Отрицательное значение коэффициента корреляции может означать, что чем больше время реакции, тем ниже эффективность. Однако величина его слишком мала для того, чтобы можно было говорить о достоверной связи между этим двумя переменными.

Теперь попробуйте самостоятельно подсчитать коэффициент корреляции для экспериментальной группы после воздействия, зная, что Σ XY= 2953: n = ….. ( n – 1) sxsy= ….. r = = = ….. Какой вывод можно сделать из этих результатов? Если вы считаете, что между переменными есть связь, то какова она — прямая или обратная? Достоверна ли она (см. табл. 4 (в дополнении Б.5) с критическими значениями r )? Коэффициент корреляции рангов Спирменаrs Этот коэффициент рассчитывать проще, однако результаты получаются менее точными, чем при использовании r . Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следования данных, а не их количественные характеристики и интервалы между классами. Дело в том, что при использовании коэффициента корреляции рангов Спирмена ( rs ) проверяют только, будет ли ранжирование данных для какой-либо выборки таким же, как и в ряду других данных для этой выборки, попарно связанных с первыми (например, будут ли одинаково «ранжироваться» студенты при прохождении ими как психологии, так и математики, или даже при двух разных преподавателях психологии?). Если коэффициент близок к +1, то это означает, что оба ряда практически совпадают, а если этот коэффициент близок к –1, можно говорить о полной обратной зависимости. Коэффициент rs вычисляют по формуле rs = 1 –