды выбран в виде параллелепипеда, а в качестве резонатора выступают два плоских зеркала. В соответствии с одним из физических законов, установленных Бугером, усиление волны в инверсной системе нарастает экспоненциально с увеличением длины активной среды. Однако в реальных физических условиях существуют потери энергии, которые с ростом длины среды возрастают. Следовательно, длину активной зоны необходимо подобрать такой; чтобы потери энергии были минимальны при максимально возможном усилении излучения.

Рис. 45. Схема оптического резонатора

Пусть в точке А активной среды спонтанно испускается фотон энергии hv21 с направлением распространения вдоль оси системы (перпендикулярно зеркалам) и пусть он станет тем «первым камнем», вызывающим лавину фотонов-близнецов. Именно в лазерах этот спонтанно излученный фотон и представляет собой излучение, которое необходимо усилить. В результате движения этого фотона в среде появления индуцированных фотонов амплитуда и энергия волны увеличиваются в направлении ее распространения. После отражения от правого зеркала волна идет обратно, продолжая усиливаться. Пройдя расстояние L, она достигает левого зеркала, отражается и снова устремляется к правому зеркалу.

Такие условия, разумеется, создаются только для осевых волн. Кванты других направлений не способны забрать заметную часть запасенной в активной среде энергии, но при определенных условиях практически вся энергия возбуждения атомов переходит в излучение, направленное вдоль оси резонатора.

Если затем каким-либо способом (об этом несколько позже) дать возможность излучению выйти из резонатора, то можно получить остронаправленный, почти параллельный пучок, линейный угол расходимости которого определяется лишь дифракционными явлениями на зеркале и равен λ/D (D — диаметр пучка).

Это отношение может быть порядка 10-4—10-5 рад, в то время как обычные источники света излучают во все стороны, т. е. в 4π; рад. Применение плоских зеркал в резонаторе приводит к тому, что выходящая из лазера волна имеет почти плоский фронт, т. е. имеет высокую степень пространственной и временной когерентности по всему сечению пучка.

Теперь мы можем окончательно заключить, что физической основой лазеров являются: эффект индуцированного (вынужденного) излучения; создание термодинамического неравновесия в активных средах, сопровождающееся инверсией и дающее возможность усиливать световые волны; применение оптического резонатора, накапливающего кванты излучения и формирующего упорядоченную структуру электромагнитного поля, создающего его высокую когерентность.

КАКОВА ОБЩАЯ СХЕМА РАБОТЫ ЛАЗЕРА?

Функциональная схема любого оптического квантового генератора (ОКГ) изображена на рис. 46. Здесь 1 — активная среда, 2 — система накачки, 3 — оптический резонатор, 4 — возможные дополнительные элементы. Резонатор выделяет в пространстве оптическую ось ОО1 генератора, вдоль которой испускается лазерное излучение.

Рис. 46. Функциональная схема оптического квантового генератора (ОКГ)

ЧТО ИСПОЛЬЗУЮТ В КАЧЕСТВЕ АКТИВНОЙ СРЕДЫ В ЛАЗЕРАХ?

В различных лазерах в качестве активной среды применяют различные газы и газовые смеси (газовые ОКГ), кристаллы и стекла с примесями определенных ионов (твердотельные ОКГ), полупроводники (полупроводниковые ОКГ). Активная среда включает в себя небольшое количество атомов, ионов или молекул, называемых активными центрами. В полупроводниковых ОКГ роль высвечивающихся возбужденных активных центров играют электронно-дырочные пары.

Способы возбуждения (в системе накачки) зависят от типа активной среды. Это либо способ передачи энергии возбуждения в результате столкновения частиц в плазме газового разряда (газовые ОКГ), либо передача энергии облучением активных центров некогерентным светом от специальных источников (оптическая накачка в твердотельных ОКГ), либо инжекция неравновесных носителей через р-n-переход, либо возбуждение электронным пучком, либо оптическая накачка (полупроводниковые ОКГ).

Что касается оптического резонатора, то он представляет собой комбинацию из двух зеркал, одно из которых должно быть в некоторой степени прозрачно по отношению к генерируемому излучению.

Внутрь резонатора помещают дополнительные элементы. Их задача — обеспечить определенный режим работы ОКГ (например, непрерывную генерацию, импульсный режим свободной генерации или импульсный режим гигантских импульсов), модулировать лазерное излучение (т. е. вносить в него определенную полезную информацию).

КАКИЕ ЖЕ СУЩЕСТВУЮТ ЛАЗЕРЫ? В КАКИХ РЕЖИМАХ ОНИ РАБОТАЮТ?

В настоящее время создано чрезвычайно много различных лазеров, дающих излучение в широком диапазоне длин волн (от 200 до 20000 нм, т. е. от глубокого ультрафиолета до далекой инфракрасной области). Лазеры работают с очень короткой длительностью светового импульса τ ~= 10-12 с, а также могут давать и непрерывное излучение.

Плотность потока энергии лазерного излучения составляет величину порядка 1018 Вт/см2 (интенсивность Солнца составляет «всего» 7∙103 Вт/см2).

Сначала остановимся на твердотельных лазерах. Среди них наиболее известны рубиновый лазер и лазеры на стекле, в частности неодимовый лазер (наиболее мощный твердотельный лазер). Активная среда таких ОКГ всегда состоит из двух компонент: основной с кристаллическим или аморфным диэлектриком и примесной (в количестве от нескольких десятых, сотых до нескольких процентов от основной компоненты). Все физические процессы, приводящие к генерации когерентного излучения, происходят в атомах примеси, тогда как основная компонента является средой, которая оберегает активные центры от перегрева, внешних механических перегрузок и является также высокооптически прозрачной основой, несущей излучающие вкрапления атомов или ионов примеси. Для создания инверсии используют оптическую накачку от специальных мощных ламп-вспышек.

ПО КАКОЙ СХЕМЕ РАБОТАЮТ ТВЕРДОТЕЛЬНЫЕ ОКГ?

Твердотельные ОКГ работают по трех- или четырехуровневой схеме. Коэффициент полезного действия этого типа ОКГ определяется эффективностью превращения электрической энергии в световую (35–50 %), эффективностью поглощения световой энергии активным стержнем (30–50 %), эффективностью использования энергии, поглощенной стержнем (5—10 %), и составляет 0,1–2 %. Твердотельные ОКХ обладают достаточно высокой мощностью излучения при относительно малой длине активной среды.

Первый твердотельный рубиновый лазер (основным элементом такого ОКГ является рубиновый стержень высокой оптической однородности) был создан в 1960 г. Рубин представляет собой по химическому составу оксид алюминия Al2О3 (корунд) с примесью ионов хрома (0,03—0,05 %), окрашивающих корунд в розовый цвет. Таким образом, ионы хрома и являются активными центрами, в которых осуществляются все физические процессы генерации излучения.

Рубиновый стержень обычно имеет форму цилиндра диаметром 0,5–2 см и длиной 4,5—24 см.

На рис. 47 показан характерный общий вид твердотельного ОКГ. Здесь 1 — активный стержень, 2 — зеркала оптического генератора, представляющие собой специально обработанные торцы активного стержня, 3 — лампа-вспышка (возможны также конструкции, использующие лампу непрерывного горения), 4 — эллиптический отражатель. В современных лазерах для более эффективной концентрации световой энергии лампы на активном стержне осветитель и рубиновый стержень располагают в фокусах эллипса.

Рис. 47. Твердотельный рубиновый лазер

Ионы хрома, входящие в состав рубина, до вспышки находятся на самом нижнем невозбужденном уровне. Два возбужденных состояния ионов лежат в зеленой и синей областях спектра.

Поглощая зеленый или синий свет, содержащийся в излучении лампы-вспышки, ионы переходят в возбужденное состояние, т. е. на уровень £У (см. рис. 43). Время жизни ионов на этом уровне менее 1∙10-7 с. Они быстро переходят на нижний возбужденный уровень E2, отдавая некоторую часть энергии решетке кристалла, нагревая ее. На этом уровне ион может находиться относительно долго (~ 10-3 с).

При достаточно мощной вспышке можно перебросить на метастабильный уровень за 10-3 с достаточное количество частиц и получить инверсию населенности между метастабильным и невозбужденными уровнями иона. Переход частиц с уровня E3 на уровень E2 происходит без испускания электромагнитных волн, тогда как переход с метастабильного на основной уровень происходит с испусканием света в красной области спектра (λ = 694,3 нм).

При инверсии населенности рубин приобретает способность усиливать красный свет. В качестве ламп накачки используют мощные газоразрядные лампы спиральной или трубчатой конструкции. Длительность вспышки порядка 1∙10-3 с, а сама лампа питается от батарей конденсаторов емкостью до 10 000 мкФ, заряженных до нескольких тысяч вольт. Обычно большие лазеры дают в импульсе энергию до 1000 Дж, что соответствует импульсной мощности до 1 МВт.

В качестве другого примера твердотельного ОКГ может служить неодимовый лазер, активная среда которого представляет собой стекло с примесью атомов неодима. Лазер функционирует по четырехуровневой схеме и дает излучение в инфракрасной области с λ = с/v32 = 1060 нм (здесь с — скорость света, т. е. скорость распространения электромагнитных волн).

В КАКОМ РЕЖИМЕ РАБОТАЮТ ТВЕРДОТЕЛЬНЫЕ ОКГ?

Твердотельные ОКГ (как, впрочем, и любой лазер) могут работать как в стационарном или непрерывном, так и в импульсном режимах. Для осуществления стационарного режима работы лазера плоские торцы рубинового или неодимового стержня покрывают слоями серебра так, чтобы один торец имел высокий (~ 1) коэффициент отражения, а другой был бы полупрозрачным. В этом режиме создание инверсии и генерация происходят одновременно, т. е. накачка образует инверсную заселенность энергетических уровней, а генерация непрерывно ее «уничтожает».

Однако существуют способы «накопления» инверсии, а затем «выстреливания» излучения за очень короткое время порядка 1∙10-8 с (10 нc). Такой импульсный режим предусматривает применение одного непрозрачного, а другого полностью прозрачного зеркал резонатора. В то время как действует лампа накачки, при полностью прозрачном торце лазера на выходе излучения (правый торец стержня на рис. 47) многократный переход индуцированного излучения и его усиление невозможны, т. е. инверсия не «перерабатывается» в излучение и происходит рост заселенности инверсных уровней.

Если теперь, когда инверсия уже велика, правый торец станет частично отражающим («заменится» полупрозрачным зеркалом), возникнет усиление и будет генерирован импульс излучения. Заметим, что в этом режиме мощность излучения не превышает мощности, выделяемой при стационарном (непрерывном) режиме.

НО СУЩЕСТВУЕТ ЕЩЕ И РЕЖИМ ГИГАНТСКИХ ИМПУЛЬСОВ?

В режиме гигантских импульсов излучение реализуется в виде мощных одиночных или повторяющихся импульсов, пиковая мощность которых достигает 106—1010 МВт при длительности порядка 10-12 с.

В этом случае при накачке и «накоплении» инверсии оба торца лазера непрозрачны — генерация нарастает до значительных размеров. Затем одно из препятствий излучению (с правого конца стержня) «убирается» и мощный импульс беспрепятственно устремляется наружу. Для обеспечения условий импульсного режима генерации применяют дополнительные элементы (4 на рис. 46) различной конструкции — оптические затворы. В простейшем случае это может быть синхронизированный с импульсами накачки вращающийся прерыватель светового пучка или вращающееся зеркало резонатора. Для создания режима гигантских импульсов более совершенными оказываются пассивные и электрооптические затворы.

Рассмотрим вкратце для примера работу пассивного затвора, представляющего собой жидкость, просветляющуюся под действием генерируемого излучения. После включения импульса накачки начинает создаваться инверсия населенностей энергетических уровней, однако затвор непрозрачен и генерация отсутствует. Появляющиеся фотоны за счет спонтанных переходов частотой hv21 = (E2 — E1)/h поглощаются активными центрами жидкости, и начинается просветление затвора. При частичном просветлении затвора начинается генерация излучения, число фотонов с частотой hv21 резко возрастает, затвор быстро и окончательно просветляется. В результате возникает гигантский импульс лазерного излучения. По окончании действия импульса накачки затвор снова становится непрозрачным — до следующего импульса накачки, т. е. действие пассивного затвора полностью регулируется импульсами накачки. В качестве просветляющихся жидкостей применяют фталоцианин в нитробензоле, криптоцианин в нитробензоле и др.

РАССКАЖИТЕ О ГАЗОВЫХ ОКГ.

Активные центры в газовых ОКГ могут иметь разную физическую природу: либо это нейтральные атомы (атомные газовые ОКГ), либо ионы (ионные газовые ОКГ), либо молекулы (молекулярные газовые ОКГ).

В атомных газовых ОКГ энергетические уровни атомов находятся на расстоянии от 0,1 до 2 эВ, чему соответствует оптическое излучение в инфракрасной и видимой областях спектра (λ = 500÷10 000 нм).

В ионных газовых ОКГ переходы происходят между уровнями ионов. Расстояние между рабочими уровнями составляет от 2 до 10 эВ, чему соответствует излучение в видимой и ультрафиолетовой областях спектра (λ = 100÷500 нм).

В молекулярных газовых ОКГ переходы осуществляются между колебательными и вращательными уровнями молекул; расстояние между рабочими уровнями от 0,01 до 0,1 эВ, чему соответствует излучение в диапазоне сверхвысоких частот (СВЧ) и инфракрасной области спектра (λ= 106÷104 нм).

Активная среда газовых ОКГ расположена внутри газоразрядной трубки, а для накачки используют импульсные или стационарные виды разрядов.

Газы обладают высокой оптической однородностью и прозрачностью, это позволяет изготовлять длинные газоразрядные трубки (от нескольких десятков сантиметров до нескольких и даже десятков метров).

На рис. 48 приведена принципиальная схема газоразрядной трубки ОКГ на гелий-неоне (активная среда — гелий-неон, активные центры — атомы неона).

Рис. 48. Газовый ОКГ на гелий-неоне

Используется тлеющий разряд постоянного тока. Зеркала резонатора расположены вне газоразрядной трубки.

Для ОКГ на гелий-неоне характерны следующие параметры: выходная мощность 0,01 Вт, коэффициент полезного действия 0,01 %.

Одним из самых мощных современных: лазеров является молекулярный газовый ОКГ на углекислом газе. Активная среда в нем — смесь углекислого газа (около 1 мм рт. ст.), молекулярного азота (1 мм рт. ст.) и гелия (около 5 мм рт. ст.); активные центры — молекулы СО2. Используется тлеющий разряд, в верхний рабочий уровень молекулы СО2 заселяется за счет электронного возбуждения и неупругих столкновений с молекулами азота (время жизни этого уровня 10-1 с).

Для ОКГ этого типа характерны мощность порядка 10 кВт и КПД 10–20 %, генерируется инфракрасное излучение с λ = 1060 нм.

Кроме твердотельных и газовых существуют также жидкостные и полупроводниковые ОКГ, наиболее перспективные из которых позволяют получать излучение в широком интервале длин волн (от ультрафиолетовых до инфракрасных) при высокой мощности и КПД (порядка 30 % и более).

 

14. Лазеры за работой

Термоядерный синтез и лазеры. Кажется, что одно к другому не имеет никакого отношения. Что между ними общего? Однако не будем спешить. Напомним, что в результате слияния тяжелых изотопов водорода — дейтерия D и трития Т — выделяется огромное количество энергии. Этот процесс, обладающий высокой энергоемкостью (~1∙1011 Дж/г), носит название реакции термоядерного синтеза. Для того чтобы произошла эта реакция, ядра необходимо сблизить на расстояние (~1∙10-12 см. Преодолеть кулоновский барьер отталкивания ядер можно только одним способом — разогнать отталкивающиеся ядра до очень высоких скоростей, т. е. сообщить им большую кинетическую энергию.

Пожалуй, единственно возможный в физике путь осуществить условие, позволяющее многим ядрам вступать в реакцию синтеза, — это получить нагретый до очень высоких температур газ из дейтерия и трития. Температура газа, обеспечивающая слияние ядер, должна быть не менее 108 К.

НО ВЕДЬ ГАЗ, РАЗОГРЕТЫЙ ДО ТАКИХ ТЕМПЕРАТУР, ПРИОБРЕТАЕТ НОВЫЕ СВОЙСТВА?

При такой температуре электроны отрываются от ядер. Смесь ядер дейтерия и трития и соответственно оторванных от ядер электронов есть термоядерная плазма.

Для того чтобы в этой плазме при достижении температуры 108 К началась термоядерная реакция, необходимо выполнение определенного соотношения: nτ >1014 (критерий Лоусона). Здесь n — концентрация ядер (ионов) дейтерия и трития, а τ — время существования плазмы в горячем состоянии.

Таким образом, получение дейтериево-тритиевой плазмы с T >= 1∙108 К и с параметрами n и τ, удовлетворяющими критерию Лоусона, лежит в основе управляемого термоядерного синтеза (УТС). Осуществление управляемого термоядерного синтеза может обеспечить человечеству «вечное» энергетическое изобилие, поскольку запасы высококалорийного (1011 Дж/г) термоядерного топлива практически бесконечны.

КАК ПЫТАЮТСЯ РЕШИТЬ ПРОБЛЕМУ ПОЛУЧЕНИЯ УПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА?

К решению этой грандиозной задачи, являющейся в науке задачей № 1, ученые идут двумя путями. Первый исторически связан с удержанием нагретой электрическим разрядом плазмы в магнитном поле. Эти относительно «медленные» процессы (τ ~= 0,1÷1с) воспроизводятся, например, в широко известных установках, разработанных советскими учеными, типа ТОКАМАК.

Другой путь — это получение термоядерных микровзрывов (τ ~= 10-9 с) в сгустке термоядерной плазмы. Следовательно, получение термоядерных микровзрывов связано с необходимостью быстро нагревать и сжимать малые порции DT-вещества (импульсный или инерциальный процесс синтеза). Импульсное направление в проблеме УТС возникло в 1962 г., когда Н.Г.Басов и О. Н. Крохин высказали идею об использовании лазерного излучения для получения термоядерной плазмы. Это направление получило название лазерного термоядерного синтеза. Использование лазеров в УТС предопределяется возможностью фокусировки лазерного луча на площадку малых размеров (1∙10-2 см и меньше), высокой мощностью излучения, достигающей в настоящее время 1013—1014 Вт (10—100 ТВт). Такая высокая мощность лазерного излучения позволяет обеспечить колоссальное удельное энерговыделение (~ 1016—1017 Вт/см3). Столь высокое значение энергии в единичном объеме превосходит возможности других источников энергии и дает возможность осуществить мгновенный нагрев малых порций вещества до высоких температур и значительных давлений, так как давление всегда пропорционально тепловой энергии, приходящейся на единичный объем вещества.

Возникшая с появлением мощных лазеров физика УТС по мере развития лазерной техники (увеличения мощности и энергии когерентного излучения) накапливала все более и более удивительные открытия и быстро превращалась в совершенно новую область науки. Были открыты и изучены эффекты оптического пробоя (1964), лазерного испарения вещества и передачи механического импульса мишени (1964–1966), лазерного нагрева твердого вещества до высоких температур (1964–1966), обнаружены термоядерные реакции в плазме, образованной излучением мощного неодимового лазера (1968).

На повестке дня стоят проблемы создания лазерных систем нового поколения (мегаджоульного уровня) для достижения эффективной термоядерной вспышки и разработки термоядерного реактора. Внедрение его в мировую энергетику и является конечной целью лазерно-термоядерного направления науки и техники.

НЕ БУДЬ ЛАЗЕРОВ, НЕ БЫЛО БЫ И ГОЛОГРАФИИ?

Развитие голографии, принципы которой были разработаны в 1947 г. английским ученым Габором, является выдающимся достижением в области лазерной техники.

Известно, что голография представляет собой метод получения объемных изображений путем восстановления структуры световой волны, отраженной от предмета.

Метод голографической записи и воспроизведения изображений коренным образом отличается от обычного фотографирования, основанного на построении на фотопластинке плоского изображения предмета с помощью оптических объектов по законам геометрической оптики. При получении голограммы необходимости в использовании объективов для построения изображений нет.

На самой голограмме не обнаруживается какого-либо сходства с оригиналом: она выглядит как хаотически сложное распределение черных и белых интерференционных полос, равномерно расположенных по всей плоскости фотопластинки. Лишь с появлением лазеров стало возможным получение четких и ясных голограмм.

КАК ПОЛУЧАЮТ ГОЛОГРАММУ?

Чтобы получить голограмму, необходимо иметь две интерферирующие монохроматические когерентные световые волны. Одна волна обычно исходит от объекта и падает на фотопластинку (объектная волна). Другая волна носит название опорной (рис. 49). Таким образом, в голографии, как и при фотографировании, решается вопрос о записи информации, которую несет световая волна, отраженная от объекта.

Информация об объекте содержится частично в амплитуде (амплитудная информация), частично в фазе волны (фазовая информация). При фотографировании на пластинке (пленке) фиксируется интенсивность волны (амплитудная информация об объекте), тогда как в голографии на фотопластинке записывается и амплитудная, и фазовая информация. Основным условием получения высококачественных голограмм является высокая когерентность опорной и объектной волн, что и достигается применением лазера. Действительно, четкую интерференционную картину на фотопластинке получают, используя для освещения предмета и создания опорной волны один и тот же лазер.

На рис. 49 приведена схема записи голограммы, которая не требует особых пояснений, а на рис. 50 — схема считывания (воспроизведения) голограммы.

Рис. 49. Схема записи голограммы

Рис. 50. Схема считывания (воспроизведения) голограммы

При считывании голограммы проявленную фотопластинку освещают тем же лазерным светом от того же источника, который использовали ранее для получения опорной волны, и наблюдатель видит за пластинкой (как за окном) восстановленное изображение предмета (объекта) во всех трех его измерениях.

Таким образом, можно сформулировать ряд важных положений:

1. Процесс голографии является двухступенчатым. На первой стадии голограмму записывают, на второй — считывают. При считывании голограммы воссоздается исходная объектная волна, как если бы сам объект отражал свет.

2. Информация об объекте записывается интегрально: каждая точка видимой поверхности объекта записывается по всей поверхности голограммы, и, следовательно, информацию об объекте можно получить во многих случаях даже от части поверхности голограммы, если по какой-то причине другая часть поверхности безвозвратно испорчена.

3. В отличие от фотографии метод голографии не требует применения линзовых систем.

В последнее время все большее распространение получает так называемая изобразительная голография, сформировавшаяся в самостоятельное направление, под которым понимают весь комплекс научных исследований и технику изготовления голограмм, предназначенных для демонстрации в музейных экспозициях, на выставках, в учебном процессе и в рекламных целях.

ИЗВЕСТЕН ТАКЖЕ ОРИГИНАЛЬНЫЙ МЕТОД ПОЛУЧЕНИЯ ОБЪЕМНЫХ ГОЛОГРАММ, ПРЕДЛОЖЕННЫЙ Ю. Н. ДЕНИСЮКОМ .

Речь идет о методе получения отражательных объемных голограмм, регистрируемых во встречных пучках.

Этот метод был предложен Денисюком в 1958 г. в его кандидатской диссертации и осуществлен в первой голограмме (1962), в которой интеренференционная картина была записана не только по поверхности, но и в глубине фотослоя и, согласно своему названию («голо» — полная, «грамма» — запись), отражала все стороны зафиксированной им картины, в том числе и объемность.

Схема установки, используемой для получения голограмм большого размера (до 1–2 м2) по методу Денисюка, приведена на рис. 51.

Рис. 51. Установка для записи голограмм по методу Ю. Н. Денисюка

Луч света от лазера 1 с помощью зеркала 2 и расширяющего пучок объектива 3 освещает фотопластинку 4 и расположенный за ней предмет 5. Падающий на пластинку свет является опорным пучком, а рассеянный предметом — объектным.

Обычно схему собирают на каменных или металлических плитах 6 с пневматическими амортизаторами 7 и на массивном основании 8 (для создания нечувствительности к вибрациям, оказывающим в этой схеме губительное действие на качество голограммы).

Изображение восстанавливают в свете, длина волны которого совпадает с излучением лазера, создающего опорную волну.

МОЖНО ЛИ С ПОМОЩЬЮ ГОЛОГРАММ ПОЛУЧАТЬ ЦВЕТНЫЕ ИЗОБРАЖЕНИЯ?

Если голограмму освещать последовательно различными волнами видимого диапазона волн, то наблюдаемые изображения каждый раз будут окрашены в разные цвета.

Цветное изображение предмета можно получить, если при изготовлении голограммы использовать три монохроматических лазера, соответствующих разным длинам волн (например, красным, желтым и синим). В этом случае запись может производиться на обычную эмульсию, а при считывании цветного изображения предмета освещение голограммы (по внешнему виду не отличающейся от черно-белой) должно производиться тремя опорными волнами, соответствующими указанным цветам лазеров.

Пока, правда, в изобразительной голографии, предпочтение все же отдается нелазерным источникам света, так как здесь имеется в виду не только доступность и низкая стоимость таких источников (что в общем-то немаловажно), но и то, что в этом случае не наблюдается эффект зернистости изображения, присущий лазерному излучению.

МОЖНО ЛИ С ПОМОЩЬЮ ГОЛОГРАММ ПОЛУЧИТЬ ДВИЖУЩЕЕСЯ ИЗОБРАЖЕНИЕ — КИНО?

Перспективным направлением в развитии голографии является не только получение с помощью объемных голограмм многоцветных изображений, но и создание истинно объемного кино (пока для систем индивидуального пользования, самолетных тренажеров для слепой посадки и т. п.).

Первая экспериментальная демонстрация систем голографического кинематографа была в СССР осуществлена в 1976 г.

На экране размером 0,6х0,8 м демонстрировался в течение 2 мин фильм, записанный на пленке шириной 70 мм.

Возможно, не в таком уж далеком будущем будут созданы ателье, где можно будет заказать объемный цветной и высокохудожественный свой портрет.

Важность применения лазеров в голографии определяется тем, что голограммы в принципе обеспечивают возможность создания систем памяти с огромной плотностью информации в единичном объеме.

РАССКАЖИТЕ О ДРУГИХ ПРИМЕНЕНИЯХ ЛАЗЕРОВ.

Очень перспективно применение лазеров для решения радиотехнических задач — в системах связи, локации и т. д. Широко используют лазеры в системах межспутниковой связи. Замена земных ретрансляторов на лазерные, развитие лазерной локации Луны и планет — непременное условие современных земных и космических проблем.

Возможность получать с помощью лазеров световые пучки мощностью до 106—1010 МВт/см2 при фокусировке излучения в пятно диаметром ~ 10—100 мкм (0,01–10 мм) делает лазер мощным средством обработки оптически непрозрачных материалов, недоступных для обработки обычными методами.

ЛАЗЕР МОЖЕТ ОБРАБАТЫВАТЬ МАТЕРИАЛЫ?

В современном промышленном производстве лазер-труженик успешно сверлит и режет металлы, сверлит отверстия в алмазах с точностью до 0,01 %, сваривает металлы, осуществляет их плавление (без существенного испарения), выполняет много других работ, требующих большой точности (например, операции при изготовлении пленочных микросхем).

А ВЕДЬ ЛАЗЕР ЕЩЕ И ЛЕКАРЬ?

Существенно новые возможности открыл лазер в медицине.

Остросфокусированный луч лазера является идеальным скальпелем и одновременно прекращает кровотечение. Уже сделаны десятки тысяч операций внутренних органов, глаза; лазер лечит болезни, ранее не поддававшиеся лечению.

Замечательные свойства лазерного луча позволяют создавать не только промышленные или медицинские приборы, но и высококачественные образцы культурно-бытового назначения. Так, наша промышленность в 1987 г. впервые предложила лазерный видеопроигрыватель «Русь-501 Видео», воспроизводящий цветное телеизображение с тонкого оптического диска.

КАКИЕ НОВЫЕ НАПРАВЛЕНИЯ ПОЯВИЛИСЬ В ПОСЛЕДНЕЕ ВРЕМЯ В РАЗВИТИИ И ИСПОЛЬЗОВАНИИ НЕЛИНЕЙНОЙ ОПТИКИ?

Развитие нелинейной оптики привело к созданию целого класса новых нелинейных кристаллов, меняющих свои свойства в электрическом поле лазерного луча. На их основе были созданы устройства, эффективно преобразующие проходящий через них лазерный свет в когерентное излучение другой частоты — генераторы световых гармоник и так называемые параметрические генераторы с плавной перестройкой частоты.

Большого применения достигли приборы (одно из направлений нелинейной оптики), в которых инфракрасное излучение преобразуется в видимый диапазон света. Это так называемые электронно-оптические преобразователи (ЭОП).

В ЧЕМ ЗАКЛЮЧАЕТСЯ ПРИНЦИП РАБОТЫ ЭЛЕКТРОННО-ОПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ?

Инфракрасное излучение от объекта (световое изображение), попадая на фотокатод ЭОП, преобразуется в электронное, а затем с помощью люминесцирующего экрана преобразуется в световое, но уже в видимой части спектра.

ЭОП обладает двумя очень ценными свойствами, благодаря которым его широко применяют в мореплавании, авиации, в военном деле, астрономии и других областях.

Во-первых, ЭОП чувствителен к более широкому участку спектра, чем глаз человека. Во-вторых, ЭОП может работать как усилитель яркости, что позволяет вести наблюдения при естественном ночном освещении (примерно 1∙10-4 лк) без искусственной подсветки.

Электронно-оптический усилитель обеспечивает повышение яркости более чем в 100 раз, тогда как такое усиление яркости обычными средствами невозможно.

НАВЕРНОЕ, ЭТО СВОЙСТВО ЭОП ПОЛЕЗНО И В АСТРОНОМИИ?

Схема инфракрасного телескопа приведена на рис. 52.

Объектив О создает изображение рассматриваемого предмета на чувствительном для невидимых глазом лучей катоде К электронного преобразователя Э. Фотокатод работает на просвет, для чего его фоточувствительный слой достаточно тонок. Воздух из колбы удален, и фотоэлектроны движутся в ней практически без столкновений.

Электронное изображение S превращается в видимое на флуоресцирующем экране и рассматривается в окуляр Ок.

Для получения электронного изображения применяют электрические и магнитные электронные линзы, т. е. осуществляют, как говорят, электрическую или магнитную фокусировку. Интересно отметить, что еще в 1951 г. советскими учеными с помощью ЭОП было сфотографировано ядро Галактики, закрытое от прямых визуальных наблюдений мощными пылевыми облаками.

Рис. 52. Инфракрасный телескоп

НУ, И КОНЕЧНО, БЕЗ ЭОП НЕ БЫЛО БЫ ПРИБОРОВ НОЧНОГО ВИДЕНИЯ?

Приборы ночного видения (рис. 53) состоят из трех основных частей: инфракрасного телескопа с электронно-оптическим преобразователем 3, шлема-каски 2 и блока питания 1.

В некоторых случаях, когда собственного естественного инфракрасного излучения рассматриваемых объектов недостаточно, осуществляется их подсветка инфракрасными прожекторами.

Рис. 53. Общий вид прибора ночного видения:

1  — блок питания, 2 — шлем-каска, 3 — перископические телескопы с электронно-оптическим и преобразователями

ДА, КНИГА АЛЕКСЕЯ ТОЛСТОГО ДЕЙСТВИТЕЛЬНО ОКАЗАЛАСЬ ПРОРОЧЕСКОЙ

Как видно из рассмотренного нами материала, жизнь всегда оказывается сложнее и многообразнее, чем предсказания фантастов; она намного богаче и гуманней тех задач, которые пытался решить инженер Гарин с помощью гиперболоида, и это мы видим по многочисленным мирным применениям лазерного луча.

К сожалению, лазер-разрушитель — это тоже реальность. Лазерное оружие не только создано, его готовят к применению в космосе. Таковы реалии времени, в котором мы живем: человечество тратит огромные средства на то, чтобы иметь возможность уничтожать само себя. Хочется верить, что новое политическое мышление, предложенное нашей страной, найдет сторонников во всем мире и огромные средства, которые пока еще тратятся на конфронтацию и вооружения, найдут другие, гуманные применения. Человечество от этого только выиграет.

 

15. Холодный свет

Лампы дневного света! Они так прочно вошли в нашу жизнь, что мы их просто не замечаем. А ведь применяют их не так уж давно (какие-то 40–50 лет они были редкостью), а до этого люди мало что знали о принципах и физических основах «холодного» свечения веществ.

С древнейших времен люди наблюдали, что различные жучки-светлячки, мелкие морские животные, насекомые, рыбы, моллюски, гниющее дерево излучают свет без огня; свет, который «светит, но не греет». Автор всем известной сказки «Конек-Горбунок» русский поэт П. П. Ершов использовал эти наблюдения крестьян за естественным природным свечением.

Вот как он описывает волшебное перо Жар-птицы, которое светит необыкновенным светом: «Чудный свет кругом струится, но не греет, не дымится… Шапок с пять найдется свету, а тепла и дыма нету; эко чудо-огонек!».

С холодным свечением тел мы встречаемся и в других случаях. Существуют газы, жидкости и твердые кристаллические вещества, которые светятся «холодным» светом после того, как они побывают на свету.

НО ВЕДЬ УЧЕНЫЕ УЖЕ ДАВНО ЗАИНТЕРЕСОВАЛИСЬ ЭТИМ ЯВЛЕНИЕМ?

В науке «холодное» свечение принято, как известно, называть люминесценцией (от латинского «люмен» — свет).

Еще великий Ломоносов изготовил светящийся шар (прообраз рекламной трубки), разреженный воздух в котором под действием тока высокого напряжения светился мерцающим светом. М. В. Ломоносов из этого опыта сделал весьма смелое по тому времени заключение о тождественности образования полярных сияний и появления света, мерцающего в шаре под действием электричества на газы.

Люминесценция привлекала к себе внимание таких гигантов мысли, как Р. Бойль, Г. Галилей, И. Ньютон, но более 300 лет она считалась одним из наиболее необъяснимых явлений природы, так как в сознании людей издавна утвердилось представление о возникновении света только от нагревания тел.

И лишь немногим более ста лет назад выдающимися физиками англичанином Г. Стоксом и французом Л. Беккерелем были начаты систематические количественные исследования нового вида свечения. Эти исследования позволили Стоксу установить важнейшие свойства люминесценции, но массового практического применения она достигла только в последние десятилетия.

Понимание же сущности явлений люминесценции стало возможным лишь после того, как в начале нашего столетия возникли новые представления о процессах поглощения и излучения света на основе квантовой теории.

В ИССЛЕДОВАНИЯ ЛЮМИНЕСЦЕНЦИИ ВНЕСЛИ ВКЛАД И СОВЕТСКИЕ УЧЕНЫЕ?

Выдающийся советский ученый и организатор науки акад. С.И.Вавилов (1891–1951) создал отечественную школу физиков, работающих в области люминесценции. В 1945–1951 гг. С.И.Вавилов был президентом Академии наук СССР, одним из главных редакторов Большой Советской Энциклопедии первого и второго изданий, первым председателем общества «Знание».

«Результаты всех трудов Сергея Ивановича Вавилова стали одним из основных фундаментов современного учения о люминесценции. На базе этого фундамента стало возможным одно из важнейших открытий современной физики — открытие излучения заряженных частиц сверхсветовой скорости». Эти слова принадлежат академику, лауреату Нобелевской премии П. А. Черенкову. Под «важнейшим открытием современной физики» он имеет в виду открытие в 1934 г. эффекта, получившего название эффекта Вавилова — Черепкова, при исследовании явления люминесценции. За открытие этого эффекта П. А. Черенкову в 1958 г. (акад. С.И.Вавилов к этому времени уже умер) была присуждена Нобелевская премия.

ОДНАКО МЕХАНИЗМ ЭФФЕКТА ВАВИЛОВА — ЧЕРЕНКОВА ОТЛИЧАЕТСЯ ОТ ЛЮМИНЕСЦЕНЦИИ?

Суть эффекта состоит в том, что при движении электронов в веществе со скоростью, большей скорости света в данной среде, возникает излучение, которое С. И. Вавилов, проанализировав опыт, поставленный его аспирантом П. А. Черенковым, сразу же отделил от подразумевавшейся люминесценции. Именно здесь проявились богатая эрудиция и глубокие знания в области люминесценции С. И. Вавилова, так как даже крупнейшая в то время парижская школа физиков прошла мимо этого явления, приняв его за обычную люминесценцию (в том числе П. Кюри и М. Склодовская-Кюри).

СНАЧАЛА ВСЕ ЖЕ НАДО ВЫЯСНИТЬ, ЧТО ТАКОЕ ЛЮМИНЕСЦЕНЦИЯ…

В результате длительных исследований С. И. Вавилов дал определение люминесценции, которое теперь является общепринятым: люминесценцией называют избыток свечения тела над тепловым излучением того же тела в данной спектральной области и при данной температуре, если этот избыток имеет конечную длительность свечения, т. е. не прекращается сразу же после устранения вызвавшей его причины.

Это определение позволяет отделить люминесценцию от теплового излучения, рассеянного света и других световых процессов.

Следовательно, люминесценция возникает при преобразовании в свет энергии, поглощенной атомами, молекулами или ионами некоторых веществ.

Элементарный акт люминесценции состоит из трех частей:

1) поглощения энергии центром свечения (атомом, молекулой, группой атомов или молекул);

2) пребывания частиц люминесцентного вещества в возбужденном состоянии;

3) испускания люминофором кванта энергии при переходе излучателя из возбужденного состояния в нормальное.

Длительность возбужденных состояний в зависимости от механизма люминесценции находится в пределах от 1∙10-9 с до нескольких месяцев и даже лет, т. е. значительно превосходит период одного светового колебания (10-15 с).

Необходимую для возбуждения свечения энергию частицам люминесцентного вещества можно сообщить разными путями: можно направить на люминофор поток электромагнитного излучения (видимого или ультрафиолетового), достигнуть возбуждения ударами электронов (пропусканием через газы электрического тока), вызвать химическую реакцию и т. д.

КЛАССИФИКАЦИЯ РАЗЛИЧНЫХ ВИДОВ ЛЮМИНЕСЦЕНЦИИ ПРОВОДИТСЯ ИМЕННО ПО СПОСОБУ ВОЗБУЖДЕНИЯ АТОМОВ ЛЮМИНОФОРА?

Из многочисленных видов люминесценции нас будут интересовать лишь некоторые, а именно те, которые имеют наибольшее техническое применение (фотолюминесценция и катодолюминесценция). Напомним, что фотолюминесценцией называют свечение, возникающее под действием электромагнитного излучения (света), а катодолюминесценцией — свечение твердых тел, в частности специальных кристаллических порошков в разрядных трубках под действием потока быстрых электронов.

Искусственно приготовленные синтетические неорганические вещества, имеющие кристаллическую структуру и способные светиться под действием внешнего источника возбуждения, называют кристаллофосфорами. Их свечение столь своеобразно, а значение для техники так велико, что его следует рассмотреть более подробно.

КОГДА ПОЯВИЛИСЬ ПЕРВЫЕ ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ?

В конце XIX в. В это время в Англии для освещения жилищ пытались применять газоразрядные трубки. В трубки были впаяны металлические электроды, воздух из них откачивали, а перед запайкой в них впускали небольшое количество какого-либо газа: кислорода, оксидов азота, углекислого газа, неона, аргона и т. д.

Однако такие осветители для бытовых нужд не годились, потому что требовали высокого напряжения (до 30 тыс. В), они не безопасны для жизни, сильно мерцали, имели свет, непривычный для глаз.

Подобные газоразрядные трубки используют и до настоящего времени для рекламы или сигнализации. Если трубку заполнить неоном, то она светится красным светом, аргоном — голубым.

При смешении газов в разных пропорциях и при разных давлениях можно получать самые разнообразные цвета. Хотя газоразрядные трубки весьма экономичны по сравнению с обычными лампами накаливания, но их мерцающий свет неудобен для освещения.

Примерно 50 лет назад появились новые источники «холодного» света — ртутные лампы, в которых излучение газов заменялось излучением паров ртути. Они не требовали высокого напряжения — достаточно было напряжения городских электростанций (127 или 220 В).

Волосок в ртутной лампе в отличие от волоска обычной электролампочки покрыт тонким слоем бария, который при небольшом нагревании легко теряет электроны. Вылетевшие электроны возбуждают атомы ртути и они начинают испускать синевато-зеленый свет. Однако свет их непривычен: лица людей при этом свете кажутся зелеными, а губы — черными. Эти лампы испускают сильное ультрафиолетовое излучение, под действием которого начинают светиться окружающие тела, а также зубы, волосы, хрусталик глаза, ногти и даже кожа человека, а помещение кажется наполненным голубоватым туманом.

Несмотря на указанные недостатки ртутных ламп, не позволяющие применять их для бытового освещения, они помогли разрешить главную проблему освещения: создать источники света, дающие излучение, близкое по спектральному составу к лучам Солнца, т. е. люминесцентные лампы.

Обилие ультрафиолетового излучения, даваемого ртутными лампами, делают последние незаменимыми в медицине. Изготовленные не в стеклянном, а в кварцевом баллоне, они именуются кварцевыми лампами (сокращенно просто «кварцем») или «горным солнцем».

А ДЛЯ ОСВЕЩЕНИЯ ИСПОЛЬЗУЮТ ЛАМПЫ ДНЕВНОГО СВЕТА.

В настоящее время наша промышленность выпускает лампы «дневного», «белого» и «тепло-белого» света.

Лампы дневного света испускают свет, по составу близкий к тому, который мы наблюдаем на открытом месте в облачный день, лампы «тепло-белого» света дают более мягкий, близкий к свету в вечернее время.

Люминесцентные лампы значительно экономичнее ламп накаливания. Они дают света в 4–5 раз больше, чем лампы накаливания той же мощности, и служат в 3–6 раз дольше обычных электрических лампочек.

КАК РАБОТАЕТ ЛЮМИНЕСЦЕНТНАЯ ЛАМПА?

Современная люминесцентная лампа представляет собой газоразрядную трубку, не содержащую воздуха, но наполненную парами ртути. Внутренние стенки трубки покрывают тонким слоем люминофора, придающего трубке матовый цвет.

При работе лампы температура ее стенок не превышает 40–50 °C. Для облегчения разряда в лампу (рис. 54) вводится небольшое количество аргона. С обеих сторон трубки 2 имеются электроды 4, представляющие собой металлические спирали, по которым при зажигании лампы через стартер 1 пропускается переменный ток, накаливающий эти спирали. Электроны, испускаемые разогретыми спиралями, ускоряются электрическим полем и возбуждают пары ртути и аргона.

Рис. 54. Простейшая схема включения люминесцентной лампы:

1 — пусковой стартер, 2 — стеклянная трубка, 3 — слой люминофора, 4 — электроды, 5 — дроссель, 6 — источник переменного напряжения (220 В)

Переменный ток, которым мы питаем лампу, меняет свое направление 50 раз в секунду. Поэтому электроды в трубке становятся то катодом, то анодом. Ударяясь об электроды, электроны дополнительно разогревают их. И через 1–2 с оба электрода так нагреваются, что дальнейший их разогрев электрическим током не является необходимым. В этот момент прекращается подача тока стартером на разогревание электродов, и ток теперь идет не по спирали электродов, а прямо через трубку от одного электрода к другому. Возбужденные атомы аргона и ртути при переходе в основное невозбужденное состояние испускают в основном ультрафиолетовое излучение. Оно попадает на кристаллы люминофора 3 (кристаллофосфора), находящиеся на внутренней поверхности трубки, и заставляют их испускать видимый свет, ярко освещающий пространство вокруг лампы.

В качестве покрытия применяют различные люминофоры. Это галофосфаты — соединения типа апатитов, активированных сурьмой и марганцем; фосфоры, состоящие из силикатов цинка и бериллия, активированных марганцем, и др.

От количества тех или иных химических элементов в люминофоре, от самого химического состава люминофора будет зависеть прежде всего тот или иной тип дневного света.

ГОВОРЯТ, ЧТО НА ЛАМПЫ ДНЕВНОГО СВЕТА СМОТРЕТЬ НЕЛЬЗЯ?

Всегда необходимо помнить, что непосредственное наблюдение любого источника света приводит к резкому утомлению глаз, и это, безусловно, вредно. Хотя люминесцентные лампы имеют сравнительно невысокую поверхностную яркость (~ 1∙104 нит), все же недопустимо располагать их в открытом виде на уровне глаз. Их следует группами помещать в закрытые светильники; это предохранит глаза от переутомления и обеспечит равномерную цветность. Напомним, что наименьшая яркость, воспринимаемая глазом, составляет 1∙10-6 нит, а наибольшая, вызывающая болезненные ощущения, — около 105 нит (металлический волосок лампы накаливания дает яркость в (1,5–2)∙106 нит, поверхность Солнца — 1,5∙109 нит, а поверхность экрана в кинотеатре — около 20 нит). При люминесцентном освещении также недопустима и низкая освещенность помещений и рабочих мест, так как она соответствует освещенности в пасмурную погоду, что отрицательно влияет на нервную систему и, следовательно, уменьшает производительность труда.

ЛЮМИНЕСЦИРУЮЩИЕ КРАСКИ ТОЖЕ ОТНОСЯТСЯ К НАШЕМУ РАЗГОВОРУ?

Конечно. Люминесцентные порошки, возбуждаемые ультрафиолетовыми лучами, используют для создания декораций и картин особого вида живописи — декоративной живописи. При освещении скрытыми от зрителей источниками ультрафиолетового излучения — ртутными лампами — краски начинают светиться и переливаться различными цветами.

Чтобы зрителям не был виден синевато-зеленоватый цвет подсветки, ртутные лампы-прожекторы прикрывают светофильтрами — темными стеклами, содержащими оксид никеля. Такие стекла не пропускают видимого света, но хорошо пропускают невидимое ультрафиолетовое излучение.

Никого уже сейчас не удивляют люминесцентные рекламы, дорожные и указательные знаки, шкалы измерительных приборов, освещение люминесцентными лампами помещений магазинов, промышленных предприятий, станций метро. Они удобны в сортировочных и колориметрических цехах текстильных фабрик. Это позволило в них ввести трехсменную работу вместо укороченной односменной, связанной с естественным освещением.

ЧТО ТАКОЕ ЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ?

Люминесцентный анализ — метод исследования различных объектов, основанный на наблюдении их люминесценции. Для люминесцентного анализа можно использовать как собственную люминесценцию исследуемых объектов, так и люминесценцию специально для этого применяемых люминесцирующих красителей — флуорохромов.

Ввиду того что люминесценция непосредственно связана с излучающим веществом, его составом и структурой, по спектральному составу излучения и его длительности в ряде случаев можно определить излучающее вещество. Это и составляет содержание качественного люминесцентного анализа.

Количественный анализ основан на том, что при соблюдении определенных условий интенсивность люминесценции пропорциональна концентрации люминесцирующего вещества. Для измерения интенсивности люминесценции при люминесцентном анализе пользуются фотометрами различного типа.

Химический люминесцентный анализ превосходит по точности обычный химический анализ, позволяя обнаруживать стомиллиардные доли грамма искомого вещества.

Существенно, что при этом анализе исследуемое вещество не подвергается изменению.

В наши дни широко применяют сортовой люминесцентный анализ.

Он основан на том, что различные сорта сходных объектов (стекла, семян и т. п.) под действием ультрафиолетовых лучей светятся по-разному.

В зависимости от цвета свечения и производится их сортировка. Этот принцип лег в основу способа сортировки оптических стекол, разработанного под руководством С. И. Вавилова.

Вынуждающее свечение при люминесцентном анализе обычно производят с помощью ртутно-кварцевых ламп, как наиболее мощных и испускающих наибольший поток ультрафиолетового излучения. Такие лампы обычно применяют с фильтрами из специального увиолевого стекла. Эти стекла с добавкой оксида никеля пропускают длинноволновое ультрафиолетовое излучение (300–400 нм), являющееся биологически безвредным. Схема установки для люминесцентного анализа приведена на рис. 55. Здесь 2 — ртутная лампа в кожухе 3, 1 — светофильтр, который пропускает на исследуемый препарат 4 только ультрафиолетовое излучение. Его люминесценцию наблюдают глазом или регистрируют специальной аппаратурой.

Научные исследования люминесценции ведутся весьма интенсивно.

Рис. 55. Схема установки для люминесцентного анализа в ультрафиолетовом свете

КАКОВЫ ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ ЛЮМИНЕСЦЕНТНОГО АНАЛИЗА?

В производстве и в народном хозяйстве люминесцентный анализ применяют для исследования чистоты продуктов и обнаружения в них иногда ничтожных примесей.

В фармацевтической промышленности его используют для установления чистоты лекарственных веществ, в химической промышленности — для установления качества исходного сырья, в геологии — для определения состава горных пород, в пищевой промышленности — для определения качества продуктов, их зараженности и т. д.

Люминесценция окрашенных срезов тканей различных органов позволяет изучить их строение. По составу излучения выделений различных органов человека можно судить о правильности их функционирования, определять характер заболеваний. Люминесценция особенно хорошо определяет грибковые заболевания кожи и устанавливает появление инфекции на коже, волосах и т. д. В криминалистике по свечению незаметных пятен можно определить их природу и происхождение. При ультрафиолетовом облучении обнаруживаются незаметные надписи, подделки банкнотов и деловых бумаг.

В ультрафиолетовом свете прочитывается стертый текст, попорченные надписи на старинных документах, проявляются рисунки под позже нанесенным слоем краски и т. д.

Люминесцентный анализ внедрен для изучения состава нефти, битумов и минеральных масел, а также для поисковых целей. Люминесценция кернов из скважин и вытяжек из них, а также вод скважин помогает геологам судить о характере и условиях залегания того или иного полезного ископаемого.

Трудно указать (ввиду их многочисленности) другие области науки и техники, где применяют люминесцентный анализ. Укажем лишь, что это почвоведение, текстильная промышленность (для изучения структуры волокон), химическая промышленность (определение качества препаратов и реактивов), палеонтология, археология, биология и многие другие. Люминесцентные микроскопы, радиолокационные установки, рентгеновские экраны (в том числе усиливающие действие рентгеновских лучей на фотоэмульсию пластинок), трубки катодных осциллографов с люминесцирующим экраном, телевизионные трубки — вот далеко не полный перечень физических приборов, без которых невозможны современная техника и быт человека.

Еще одно интересное применение люминесценции — это люминесцентная дефектоскопия. Часто на металлических изделиях в процессе отливки и дальнейшей их механической обработки появляются мельчайшие, невидимые глазом трещины и раковины.

На поверхность такого изделия наносят люминофор (в растворе или в порошке), который заполняет трещины. Спустя некоторое время люминофор удаляется (смывается или стирается) с поверхности изделия и оно облучается ультрафиолетом. Оставшийся в трещинах люминофор под действием ультрафиолетовых лучей «покажет» наличие дефекта изготовленной детали (рис. 56). В металлургии люминесцентную дефектоскопию широко применяют для стопроцентного контроля изделий механических, термических, литейных цехов и, что особенно важно, для изделий из немагнитных сплавов (литье из алюминиевых, магниевых сплавов, аустенитных сталей и т. д.), т. е. тех изделий, которые благодаря сложности своей конфигурации исключают другие виды дефектоскопии (рентгеновский, ультразвуковой).

Рис. 56. Дефектоскопия металлических деталей. Видны люминесцирующие трещины

ЛЮМИНЕСЦЕНЦИЯ И РАДИАЦИЯ — ЕСТЬ ЛИ МЕЖДУ НИМИ СВЯЗЬ?

В науке и технике большое значение имеет обнаружение быстродвижущихся частиц вещества — электронов, протонов, осколков ядер и др. В некоторых случаях это удается сделать с помощью люминесцентного экрана, на который попадают невидимые частицы, вызывая вспышки свечения, или сцинтилляции. Люминесцентные вещества, применяемые для получения сцинтилляций, называют сцинтилляторами. Такие вспышечные экраны (помимо специальных счетчиков или в совокупности с ними) составляют основу специальных приборов для определения полученной дозы вредных радиации — дозиметров. Дозиметры отзываются на рентгеновские и γ-кванты, β-излучение (поток быстрых электронов), а-частицы (ядра гелия) и другие частицы, образующиеся в результате радиоактивного распада в естественных условиях, в ускорителях и на атомных электростанциях.

Итак, если еще недавно слово «люминесценция» было знакомо только физикам, теперь оно стало широко распространено, как слова «электричество», «радио», «телевидение», «космос», «атомная энергия». А без самого явления люминесценции и его использования мы не можем себе представить не только современной науки и техники, но и быта современного человека.

 

16. Человеку должен служить только мирный атом

Наша прекрасная планета Земля родилась 4 млрд. лет тому назад, около миллиона лет отделяют нас от появления первого человека, три тысячи лет тому назад появились первые науки (математика, астрономия, философия). Так неужели разумные люди допустят, чтобы все это погибло, чтобы этот мир был снова окутан глубокой тьмой, чтобы погибла цивилизация, может быть, единственная в нашей обозримой части Вселенной?

Наше время с полным основанием называют веком атомной энергии, веком космических полетов, автоматизации, а порой лазерным веком. Трудно отдать предпочтение какому-либо из этих утверждений: каждое из них отражает те или иные существенные стороны современного этапа развития научно-технической мысли.

И ВСЕ-ТАКИ КАКОЕ МЕСТО ЗАНИМАЕТ В ЭТОМ РЯДУ ЯДЕРНАЯ ФИЗИКА?

Проникновение в структуру атомного ядра и, как результат этого, овладение ядерной энергией явились одними из важнейших направлений современного научно-технического прогресса. Быстрое и успешное развитие атомной физики началось с 1932 г. — с открытия нейтрона, которое позволило преодолеть трудности, стоящие тогда на пути изучения атома. Нейтрон — это тот «золотой ключик», без которого нельзя было бы открыть «дверь» в большую ядерную энергетику. Роль нейтрона очень велика в практической деятельности человека, в получении искусственных радиоактивных элементов, в прикладных исследованиях и в промышленном применении, в геологических разведках, в медицине, в биологии и т. п. С некоторыми отраслями народного хозяйства, где используют свойство некоторых элементов делиться под действием нейтронов, мы ознакомимся в настоящей беседе.

Уже через 10 лет после открытия нейтрона стал возможным пуск первого ядерного реактора в декабре 1942 г. в США с активным участием ученых-физиков из многих стран мира. В декабре 1946 г. в СССР был пущен первый в Европе и Азии исследовательский ядерный реактор, созданный силами советских ученых, инженеров и рабочих. Ядерные реакторы являются мощным источником нейтронов, которые в зависимости от их энергии делятся на холодные (10-5—5∙10-3 эВ), тепловые (5∙10-3—0,5 эВ), быстрые (105—108 эВ). Наиболее широкое применение получили тепловые, или медленные, нейтроны, которые чаще всей, используют в многогранной деятельности человека, в том числе и в ядерной энергетике.

К СОЖАЛЕНИЮ, О НАЧАЛЕ АТОМНОЙ ЭРЫ ЧЕЛОВЕЧЕСТВО УЗНАЛО НЕ ПО РЕПОРТАЖАМ С ПЕРВЫХ ЯДЕРНЫХ РЕАКТОРОВ, А ПО ВЗРЫВАМ АТОМНЫХ БОМБ В ХИРОСИМЕ И НАГАСАКИ .

Взрывы над Хиросимой и Нагасаки, бесполезные в военном отношении, дали понять, что в мире возникла ситуация, когда одно государство решило диктовать свою волю другим. В этой обстановке и Советское правительство вынуждено было пойти на создание атомного оружия. Поэтому долгие годы исследования по использованию ядерной энергии были строго засекречены.

НО СОЗДАВАЯ ЯДЕРНОЕ ОРУЖИЕ, УЧЕНЫЕ ОДНОВРЕМЕННО РАБОТАЛИ И НАД ИСПОЛЬЗОВАНИЕМ АТОМНОЙ ЭНЕРГИИ В МИРНЫХ ЦЕЛЯХ, НАД СОЗДАНИЕМ АТОМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК, АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ (АЭС)

Такая АЭС была впервые сооружена в СССР, что положило начало победному шествию ядерной энергетики по многим странам мира. Началось же оно в Обнинске (в 105 км от Москвы), где 27 июня 1954 г. в энергосеть выдала электрическую энергию первая в мире АЭС. Пуск небольшой Обнинской АЭС мощностью 5 МВт начал новую эру в технике, в энергетике — эру получения электрического тока за счет энергии, образующейся при делении ядер урана. Эта АЭС, как первопроходец, открыла широкую дорогу большой ядерной энергетике.

Опыт эксплуатации ядерно-энергетической установки Обнинской АЭС и проведенные работы позволили решить многие задачи по дальнейшему совершенствованию схем будущих АЭС и улучшению технико-экономических показателей. Так, уже в 1974 г. себестоимость 1 кВт∙ч электроэнергии на Нововоронежской АЭС составила 0,655 коп., т. е. была ниже стоимости энергии современных тепловых станций европейской части СССР. В двенадцатой пятилетке введено в строй около 41 000 МВт новых мощностей, т. е. за 5 лет мощность АЭС увеличивалась в 2,5 раза.

В настоящее время обогащенного урана и плутония накопилось в мире столько, что их достаточно для изготовления десяти атомных бомб в день. Этот факт свидетельствует о неотложности проблем ядерного разоружения и мирного использования ядерной энергии. Если даже небольшую часть накапливаемого плутония использовать в производстве зарядов в мирных целях, то человечество получит дешевый источник энергии.

НО ВЕДЬ ЯДЕРНЫЕ ВЗРЫВЫ БЫВАЮТ И МИРНЫМИ?

Мирные ядерные взрывы можно использовать в самых различных видах работ, например при ликвидации аварийных газовых фонтанов, интенсификации добычи нефти, создании подземных хранилищ и наземных резервуаров для хранения воды и т. д.

В СССР ядерный взрыв мощностью 30 кт на глубине 1550 м обеспечил надежное перекрытие ствола аварийной скважины с расходом 12 млн∙м3 газа в сутки, что длительное время не удавалось сделать другими способами. С помощью ядерного взрыва мощностью более 100 кт был образован искусственный резервуар для воды общим объемом около 20 млн. м3.

За последние годы в связи с бурным расширением добычи газа, нефтепродуктов резко выросли потребности в разнообразных хранилищах. Оказалось, что для их создания удобно использовать подземные ядерные взрывы в пластах каменной соли, обладающих необходимыми упругопластическими свойствами. Так, полость объемом 20 тыс. м3 была образована на глубине 1140 м ядерным взрывом мощностью 15 кт.

Мирные взрывы, давая в руки человека новую область использования ядерной энергии, еще не раскрыли всех своих возможностей и продолжают детально изучаться учеными и инженерами.

А ЯДЕРНЫЕ РЕАКТОРЫ СТОЯТ НЕ ТОЛЬКО НА ЭЛЕКТРОСТАНЦИЯХ?

Широкие возможности использования ядерных реакторов для транспортных установок имеются на флоте. Об этом свидетельствует успешный опыт эксплуатации ледоколов «Ленин», «Арктика», а также на подводных лодках и других типах кораблей. Ядерные реакторы, работающие на быстрых нейтронах, применяют в г. Шевченко на Каспии для получения пресной воды из морской в объеме 120 тыс. т в сутки. Этой воды достаточно для обеспечения нужд города. Теплота от ядерного реактора может быть использована и в металлургической промышленности. Так, в настоящее время на Старооскольском металлургическом комбинате, где осуществляется бездоменный способ получения губчатого железа, требуется по технологическому процессу температура 950—1250 °C. Если для нагревания до таких температур не сжигать газ, а использовать энергию ядерного реактора, то экономия газа составит 50–55 %, а это даст большой экономический эффект.

В химической промышленности основным сырьем для производства азотных удобрений являются аммиак и метанол. Процесс их получения идет при 800–900 °C и также базируется на потреблении большого количества природного газа, 45 % которого расходуется как топливо. Подогревая смесь теплом ядерных реакторов, можно не только экономить газ, но и повысить общую долю полезной теплоты, устранить выброс в атмосферу токсичных продуктов горения газа и снизить стоимость аммиака и метанола.

Ядерные реакторы могут быть использованы для получения дешевого водорода, который в будущем станет основным видом топлива.

КОГДА НАЧАЛИСЬ ИССЛЕДОВАНИЯ ПО ФИЗИКЕ АТОМНОГО ЯДРА?

Распад ядер урана сопровождается рождением искусственных радиоактивных веществ. Да! Атомы родятся, живут и умирают. Разумеется, эти слова надо понимать в переносном смысле.

Впервые с превращениями в мире атомов, считавшихся раньше вечными неделимыми частицами веществ, физики столкнулись, когда А. Беккерелем и супругами Кюри была открыта радиоактивность (1896–1899). С тех пор обнаружено около сорока природных радиоактивных элементов. В 1934 г. Ирэн и Фредерик Жолио-Кюри доказали возможность создания искусственных радиоактивных элементов и радиоактивных изотопов.

После создания ядерных реакторов и ускорителей элементарных частиц было осуществлено практическое получение радиоактивных элементов. Например, радий крайне дорог, если его добывать обычным способом.

Теперь же в урановых котлах получают дешевые радиоактивные вещества, заменяющие сотни тонн радия. Ряд изотопов, например кобальт-90, молибден-99, полоний-210, специально получают при нейтронном облучении мишеней, состоящих обычно из более легких изотопов тех же элементов.

КАК ПРИМЕНЯЮТ ИЗОТОПЫ В НАРОДНОМ ХОЗЯЙСТВЕ?

Сейчас трудно назвать такую область нашего хозяйства, где не применялись бы изотопы. В СССР налажено производство около 4 тыс. наименований соединений на основе 156 радиоактивных и 240 стабильных изотопов, имеющих практическое значение.

Для текстильной, полиграфической, резиновой, фотокинопленочной промышленности выпускают большое количество радиоизотопных нейтрализаторов статического электричества. Они позволяют повысить в 2–3 раза скорость машин, перерабатывающих листовой или пленочный материал с низкой электропроводностью.

Широко применяют радиоизотопные приборы. По сравнению с другой контрольно-измерительной аппаратурой их преимущества заключаются в отсутствии непосредственного контакта с исследуемым объектом, быстродействии и надежности. В настоящее время широкое применение нашел так называемый активационный анализ. Исследуемый материал подвергают облучению в реакторе. Возбужденные атомы начинают испускать α-, β- и γ-излучения. Облучаемый материал испускает целый спектр различных излучений с самыми разными свойствами. И точно так же, как ухо опытного музыканта способно выделить в грохоте оркестра слабое пение скрипки, анализаторы способны выделить из спектра обученного материала излучение, специфичное для того или иного элемента. Таким образом можно распознать материалы, содержание которых в образце не превышает 10-8 %. С помощью этого метода, например, удалось определить границы золотоносного месторождения Мурунтау, т. е. очертить зону, где добыча этого драгоценного металла выгодна.

С помощью радиоактивных элементов, так называемых меченых атомов, ведут поиски воды. Важно знать, где, куда и с какой скоростью течет она под землей. В нефтеразведке радиоизотопная аппаратура надежно контролирует изменение свойств окружающей скважину среды (воды, нефти, пустой породы).

В металлургии с помощью радиоизотопных приборов удалось автоматизировать загрузку доменных печей шихтой, осуществить контроль уровня и разливку металла, обеспечить непрерывное измерение толщины проката, контролировать износ печей без остановки их работы.

В машиностроении применение радиоизотопных приборов позволило контролировать подачу заготовок, регулировать температурный режим, осуществлять блокировку оборудования и т. п. В строительстве, сельском хозяйстве радиоизотопные приборы широко применяют для измерения плотности и влажности различных материалов и определения степени их однородности. В ряде отраслей применяют метод гамма-дефектоскопии, позволяющей контролировать качество сварных швов в трубопроводах и в котлах высокого давления, обнаружить разрывы арматуры в железобетонных конструкциях, раковины и трещины в металлических деталях и отливках.

Так, на реке Сыр-Дарья была сооружена плотина Токтогульского водохранилища на 18 млрд. м3 воды. В результате напора воды в теле плотины образовались каверны, через которые вода просачивалась вниз. Применив меченые атомы, удалось определить места расположения каверн. Каверны запломбировали и авария была предотвращена.

РАДИОАКТИВНЫЕ ИЗОТОПЫ И ЯДЕРНЫЕ ИЗЛУЧЕНИЯ ПРИМЕНЯЮТ И В ДРУГИХ ОБЛАСТЯХ ЧЕЛОВЕЧЕСКОЙ ДЕЯТЕЛЬНОСТИ?

Интересные возможности открываются перед сельским хозяйством. Это прежде всего ускорение выведения новых сортов растений путем радиационного воздействия на их наследственный аппарат и создания мутаций.

В медицине радиоактивные изотопы и ядерные излучения успешно применяют при диагностике сложных заболеваний, для лечения злокачественных опухолей, стерилизации материалов, инструментов и лечебных препаратов.

Исследование радиоактивного распада веществ, включенных в горные породы, позволяет определить возраст последних. Задача сводится к определению соотношения между содержащимися в горных породах и минералах радиоактивными веществами и продуктами их распада.

Весьма интересно применение радиометрических методов в археологии для оценки возраста различных древних предметов, находимых при раскопках. Один из таких методов носит название радиоуглеродного, так как он состоит в определении степени распада радиоактивного углерода.

Применяя этот метод удалось определить, что возраст куска дерева от палубы погребальной ладьи египетского фараона Сезостриса III оценивается в 3620 лет; останки гигантского ленивца, найденные в гипсовой пещере в штате Невада (США), оцениваются в 10 500 лет; остатки органической краски доисторической живописи в пещере Ласко (Франция) отделены от нашего времени периодом в 15 600 лет.

ИТАК, МЫ ВИДИМ, ЧТО АТОМ МНОГОЛИК: ОН МОЖЕТ БЫТЬ И СОЗИДАТЕЛЕМ, И РАЗРУШИТЕЛЕМ — ВСЕ ЗАВИСИТ ОТ ЧЕЛОВЕКА.

Появление ядерного оружия поделило человеческую историю на два периода: доядерный и ядерный. Многое из того, что было нормой и правилом для доядерной эпохи, оказалось совершенно неприемлемым для ядерного века. Война и мир, победа и поражение, угроза и безопасность, стратегия и сила — эти и многие другие понятия приобретают сегодня новое звучание. С появлением ядерного оружия радикально изменился сам характер войны, ее роль в современном социально-историческом развитии. В новых условиях такая война перестала быть средством решения каких бы то ни было международных противоречий и конфликтов, она не может быть контролируемой и ограниченной.

Ядерная эпоха заставляет критически переосмыслить и понятие силы как таковой. Гонка вооружений теряет какой бы то ни было военный смысл, ибо она может дать лишь иллюзорное и опасное психологическое ощущение безопасности и в то же время подрывает реальную безопасность. Большая военная сила не только не дает большей безопасности, но, напротив, ослабляет ее, так как безопасность в наше время вообще не может быть основана на силе. Соответственно изменяется и смысл понятия обороны, которая в новых условиях перестает быть только военной проблемой. Безопасность в ядерный век возможна лишь как безопасность для всех. Ее нельзя обеспечить за счет ущемления интересов друг друга.

В эпоху ядерного оружия стремление к созданию такой ситуации, в которой противник чувствовал бы себя уязвимым, испытывал страх и неуверенность, чревато серьезными последствиями.

КАК ОТНЕСЛИСЬ САМИ УЧЕНЫЕ-АТОМЩИКИ К ВЗРЫВАМ АТОМНЫХ БОМБ НАД ЯПОНСКИМИ ГОРОДАМИ?

Взрывы первых атомных бомб над Хиросимой и Нагасаки ясно показали, к чему ведет гонка вооружений. Весь мир поставлен на грань катастрофы, и это отчетливо увидели те, кто создавал ядерное оружие. Все честные и наиболее смелые из них стали отказываться от дальнейшей работы над ним.

Применение США атомного оружия против густонаселенных японских городов потрясло и возмутило видных ученых-физиков, среди которых были Эйнштейн, Жолио-Кюри, Курчатов и др. Они рассматривали этот акт варварского ведения войны как прямое преступление и неоднократно публично клеймили его. Ф. Жолио-Кюри по окончании второй мировой войны возглавлял движение защитников мира. Эйнштейн глубоко сожалел о том, что он в свое время обращался к Рузвельту с письмом по вопросу создания атомного оружия. «Если бы я знал, что немцы не работают над атомным оружием, я бы ничего не сделал для создания атомной бомбы», — заявил он. Эти мучительные переживания побудили Эйнштейна со времени бомбежки Хиросимы и Нагасаки неуклонно и со всей страстностью бороться против подготовки атомной войны. В своем обращении к интеллигенции (1948) он писал: «Поскольку нам, ученым, уготована трагическая участь — еще более повышать чудовищную эффективность средств уничтожения, наш самый торжественный и благородный долг состоит в том, чтобы всеми силами воспрепятствовать использованию этого оружия для тех жестких целей, для каких оно было изобретено. Какая задача может быть для нас более важной? Какая общественная цель может быть ближе нашему сердцу?». Среди ученых началось движение за запрещение ядерного оружия. Позже это движение получило название Пагоушского. Выработка и принятие новых норм и критериев политического мышления ядерной эпохи — процесс сложный, а для многих поборников силы — просто болезненный. Ведь он требует отказа от претензий на особое положение и военное превосходство.

Предложенная Советским Союзом система норм предусматривает прежде всего отказ от пропаганды ядерной войны в любом ее варианте — глобальном или ограниченном.

В силу чрезвычайной актуальности СССР особо выделяет вопрос о недопущении гонки ядерных и других вооружений в космическом пространстве, ведущей к «звездным войнам» с лазерами и атомными зарядами, в которых не может быть ни победителей, ни побежденных.

Человеку должен служить только мирный атом!

НАВЕРНОЕ, ТО ЖЕ САМОЕ МОЖНО СКАЗАТЬ О ЛЮБОМ ДОСТИЖЕНИИ НАУКИ.

Все достижения человечества должны быть использованы для коренного улучшения и облегчения условий труда людей, сокращения рабочего дня, благоустройства быта, ликвидации тяжелого физического, а затем и всякого неквалифицированного труда. В решении этих мировых проблем не последняя роль отводится физике и научно-техническому прогрессу.

 

Приложения. Кое-что о разном

НОВЫЕ КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Как это ни печально, но «золотые времена», когда богатейшие залежи полезных ископаемых лежали почти что на поверхности земли, уже безвозвратно прошли. Сейчас постоянно увеличивается глубина горных разработок, а вместе с ней и себестоимость добытых материалов. Несмотря на это, в Советском Союзе получают сейчас 27 % мировой добычи полезных ископаемых, в Соединенных Штатах — 24 %, остальные же 49 % — в других странах. Однако используется в нашей стране немногим больше половины добытого, остальное идет в отвалы, загрязняя территорию, воду, атмосферу. Если эти отходы переработать, то мы с минимальными затратами увеличим запасы горной продукции примерно на 25 %.

Следует также отметить, что в настоящее время убыток, который терпит народное хозяйство от коррозионной нестойкости материалов, содержащих в своей основе железо, весьма велик. Фундаментальная наука, включающая физические методы исследования, разработала эффективные способы получения новых материалов на основе алюминия, титана, магния, кремния и других компонентов. Получены коррозионно-стойкие, легкие и прочные материалы. Повсеместная замена железных материалов во многих конструкциях, машинах и механизмах на современные конструкционные материалы позволит совершить революцию в машиностроении. Приведем только два примера: 1) сегодня железнодорожный вагон «везет» 30 т собственного веса; 2) легковой автомобиль «Жигули» весит свыше тонны.

А если их сделать из легкого сплава, то они никогда не будут ржаветь и разваливаться, будут в три раза легче, а следовательно, и потреблять гораздо меньше энергии на свое передвижение. Это же относится и к корпусам кораблей, ко всему многообразию современной техники.

«ЗОЛОТОЙ» ИНСТРУМЕНТ

Появлением новых конструкционных материалов машиностроители неизбежно столкнулись с дефицитом режущего инструмента. Чтобы разрешить эту проблему, в лабораториях начались поиски так называемых композитов, которые позволили бы резко повысить скорость обработки и тем самым резко увеличить производительностью металлорежущего оборудования. Часть исследований была направлена на создание керамических резцов, которые можно использовать для совершенствования инструмента, не прибегая к таким легирующим металлам, как вольфрам, ванадий, молибден.

Существовало и другое направление, суть которого заключалась в нанесении на уже существующие металлорежущие инструменты из стали износостойких покрытий, что позволяет повышать скорость резания на 30–50 %.

В этой области наибольшего успеха добились советские ученые, создавшие промышленную технологию нанесения универсального покрытия из нитрида титана, которое позволило повысить скорость, например, сверления в два раза. Более того, для некоторых марок сталей, которые с трудом поддаются обработке, сейчас появилась возможность подбирать инструмент с соответствующим этим маркам покрытием и тем самым повышать производительность механообработки. В основу этой технологии положен так называемый «способ КИБа» (конденсации ионной бомбардировкой). Суть способа состоит в том, что ионы какого-то тугоплавкого материала, например титана, при заданных технологических параметрах разгоняются и внедряются в поверхность обрабатываемого инструмента. При этом поверхностные слои разогреваются до требуемой температуры, и когда она стабилизируется, напускается реактивный газ, например азот. Происходит плазмохимическая реакция, в результате которой образуется очень прочное соединение нитрида титана, осаждаемое на поверхность инструмента с высокой степенью равномерности, при этом обеспечивается очень прочная связь основы и пленки. В результате получается режущий инструмент с новыми свойствами, у которого очень прочная основа и тонкий износостойкий слой покрытия, толщина которого колеблется в пределах 5–8 мкм. Он имеет золотистый цвет, поэтому его часто называют по цвету и за замечательные качества «золотым» инструментом.

Этот инструмент имеет существенные преимущества перед аналогичным инструментом без покрытия: стойкость инструмента повышается до 10 раз в зависимости от конкретных условий его применения (в частности, стойкость сверл увеличивается в 12–15 раз), до 25–30 % снижается потребляемая мощность при обработке, уменьшается сила трения, улучшается качество обработанной поверхности. Резко увеличивается срок службы до окончательного затупления, тем самым снижается себестоимость изготавливаемой продукции.

ГОЛОГРАФИЧЕСКИЙ АППАРАТ В КАЧЕСТВЕ ДЕФЕКТОСКОПА

Разработан новый метод обнаружения скрытых дефектов в любом изделии (в лопасти вертолета, шине автомобиля и т. д.), которые нельзя обнаружить ультразвуком из-за неоднородности, многослойности структуры изделия. В основе этого метода — получение интерферограммы изделия с помощью особого аппарата для голографии и высокочувствительной пленки, изготовленной из полупроводникового материала. Сначала изделие фотографируют в нормальном состоянии, затем после деформации вследствие разогрева, удара или действия давления, когда его формы меняются всего на доли микрометра или оно вибрирует. Оба эти изображения накладывают на один кадр.

В результате создается интерферограмма, имеющая вид географической карты с линиями, обозначающими рельеф местности. Неровности, которые видны на ней, указывают на скрытые дефекты в глубине изделия. Метод позволяет выявить самые незначительные неоднородности в используемом материале за 1–2 с. В производственных условиях это можно сделать с помощью ЭВМ, не останавливая конвейера.

ВЛИЯНИЕ ЦВЕТА ГРЯДКИ НА УРОЖАЙ

Урожай помидоров вызревает быстрее и будет лучше по качеству, если растения выращивать на красной мульче (пленочном, бумажном или другом покрытии) — такое открытие сделали специалисты сельского хозяйства США. Это явление связано с тем, как листья растений реагируют на цвет. Оказывается, на рост растений влияет не только свет, падающий на верхнюю поверхность листьев, но и отраженный к их нижней поверхности, который зависит от цвета отражающей поверхности. Выращивание помидоров на красной мульче увеличивает их урожайность почти на 20 % по сравнению с обычной коричнево-черной.

КОСМИЧЕСКАЯ ОБСЕРВАТОРИЯ «ГРАНАТ»

1 декабря 1989 г. открыта новая страница в истории внеатмосферной астрономии: с космодрома «Байконур» запущен в космос международный космический аппарат «Гранат» — самая крупная из находящихся к тому времени на орбите обсерваторий, — предназначенный для исследования Вселенной. Объекты наблюдений для обсерватории «Гранат»: вспышка Сверхновой звезды, которая произошла в 1987 г. в соседней галактике Большое Магелланово облако, процессы вокруг «черных дыр», поведение пульсаров — компактных нейтронных звезд с мощным магнитным полем.

СООРУЖЕНИЕ НЕЙТРИННОГО ТЕЛЕСКОПА НА ДНЕ БАЙКАЛА

Поскольку «поймать» нейтрино на поверхности Земли почти невозможно и его трудно выделить из потока космического излучения, достигающего поверхности нашей планеты, физики надеятся осуществить эксперименты с нейтрино на дне глубоководных водоемов (у нас — на дне озера Байкал). На глубине 1000 м устанавливаются приборы для «охоты» на нейтрино и мюоны. Благодаря широким возможностям подводной установки (ее объем превысит 10 млн. м3) возможен поиск нейтрино очень высоких энергий (свыше 1∙1012 эВ), а также тех нейтрино, которые образовались в процессе формирования и эволюции первых звезд и галактик.

ГИПОТЕЗА РАЗГАДКИ ПРИРОДЫ НЛО

Сообщения о загадочных явлениях, именуемых неопознанными летающими объектами (ИЛО), часто появляются в печати. Факты появления НЛО в последнее время были зарегистрированы метеорологическими службами многих мест Земли, было также сделано множество фотографических снимков, отснят ряд кинолент, показывающих в динамике появление и исчезновение необыкновенных природных явлений. Высказан ряд гипотез о возможной природе НЛО. Одну из них, на наш взгляд заслуживающую внимания, предложил недавно инженер-физик из г. Харькова В. Мажуга. По его мнению, главным действующим лицом в появлении таинственных «летающих тарелок» действительно являются «пришельцы из космоса» — космические лучи. Если их энергия превышает 1∙1017 эВ, то возбуждаемые ими электронфотонные ливни могут образовывать плазмоподобные сгустки, приобретающие при разных условиях самые различные формы — блина, тарелки, шара и даже изогнутой сигары, сравнительно медленно вращающейся в воздухе, т. е. формы именно того предмета, который наблюдали жители в небе над Бейрой (Мозамбик). Физики, работающие с термоядерной плазмой, давно знакомы с подобными сгустками, поэтому, с точки зрения В. Мажуги, правомерно распространить их природу на космические лучи и загадочные небесные явления.

ХОЛОДНЫЙ ТЕРМОЯД (ЯДЕРНЫЙ СИНТЕЗ)

Сообщение американских ученых М. Флейшмана и С. Понса о том, что они наблюдали явление слияния ядер при комнатной температуре, вызвало в научном мире сенсацию. Ведь появилась реальная возможность решения энергетической проблемы, стоящей перед человечеством, притом дешевым, безопасным и экологически чистым путем. Очень заманчива была перспектива использования ядерной энергии не только для производственных нужд, но и для отопления домов и замены бензиновых моторов на электрические.

Причина широчайшего резонанса, вызванного открытием ХЯС (холодного ядерного синтеза), заключалась в том, что общественность была уже подготовлена к мысли, что решение энергетических проблем связано с термоядерной энергией. Однако было ясно: этот путь невероятно труден, он требует создания гигантских установок, многомиллиардных затрат и десятилетий упорного труда. Только на 1997 г. планируется пуск исследовательского термоядерного реактора, который сможет обеспечить себя за счет энергии синтеза. Что же касается практической осуществимости такого источника энергии, то она должна быть продемонстрирована с помощью испытательного реактора, создаваемого на основе международного сотрудничества СССР, США, Японии и ЕЭС. Запуск его намечен на 2003 г. И вдруг — чудовищная простота и дешевизна — «термояд в банке из-под клубничного джема»!

Действительно, для получения ХЯС необходимы были только сосуд, заполненный тяжелой водой, и два электрода, помещенных в этот раствор. Катодом служила тонкая палладиевая проволока. При пропускании тока через раствор в течение длительного времени (~10 ч) начиналась реакция синтеза. В результате этой реакции, по мнению авторов эксперимента, могли образоваться тритий, гелий, нейтроны и могла высвободиться энергия.

В доказательство того, что в эксперименте наблюдается именно ядерный синтез, ученые привели следующие факты: с помощью масс-спектрометра они провели анализ выделившихся в опыте газов, который подтвердил присутствие трития (последний мог появиться, как они считают, лишь в результате ядерного синтеза), зафиксировали выделение в ходе реакции нейтронов, а также гамма-излучения с энергией, равной той, которой они должны были бы обладать при реакции ядерного синтеза.

Естественно, что опыты американских ученых-химиков были перепроверены во многих странах, в том числе и у нас. Эти опыты не получили должного воспроизводства, и никто из экспериментаторов не получил достаточно много избыточной теплоты в ходе даже длительного электролиза. Не ясен до конца и физический механизм протекания ХЯС, но из этого не следует, что обнаруженное явление не найдет в будущем какого-либо практического применения. Если реакции ХЯС не будут обогревать и освещать дома, они могут протекать в окружающей нас природе, и уже потому их излучение представляет интерес.

АЛЬТЕРНАТИВНЫЙ ВАРИАНТ ЭНЕРГЕТИКИ (ВОДОРОДНАЯ ЭНЕРГЕТИКА)

Особые свойства водорода (наилегчайший, имеющий наибольшую теплоту сгорания и др.) открывают заманчивые перспективы его применения для экологически чистого получения энергии. И только трудности его получения, хранения, эксплуатации сдерживают развитие водородной энергетики. Тем не менее «водородная проблема» привлекает сейчас большое внимание специалистов во всем мире по многим причинам: первая — водорода на Земле много, вторая — он как топливо эффективен и экологически безупречен, третья — водород позволяет аккумулировать большие запасы энергии, четвертая — перекачка водорода к месту сжигания и получение энергии в 10–15 раз дешевле, чем транспортировка электричества.

В малых масштабах использование водорода как источника энергии уже началось, например в автомобилестроении. Уже 10 лет проходят испытания автомобили РАФ и «Волга», снабженные двигателями, работающими и на водороде, и на бензине, и на бензоводородной смеси. Создан в нашей стране и первый в мире самолет на водородном топливе — Ту-155 (по высказыванию А. Н. Туполева двадцатилетней давности, это фантастика XXI века). При одной и той же с самолетами другого типа грузоподъемности его дальность полета в 1,5–2 раза больше, что обусловлено значительной теплотой сгорания водорода.

Для торжества «водородной идеи» нужно большое количество водорода. Один из возможных путей получения такого количества водорода — электролиз за счет энергии ветра, морских волн и Солнца. Этот способ поможет избежать перегрева Земли, поскольку при сжигании водорода выделится энергия, которая все равно поступила бы. на Землю, но была израсходована на получение водорода.

ВДОГОНКУ ЗА СОЛНЦЕМ

Уже не первый год в мире проводятся состязания гелиомобилей. Это легкие одноместные экипажи, движимые электромоторами, которые получают энергию от солнечных батарей. Правда, лучшие кремниевые солнечные батареи, применяемые на спутниках, имеют сегодня КПД не выше 22 %, поэтому гелиомобили вряд ли в обозримом будущем выйдут на улицы городов, но вот аккумуляторы и электромоторы, разработанные и усовершенствованные для солнечных экипажей, наверняка можно будет применять в электромобилях, которые сейчас все увереннее заявляют о себе.

ВЕК СВЕРХСКОРОСТЕЙ

XX век часто называют веком скоростей. Самый быстрый вид транспорта — самолет. Какие же скорости будут доступны нашей авиации в начале следующего столетия?

Предполагается, что сверхзвуковые самолеты, салон которых вместит 250 пассажиров, выполнят первые рейсы уже в 2005 г. Скорость такого самолета в 2,4 раза выше скорости звука (около 1100 км/ч).

Появление гиперзвуковых самолетов придется подождать до 2030 г. Из-за высокой скорости обшивка самолета будет нагреваться до 350 °C, такой температуры не выдерживают алюминиевые сплавы. На смену им придут сложные углеродные композиции. Топливо также понадобится другое — жидкий метан или жидкий водород заменят керосин. Одной заправки хватит, чтобы пролететь 16 000 км (т. е. путь от Москвы до Владивостока) в течение часа.

СОПЕРНИКИ АЭС

До сих пор считалось, что приливные электростанции (ПЭС) выгодно строить лишь в узких заливах и устьях рек, где прилив высок и можно пропускать значительные массы воды через сравнительно небольшие плотины. Но, увы, подсчитано, что на всех побережьях нашей планеты таких мест не наберется и двух сотен. Вот почему английская фирма «Морган Хорн» спроектировала ПЭС нового типа — на мелководьях в открытом море. У берегов Великобритании, по оценке фирмы, за счет таких станций могло бы производиться 25 % потребляемой сегодня электроэнергии. Основа подобных ПЭС — невысокие дамбы («выгородки») с узкими шлюзами, в которых установлены турбины. Важно, что конструкция позволяет использовать движение воды в обе стороны — и при отливе, и при приливе. В этом случае можно утилизовать до 45 % приливной энергии. А на вынесенных в море дамбах удобно строить еще и ветровые энергоустановки. По стоимости вырабатываемой электроэнергии новые ПЭС смогут конкурировать и с атомными электростанциями.

СВЕРХПРОВОДНИКИ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

В истории науки известны открытия, которые ознаменовали собой появление новых научно-технических направлений. Это в полной мере может быть отнесено и к эффекту сверхпроводимости, который был недавно обнаружен в металлокерамических соединениях при комнатной температуре (правда, пока в лабораторных условиях). Ученые прилагают все усилия, чтобы наладить производство этих сверхпроводников на промышленной основе. И если это удастся, то будет совершена подлинная революция в развитии сильноточной техники для генераторов, в транспорте на магнитной подушке, в резком уменьшении потерь при передаче электроэнергии на сверхдальние расстояния, а также и в совершенствовании многих слаботочных электронных устройств.

 

Литература

1. Алферов А. В. В мире умных машин. М., 1989.

2. Басов Н. Г., Афанасьев Ю. В. Световое чудо века. М., 1984.

3. Белиловский В. Д. Эти удивительные жидкие кристаллы. М., 1987.

4. Билимович Б. Ф. Законы механики в технике. М., 1975.

5. Билимович Б. Ф. Световые явления вокруг нас. М., 1986.

6. Будов М. И. Беседы по физике/Под ред. Л.В.Тарасова. М., 1984. Ч. I; 1985. Ч. II.

7. Володин В. В., Хазановский П. М. Энергия, век двадцать первый. М., 1989.

8. Глазунов А. Г. Техника в курсе физики средней школы. М., 1977.

9. Глухова Г. Н., Самойленко П. Я., Ченцов А. А. Физика. М., 1987.

10. Гнедина Т. Е. Физика и современное производство. М., 1982.

11. Грабовой И. Д. Современное оружие и защита от него. М., 1984.

12. Громыко А. А, Ломейко В. Н. Новое мышление в ядерный век. М., 1984.

13. Гулиа Л. А. В поисках «энергетической капсулы». М., 1986.

14. Гуревич Л. Э., Чернин А.Д. Происхождение галактик и звезд. М., 1987.

15. Демидов В. Е. Пойманное пространство. М., 1982.

16. Дягилев Ф. М. Из истории физики и жизни ее творцов. М., 1986.

17. Енохович А. С. Справочник по физике и технике. М., 1989.

18. Жевандров Я. Д. Применение поляризованного света. М., 1978.

19. «Звездные войны». Иллюзии и опасности. М., 1985.

20. Карцев В. П., Хазановский П. М. Тысячелетия энергетики. М., 1984.

21. Колтун М. М. Мир физики. М., 1984.

22. Кнорре Е. С. Впереди времени. М., 1989.

23. Кресин В. 3. Сверхпроводимость и сверхтекучесть. М., 1978.

24. Куприн М. Д. Физика в сельском хозяйстве. М., 1985.

25. Левитский С. M.t Сигаловский Д. Ю. Работают электронные и ионные лучи. Киев, 1987.

26. Марчук Г. Я. Магистрали прогресса. М., 1985.

27. Мигдал А. Б. Поиски истины. М., 1983.

28. Мнеян М. Г. Новые профессии магнита. М., 1985.

29. Моисеев Я. Я. Слово о научно-технической революции. М., 1985.

30. Научно-технический прогресс и эффективность сельскохозяйственного производства/Под ред. А. М. Емельянова. М., 1985.

31. Никеров В. А. Электронные пучки за работой. М., 1988.

32. Никитин Д. П., Новиков Ю. В., Зарубин Г. П. Научно-технический прогресс, природа и человек. М., 1977.

33. Пинский А. А., Граковский Г. Ю. Физика с основами электротехники. М., 1985.

34. Пирожков Л. Б. Что такое голография? М., 1983.

35. Прокофьев В. Л., Дмитриева В. Ф. Физика. М., 1983.

36. Проценко А. Н. Энергия будущего. М., 1985.

37. Резников 3. М. Прикладная физика. М., 1989.

38. Родионов В. Е. Приключения радиолуча. М., 1988.

39. Суорц Кл. Э. Необыкновенная физика обыкновенных явлений. М., 1986. Т. 1; 1987. Т. 2.

40. Тарасов Л. В. Этот удивительный симметричный мир. М., 1982.

41. Тарасов Л. В. Мир, построенный на вероятности. М., 1984.

42. Тарасов Л. В. Физика в природе. М., 1988.

43. Тарасов Л. В. Знакомьтесь — лазеры! М., 1988.

44. Уиньон М. Знакомство с голографией. М., 1980.

45. Уокер Дж. Физический фейерверк (Вопросы и ответы по физике). — М., 1989.

46. Физика и научно-технический прогресс/Под ред. А. Т. Глазунова, В. Г. Разумовского, В. А. Фабриканта М., 1988.

47. Хилькевич С. С. Физика вокруг нас. М., 1985.

48. Черник Г. В. Микропроцессоры «сельского хозяйства». М., 1988.

49. Чирков Ю. Г. Охота за кварками. М., 1985.

50. Эдельман В. С. Вблизи абсолютного нуля. М., 1983.

51. Эльшанский И. И. Законы природы служат людям. М., 1978.

52. Эндерлайн Р. Микроэлектроника для всех. М., 1989.

53. Энциклопедический словарь юного физика/Сост. В. А. Чуянов. М., 1984.

54. Энциклопедический словарь юного техника/Сост. Б. В. Зубков, С.В.Чумаков. М., 1987.

55. Ярмоленко С. П. Управляемые кванты. М., 1983.

* * *

Содержание