Исследования в области телевидения заняли более чем 30 лет в жизни ученого и привели к открытию, принесшему ему мировую известность и послужившему основой для развития современного телевидения.
Зарождение телевидения относится к 70-м годам прошлого столетия. Оно неразрывно связано с развитием электротехники и ее практическими применениями, в частности для связи на большие расстояния. Возможность быстрой передачи сообщений на большие расстояния в виде электрических сигналов наводила на мысль об использовании аналогичных принципов для передачи изображений на расстояние.
Первые проекты систем для электрической передачи изображений были предложены вскоре после изобретения телеграфа и относились еще не к телевидению в современном понимании этого слова, а к фототелеграфии, т. е. передаче единичных неподвижных изображений (чертежей, рисунков и т. п.). Они основывались на использовании химического действия тока и применении различных механических устройств в передающем и приемном аппаратах, Передача сигналов осуществлялась по проводам, принимаемые изображения фиксировались на бумаге.
Начало развития фототелеграфии связано с проектами А. Бейна (1842 г.), Ф. Бэйкуелла (1847 г.) и Дж. Казелли (1862 г.).
Фототелеграфия не давала возможности наблюдать удаленные объекты в движении в момент передачи независимо от расстояния и оптических препятствий, т. е. не решала в полной мере задачу видения на расстоянии. Различие между фототелеграфией и телевидением примерно такое же, как между фотографией и кино.
Первые успехи в передаче неподвижных изображений по линиям связи привлекли внимание ученых и изобретателей к проблеме телевидения. Но для перехода от фототелеграфии к телевидению, т. е. к непосредственной передаче движущихся изображений, требовались новые методы и технические средства, необходимо было преодолеть огромные технические трудности.
Телевидение, или видение на расстоянии за пределами непосредственного зрительного восприятия объектов человеком, могло быть осуществлено на основе преобразования света в электрические сигналы.
Принципиальная возможность осуществления телевидения появилась после того, как в 1873 г. английские ученые Дж. Мей и У. Смит открыли светочувствительность химического элемента селена, т. е. изменение его сопротивления под действием света. В результате изучения этого явления вскоре в различных странах были предложены многочисленные проекты "видения на расстоянии при помощи электричества", в которых использовались свойства селена для светоэлектрического преобразования.
В большинстве случаев эти проекты основывались не на каких-либо теоретических исследованиях и практических опытах, а на догадках и зачастую на неверных исходных положениях и поэтому не могли быть практически осуществлены. В некоторых проектах и предложениях содержалось рациональное зерно, но необходимые для их реализации элементы и приборы были еще несовершенны или вообще отсутствовали.
Отдельные изобретатели пошли по известному в истории техники пути простого копирования явлений природы и пытались построить телевизионную систему по аналогии с устройством зрительного аппарата человека. Такая система была предложена в 1875 г. американцем Дж. Кери. Светочувствительной сетчатке глаза-в ней соответствовала панель с большим количеством миниатюрных селеновых фотосопротивлений, составлявшая основу передающего устройства. Центры коры головного мозга, где создаются зрительные восприятия, представлялись источниками света (например, лампочками накаливания), расположенными на второй панели в месте приема. Каждое фотосопротивление на панели передатчика было связано с соответствующим источником света на панели приемника парой электрических проводов, выполнявших роль зрительных нервов.
Преобразование оптического изображения в электрические сигналы в системе Кери должно было осуществляться одновременно и непрерывно всеми фотосопротивлениями. Все изменения передаваемого изображения отражались бы в изменении яркости свечения источников света в приемном устройстве, что позволяло в принципе производить передачу движущихся изображений. Эта система, получившая названием многоканальной, не могла быть осуществлена практически вследствие ее сложности даже при небольшом числе элементов изображения.
Для практического решения проблемы телевидения нужно было найти такой способ передачи изображений, который позволял бы заменить большое количество линий связи между передающим и приемным устройствами одной линией, т. е. перейти от сложной многоканальной системы к более простой, одноканальной. Этот переход означал замену одновременной передачи всех элементов изображения поочередной. Такая замена оказалась возможной на основе применения развертки изображения и использования Инерционности зрительного восприятия.
Первые одноканальные системы передачи, основанные на этих принципах, были предложены в 1877—1878 гг. независимо французским инженером М. Санлеком, португальским физиком А. де Пайва и русским студентом, впоследствии известным физиком и биологом П. И. Бахметьевым.
Переход от многоканальной системы передачи изображений к одноканальной был связан с введением в телевизионную систему механических элементов. В отличие от чисто электрической статической системы Кери, не содержавшей никаких механических движущихся частей, в системах Санлека, де Пайва и Бахметьева требовалось применение более или менее сложных механизмов для развертки или разложения изображения на элементы.
В последующие годы было предложено еще много проектов телевизионных систем, основанных на использовании светочувствительности селена и применении различных оптико-механических устройств. Передающее устройство в большинстве этих систем представляло собой сочетание селенового светоэлектрического преобразователя и механизма для развертки изображения.
Такое направление в построении телевизионных систем не случайно. Оно было обусловлено общей тенденцией промышленно-технического развития во второй половине прошлого века, характеризующегося изобретением остроумных механизмов и совершенствованием машин, и опиралось на хорошо развитые отрасли науки, техники и промышленности.
Схема телевизионной системы с дисками Нипкова
1 — линза; 2 — диск передающего устройства; < 3 — отверстия диска; 4 —фотоэлемент; 5 — модулятор света; 6 — источник света; 7 — диск приемного устройства
Известно более ста проектов систем передачи изображений, появившихся в разных странах в период с 1880 по 1900 г. Однако лишь немногие из этих проектов имели практическое значение для развития телевидения.
Важным шагом в деле практического решения проблемы телевидения явилось изобретение в 1884 г. П. Нипковым (Германия) простого оптико-механического устройства для построчной развертки и воспроизведения телевизионных изображений[1 Р. N i р к о w. Германский патент № 30106, заявлен 6 января 1884 г.]. Основным элементом в передатчике и приемнике его системы (рис. 1) был развертывающий диск, получивший название диска Нипкова. Он представлял собой непрозрачный круг большого диаметра, у внешнего края которого расположены по спирали небольшие круглые отверстия на одинаковом угловом расстоянии одно от другого. Каждое последующее отверстие смещено на величину своего диаметра к центру диска.
В передатчике диск находился между передаваемым объектом и селеновым фотосопротивлением. Изображение передаваемого объекта фокусировалось объективом на плоскость диска. При вращении диска сквозь его отверстия свет проходил на фотосопротивление поочередно от отдельных элементов изображения. Таким образом осуществлялось разложение светового потока изображения на элементарные световые потоки. Каждое отверстие давало одну строку изображения. За один оборот диска на фотосопротивление последовательно воздействовал свет от всех элементов изображения, что соответствовало передаче одного кадра. Число строк в кадре равнялось числу отверстий в диске.
В приемнике такой же диск располагался между глазом наблюдателя и источником света, модулируемым фототоком передатчика; этот диск вращался синхронно и сиифазно с диском передатчика. При наблюдении источника света через отверстия вращающегося диска наблюдатель мог видеть передаваемое изображение в плоскости диска. Для модуляции источника света Нипков предполагал использовать открытое Фарадеем вращение плоскости поляризации света в магнитном поле, а также колебания мембраны телефона.
Телевизионная система с дисками Пинкова содержит в себе основные элементы оптико-механических телевизионных систем.
Проект Нипкова относится к немногим проектам начального периода истории телевидения, в которых имелись оригинальные идеи, приблизившие решение задачи видения на расстоянии, но он был неосуществим в то время из- за несовершенства отдельных элементов системы. Основная трудность состояла в невозможности получить достаточно сильный сигнал изображения вследствие невысокой чувствительности селенового фотосопротивления.
После опубликования патента П. Нипкова было предложено еще несколько оптико-механических телевизионных устройств с развертывающими элементами в форме линзового диска, зеркального колеса, линзового барабана, двух вращающихся с разными скоростями параллельных дисков и т. п. Среди них можно отметить интересные системы, предложенные в нашей стране: М. Вольфке из г. Ченстохова в 1898 г.[2 М. Вольфке. Привилегия № 4498, заявлена 24 ноября 1898 г.] и инженером А. А. Полумордвиновым в 1899 г.[3 А. А. Полумордвинов. Привилегия №10738, заявлена 23 декабря 1899 г.]
Некоторые из предложенных в начальный период развития телевидения оптико-механических систем (П. И. Бахметьева, П. Нипкова, Я. Щепаника) в принципе позволяли осуществить передачу и прием движущихся изображений, но ни одна из них не была построена и проверена в действии. Это объясняется чрезвычайной сложностью стоявшей перед изобретателями задачи и отсутствием соответствующих технических средств. Их идеи опередили технические возможности на несколько десятилетий.
Хотя все высказанные предположения и идеи не привели к практическим результатам, на основе их сложились общие принципы телевидения: преобразование элементов оптического изображения в электрические сигналы с помощью фотоэлемента; последовательная, или поочередная, передача этих сигналов по одному каналу связи в место приема; обратное преобразование электрических сигналов в оптические и воссоздание из них передаваемого изображения.
Вследствие технических трудностей, стоявших на пути практического осуществления телевидения, количество новых проектов телевизионных систем к концу XIX в. значительно уменьшилось. Вместе с тем недостаточно глубокий подход к проблеме телевидения сменился исследованиями, направленными как на усовершенствование конструктивных элементов оптико-механических систем, так и на поиски новых путей решения задач.
В таком состоянии находилось телевидение, когда эта проблема привлекла внимание Б. Л. Розинга. Начало его практических исследований в области передачи изображений, которую он называл электрической телескопией, относится к 1897 г. Но интерес к ней он проявлял еще раньше. Среди архивных материалов Б. Л. Розинга имеется рукопись статьи, где сказано: "начало моей собственной работы на поприще электрической телескопии относится к 1892 г." [4 Б. Л. Р о з и н г. Основания электрической телескопии. Архив Центрального музея связи им. А, С, Попова,] Надо думать, что это соответствует действительности, так как Борис Львович был очены точен в отношении дат. В это время он вел исследовательскую работу на кафедре физики в университете, и, возможно, интерес к дальновидению возник у него под влиянием бесед с профессорами кафедры физики Н. А. Гезехусом и П. П. Фандерфлитом и знакомства с их работами. Н. А. Гезехус с 1883 г. изучал фотопроводимость селена и разработал теорию этого' сложного явления, а П. П. Фандерфлит, наряду с исследованиями в области физической природы электрического тока, занимался также разработкой устройства для передачи изображений. Бориса Львовича увлекала сложность проблемы видения на расстоянии, а также перспективы и возможности, которые могло дать ее решение.
"Конечно, осуществить эту идею в полной мере невозможно,— писал Б. Л. Розинг.— Но если даже эта идея будет осуществлена в частичной форме, сферы нашей личной и общественной жизни, а также науки значительно расширятся. Нам откроются и тайны богатства большей части поверхности нашей планеты, которая до сих пор скрыта под покрывающей ее водой. Опуская приемные аппараты подобного прибора — телескопа в глубину океанов, можно будет видеть жизнь и сокровища, которые там таятся. Можно будет проникнуть таким же образом в расщелины гор и потухшие вулканы и заглянуть внутрь твердой оболочки Земли. Врач будет в состоянии пользоваться таким электрическим глазом при исследовании внутренностей больного, находясь далеко от него. Инженер, не выходя из своего кабинета, будет видеть все, что делается в мастерских, в складах, на работах. ...Но такой прибор не только будет способствовать расширению нашего кругозора, но может заменить человека в разных обстоятельствах..." [5 Б. Л. Розинг. Электрическая телескопия (видение на расстояний). Ближайшие задачи и достижения. Йзд-во "Academia", 1923. В дальнейшем: Электрическая телескопия.]
Эти слова свидетельствуют, о том, что он ясно представлял, какое значение может иметь телевидение в жизни человечества, и вместе с тем понимал, насколько сложна задача создания телевизионной системы.
Свои опыты Б. Л. Розинг начал с проверки возможности использования в системе передачи изображений на расстояние фотохимических явлений, в частности действия света на элемент с серебряными электродами, некрытыми светочувствительным слоем. Он, очевидно, надеялся обойтись таким путем без каких-либо механических устройств. Система состояла из двух электролитических серебряных ванн, соединенных между собой и источником тюка так, что при отбрасывании светового изображения на металлическую пластинку, положенную на дно одной ванны, можно было прямо получить такое же изображение на подобной пластинке второй ванны. Но опыты вскоре показали невозможность осуществления этой идеи.
Тогда Б. Л. Розинг испробовал второй вариант, основанный на том, что если соединить противоположными полюсами два элемента с хлористым серебром и осветить один из них, то равновесие в цепи нарушится, ток пойдет в неосвещенный элемент и (вызовет в нем разложение и потемнение слоя хлористого серебра. Если взять большое количество таких миниатюрных элементов на одной стороне и соединить их с такими же элементами на другой стороне, то при падении 'светового изображения на элементы в месте передачи можно получить на другом конце такое же изображение. При исчезновении света равновесие восстановится и появившееся изображение пропадет. Была поставлена серия опытов, и в течение многих месяцев велись поиски подобной обратимой реакции в серебряных и других элементах. Но и от этого варианта пришлось отказаться из-за трудности получения необходимых элементов и сложности такой многоканальной системы.
Так начался долгий и трудный путь изобретателя, приносящий и радости и разочарования. Непреодолимое стремление к намеченной цели, высокая требовательность к себе и большая организованность в работе позволяли ему находить внутренние силы для того, чтобы продолжать работу, снова и снова искать новые пути при временных неудачах.
Борис Львович писал: "Из личного опыта я убедился, что для успешной работы изобретатель должен обладать следующими главнейшими качествами1: 1) хорошей подготовкой в области физико-математических наук; 2) большим воображением; 3) независимостью суждений и способностью не обескураживаться никакими неудачами и 4) склонностью к усиленной напряженной умственной работе" [6 Б. Л. Розинг. Автобиография.]. Сам он в высокой степени обладал всеми этими качествами и благодаря этому смог найти правильное решение сложней задачи, переходя от одного варианта системы к другому.
За системой с большим количеством электрохимических элементов следует система с передающим аппаратом в виде одного элемента с мозаичным светочувствительным электродом и сеткой против него и приемным аппаратом в виде электролитической ванны с четырьмя электродами, соединенными по схеме моста Уитстона. Идея такой системы состояла в том, что при возбуждении светом какой-либо точки мозаичного электрода возникающий в схеме электрический ток нарушит распределение потенциалов в электролитической ванне и вызовет реакцию в соответствующем месте. Но и эти опыты не дали желаемого эффекта.
Все эти исследования Б. Л. Розизнг сочетал с большой педагогической работой в Технологическом институте и Константиновском артиллерийском училище и с решением других теоретических вопросов. Поэтому изучение каждого варианта занимало много времени.
В Константиновском училище Борис Львович познакомился с преподавателем электротехники, капитаном артиллерии Константином Дмитриевичем Перским. Это был широко эрудированный человек, принадлежавший к числу передовых русских офицеров. Так же как и Борис Львович, он интересовался вопросами передачи изображений на расстояние и следил за всеми новыми достижениями в этой области.
К. Д. Перскому принадлежит приоритет на термин "телевидение", который он впервые употребил в докладе "Современное состояние вопроса об электровидении на расстоянии (телевизироваине)", прочитанном им на 1-м Всероссийском электротехническом съезде в 1900 г., а затем на Международном электротехническом конгрессе в Париже.
Б. Л. Ровинг и К. Д. Перокий часто обсуждали пути развития электровидения и приходили к единому мнению, что русские люди не останутся в долгу у человечества и в этой области, как не остались они в долгу в разрешении многих других вопросов применения электротехники.
Беседы с К. Д. Перским помогали Борису Львовичу проверить правильность выбранных им решений, критически оценить появлявшиеся сенсационные сообщения о новых проектах телевизионных систем.
Работу с системами дальновидения, основанными на электрохимическом действии света, Б. Л. Розинг вел в течение нескольких лет. Но эти годы не были потерянными. Проведенные опыты и напряженные искания показали, что задачу телевидения нельзя решить при помощи механических и электрохимических устройств.