Здоровое сердце. Издание XXI века

Готто-младший Антонио

Дебейки Майкл Эллис

Глава 9. Будущее кардиологии

 

 

В последние десятилетия многое достигнуто в области профилактики, диагностики и лечения сердечно-сосудистых заболеваний. Сегодня перед начинающим врачом открываются такие возможности, которые еще пятьдесят лет назад казались фантастическими. Как мы знаем из предыдущих глав, методы медицинской визуализации, медикаментозная терапия, хирургические и мини-инвазивные технологии, а также имплантируемые устройства достигли высочайшего уровня развития, позволив существенно улучшить качество и продолжительность жизни миллионов пациентов. В XXI веке мы располагаем обширными знаниями о развитии сердечно-сосудистых заболеваний, способах их профилактики и лечения.

Между тем мы стоим на пороге еще более впечатляющих достижений в кардиологии. Первая полная расшифровка генома человека, завершенная в 2003 году, стала одним из самых знаменательных прорывов в современной медицине. Она принесла с собой огромный объем новой информации, значение которой ученые только начинают осознавать. Нам известны последовательность и расположение примерно двадцати пяти тысяч генов генома человека. Тридцать лет назад нам были доступны сведения лишь о небольшом проценте этого количества: наверное, менее чем о сотне генов. Расшифровка первого генома человека заняла более десяти лет и обошлась примерно в три миллиарда долларов; для исследования использовалась ДНК нескольких человек. Сегодня с развитием высокоскоростных и недорогих секвенаторов расшифровать геном отдельно взятого человека можно примерно за неделю, стоить это будет лишь несколько тысяч долларов.

Расшифровка генома человека позволяет ученым установить различия в генетическом строении человека и других организмов, а также понять, насколько отличаются друг от друга разные представители человеческого вида. Хотя значительная часть генома одинакова у всех людей, ученые выяснили, что геномы разных людей отличаются примерно в 1–3 % последовательностей. Весь геном человека содержит примерно 3 миллиарда пар оснований. (ДНК состоит из двух цепочек нуклеотидов, организованных в двойную спираль. Каждый нуклеотид имеет одно из четырех возможных оснований. Парой оснований называются два нуклеотида в противоположных звеньях цепочек, соединенные с помощью водородной связи.) Таким образом, геном каждого человека содержит примерно четыре миллиона последовательностей и отличается от остальных представителей населения в целом. Около трех миллионов этих вариаций отличаются только на один нуклеотид, это называется однонуклеотидным полиморфизмом. Такие генетические вариации (порой с различием всего в одном основании гена, состоящего из тысяч оснований) теоретически могут иметь широкомасштабные последствия.

Гены кодируют белки, и замена одного основания может изменить структуру белка и, как следствие, его функцию. Это изменение может повлиять на устойчивость человека к определенному заболеванию или его реакцию на какой-то лекарственный препарат, вакцину или другой стимул. Однако основная масса вариаций генов не оказывает ощутимого влияния на здоровье человека, многие болезни развиваются под влиянием нескольких генов, а также других факторов, таких как окружающая среда и образ жизни.

В медицине появилось новое направление. Это трансляционные исследования, цель которых состоит в скорейшем переходе от теоретических лабораторных испытаний к практическому применению новых методик в лечении пациентов. Задача ученых заключается в том, чтобы провести исследование, которое быстро привело бы к совершенствованию терапевтических методов. После расшифровки генома человека исследователи занялись сбором данных о генетических факторах, влияющих на развитие сердечно-сосудистых заболеваний. По мере накопления знаний в этой области ученые все ближе подбираются к тому, чтобы сделать реальностью так называемую персонализированную медицину. Персонализированная медицина учитывала бы информацию о геноме отдельного человека на всех этапах охраны его здоровья: профилактики, диагностики и лечения. Генная терапия и лечение стволовыми клетками также могут коренным образом изменить кардиологию, в частности, дав возможность восстанавливать поврежденные ткани сердца.

 

Персонализированная медицина

С 1970-х годов благодаря значительному расширению технологических возможностей появилось много новых отраслей науки. Например, геномика занимается изучением генома и генов живых организмов, а протеомика – изучением белков и их взаимодействия в живых организмах. Геном человека постоянен на протяжении жизни, но экспрессия разных генов в белки разными клетками происходит в разное время. Таким образом, уровни белков в клетке или в организме постоянно меняются.

Геномика и протеомика совместно с другими новыми областями науки способствуют развитию персонализированной медицины. Ее цель состоит в понимании того, как огромный объем информации, зашифрованный в наших генах и получаемый путем анализа белков, мог бы помочь в разработке оптимальной стратегии профилактики, диагностики и лечения. Персонализированная медицина пока только начинает свой путь, хотя уже удалось добиться существенного прогресса в области диагностики и лечения онкологических заболеваний.

Персонализированная медицина помогла бы выявлять пациентов с повышенным риском развития сердечно-сосудистых заболеваний задолго до появления у них первых симптомов. Традиционно профилактика таких заболеваний базируется на контролировании факторов риска, таких как повышенный уровень холестерина, повышенное артериальное давление, диабет и курение. Однако во многих случаях болезнь развивается при наличии только одного фактора риска или вообще при их отсутствии. Исследователи ищут новые способы выявления пациентов с высоким риском возникновения сердечно-сосудистых заболеваний, пытаясь выделить гены или белки, которые помогли бы предсказать наличие повышенного риска у конкретного человека.

На данный момент ученые определили как минимум двадцать три участка генома, называемые генетическими локусами, потенциально связанные с повышенным риском развития ишемической болезни сердца в зависимости от наличия определенных вариаций генов. Некоторые из этих вариаций влияют на распространенные факторы сердечно-сосудистого риска, такие как уровни ХС ЛНП, ХС ЛВП и гипертония. Например, изменения в гене PCSK9 могут существенно повлиять на уровень ХС ЛНП. Один вид изменения данного гена приводит к чрезвычайно высокому уровню ХС ЛНП, схожему с тем, что наблюдается при таком редком генетическом заболевании, как наследственная гиперхолестеринемия. Другой вид изменения гена PCSK9 вызывает пожизненно низкий уровень холестерина, приводя к снижению ХС ЛНП на 28 % у афроамериканцев и на 15 % – у представителей белокожего населения. Люди с такими генетическими вариациями имеют пониженный риск ишемической болезни сердца: у афроамериканцев он снижается на 88 %, а у представителей белокожего населения – на 47 %.

Многие другие генетические локусы, ассоциируемые с ишемической болезнью сердца, не оказывают влияния на традиционные факторы сердечно-сосудистого риска, а многие расположены на генах, ранее считавшихся не связанными с развитием ишемической болезни сердца. Участок хромосомы 9, называемый хромосомой 9р21, широко изучается исследователями. Примерно у половины населения, как считается, есть один однонуклеотидный полиморфизм (ОНП) на хромосоме 9р21, связанный с повышенным риском ССЗ, и примерно у четверти населения – два ОНП. При наличии двух ОНП риск развития ишемической болезни сердца на 25 % превышает риск при наличии одного ОНП, а у людей без ОНП на данной хромосоме риск на 25 % ниже, чем при наличии одного ОНП. Однако хромосома 9р21 не связана ни с одним из известных генов, что дает некоторое представление о сложности генетических исследований. Генетический анализ на наличие ОНП на хромосоме 9р21 и других вариаций по-прежнему считается экспериментальным методом и пока не имеет широкого применения в диагностике ишемической болезни сердца.

Хотя существуют тысячи заболеваний, вызванных изменением всего в одном гене (например, серповидноклеточная анемия и муковисцидоз), есть и более распространенные заболевания, среди них ИБС, диабет и рак, которые развиваются под влиянием сразу нескольких генов в сочетании с факторами образа жизни и окружающей среды. Наличие одного или нескольких ОНП, связанных с болезнями сердца, может повысить сердечно-сосудистый риск, тем не менее вероятность фактического развития болезни во многом определяется образом жизни. Одним из направлений персонализированной медицины может быть выявление пациентов, более склонных к развитию сердечных заболеваний в силу генетических факторов. Эти люди могли бы получать индивидуальное лечение в целях профилактики болезни, в том числе усиленный контроль факторов риска.

Одной из целей персонализированной медицины является использование исследований в области геномики и протеомики для более точной диагностики сердечно-сосудистых заболеваний. Анализируя экспрессию генов и уровни белков в здоровых и больных тканях, ученые получили бы возможность выявить молекулярные рисунки, ассоциируемые с различными заболеваниями сердца. Например, у пациентов с тяжелой сердечной недостаточностью уровни белков могут отличаться от показателей здоровых пациентов или пациентов, имеющих сердечную недостаточность средней тяжести. Если бы ученым удалось обнаружить такие маркеры тяжелой формы сердечной недостаточности, диагностика, в настоящее время полагающаяся на поступившие от пациента сведения о симптомах, стала бы более унифицированной и точной. Также это позволило бы врачам успешнее отслеживать развитие болезни и на каждом этапе подбирать наиболее эффективный курс лечения.

Мозговой натрийуретический пептид, обнаруженный в 1988 году, представляет собой пример белка, используемого в качестве маркера для выявления пациентов с сердечной недостаточностью; сейчас исследователи изучают его возможные связи с другими заболеваниями. В сфере онкологических исследований ученые научились отличать здоровые клетки от раковых на основании их ДНК вместо изучения образцов ткани под микроскопом. Им также удалось установить модели генов, указывающие на то, у каких пациентов может быть более благоприятный прогноз и кто с большей вероятностью отреагирует на стандартное лечение.

Ученые разрабатывают новые скрининговые тесты на онкологические заболевания, основанные на различных уровнях белков в крови. Хотя многие из этих методик по-прежнему применяются экспериментально в области онкологических исследований, ученые надеются, что схожие технологии будут разработаны для диагностики и более совершенного лечения сердечно-сосудистых заболеваний.

В сфере медикаментозного лечения сердечно-сосудистых заболеваний персонализированная медицина уже близка к тому, чтобы стать реальностью. Традиционно при выборе оптимального курса лечения для пациента с определенным заболеванием врачи полагались на результаты крупных исследований с участием тысяч людей. Подобные исследования, включая направленные на испытание новых фармпрепаратов, позволяют понять, как население в целом может отреагировать на данную схему лечения, какой должна быть средняя дозировка, какие побочные эффекты наиболее вероятны. Однако они не в состоянии предсказать индивидуальную реакцию конкретного организма на тот или иной препарат. В одном случае лекарство может дать ожидаемый эффект, а в другом случае рекомендуемая дозировка окажется недостаточной. У кого-то могут развиться тревожные побочные эффекты при применении данного препарата, говорящие о том, что этому пациенту необходимо подобрать другое лекарство. В некоторых случаях различные реакции на тот или иной препарат обусловлены генетическими различиями. На данный момент существует возможность провести генетический анализ перед назначением более семидесяти широко применяемых лекарств.

Генетические анализы существуют и для некоторых сердечно-сосудистых препаратов. В 2007 году Управление по контролю качества пищевых продуктов и лекарственных препаратов (США) одобрило генетический анализ для антикоагулянта варфарина, применяемого в профилактике образования тромбов (подробнее о варфарине читайте в главах 5 и 7). По данным Управления, организм примерно одной трети пациентов метаболирует варфарин отлично от ожиданий, его разжижающее действие на кровь повышает риск серьезных внутренних кровотечений. Традиционно дозировка рассчитывалась исходя из веса, возраста пациента и других факторов. Управление одобрило анализ для варфарина на основании того наблюдения, что вариации двух генов, CYP2C9 и VKORC1, повышают чувствительность к варфарину. Таким пациентам необходимо снижать дозировку. В 2010 году в ходе общенационального исследования было установлено, что пациенты, принимающие варфарин после генетического анализа, на 30 % реже нуждаются в госпитализации, чем пациенты, не проходившие генетический анализ. Генетический анализ для антитромбоцитарного препарата клопидогреля был одобрен в 2010 году. По данным Управления, у пациентов с полиморфизмами гена CYP2С19 клопидогрель плохо метаболируется, поэтому дает меньший эффект и повышает риск образования тромбов, приводящих к сердечному приступу и другим ишемическим событиям.

Также были выявлены генетические вариации, влияющие на индивидуальную реакцию на статины и бета-блокаторы. Например, при вариациях гена SLCO1B1 повышается вероятность побочного действия статинов на мышечные ткани, тогда как у людей с однонуклеотидными полиморфизмами в гене APOE наблюдается меньшее снижение уровня ХС ЛНП при приеме статинов по сравнению с другими пациентами. Одна вариация гена ADRB1, распространенная у афроамериканцев и редко встречающаяся у представителей белокожего населения, снижает эффективность бета-блокаторов при наличии систолической сердечной недостаточности. В настоящее время генетические анализы перед назначением статинов и бета-блокаторов не проводятся, может пройти несколько лет, прежде чем генетические анализы для антиагрегантов начнут широко применяться в повседневной клинической практике.

 

Генная терапия

Под генной терапией понимается введение в клетку генетического материала в форме ДНК или РНК для изменения процесса экспрессии какого-то гена в этой клетке. Ген может быть поврежден или отсутствовать, и новый генетический материал призван восстановить нормальные функции клетки. В других случаях генетический материал вводится в здоровую клетку для избирательного усиления или ослабления экспрессии гена. Хотя сама концепция генной терапии зародилась еще в 1970-х годах, в сфере кардиологии данный подход все еще остается экспериментальным.

Генетический материал может быть введен в клетки экстракорпорально, для чего они извлекаются, генетически модифицицируются в лабораторных условиях и возвращаются в организм. Клетки также можно модифицировать внутри организма, вводя генетический материал с помощью систем, называемых векторами. В области кардиологии наиболее эффективными векторами показали себя вирусы. Сами вирусы тоже подвергают генетической модификации, чтобы они не вызывали болезней, и вносят в них новую генетическую информацию. Вектор доставляется в кровь через катетер либо вводится посредством прямой инъекции в сердце или другие ткани. Затем вирусы инфицируют необходимые клетки и корректируют их генетическую информацию, в идеале экспрессия генов меняется.

В настоящее время в фокусе исследований по генной терапии в области кардиологии находится возможность выращивать новые кровеносные сосуды в тканях, поврежденных атеросклерозом. Как уже говорилось в главе 4, атеросклероз может привести к сужению просвета или полной закупорке сосудов и нарушению кровообращения в органах и тканях, вызывающему их необратимое повреждение. Исследователи изучают способность генной терапии стимулировать рост новых кровеносных сосудов и восстанавливать кровоснабжение у пациентов, которым не подходят традиционные методы лечения, в том числе медикаменты, шунтирование или чрескожное вмешательство. Подход заключается во введении генетического материала для усиления экспрессии специализированных белков, вызывающих рост клеток и их превращение в новые кровеносные сосуды. Другие исследователи пробуют с помощью генной терапии предотвратить рестеноз, или повторную закупорку сосудов после их расширения с помощью стентирования или шунтирования (см. главу 5). Ученые также исследуют возможные методы лечения сердечной недостаточности, усиливающие силу сокращений клеток миокарда и предупреждающие его увеличение и изменение формы.

В целом широкому применению генной терапии препятствуют некоторые обстоятельства. Ученые по-прежнему пытаются найти оптимальный способ доставки генетического материала в клетки, чтобы желаемый эффект длился достаточно долго и достигал необходимого уровня. Многие вирусы, используемые в качестве векторов, меняют экспрессию генов только на несколько недель и в некоторых случаях вызывают побочные воспалительные реакции.

Тем не менее генная терапия остается перспективной областью научных исследований в кардиологии, и ученые уверены в том, что достижения в этом направлении приведут к более совершенным методам лечения сердечно-сосудистых заболеваний.

 

Лечение стволовыми клетками

Изучение стволовых клеток – это одна из наиболее интересных областей современной науки. Она позволяет надеяться на то, что однажды врачи смогут восстанавливать или заменять поврежденные клетки, ткани и органы на молекулярном уровне. Конечно, эти исследования всегда вызывают много вопросов и споров, особенно касательно использования эмбриональных стволовых клеток. Однако ученые обнаружили много новых источников стволовых клеток, что позволило урегулировать часть противоречий. С продолжением исследований в области стволовых клеток становится все более вероятным появление инновационных методов лечения таких заболеваний, как ишемическая болезнь сердца, болезнь Альцгеймера и болезнь Паркинсона, инсульт, диабет и рак. Лечение стволовыми клетками еще с 1968 года используется при пересадке костного мозга пациентам с лейкеми ей.

Повышенное внимание медиков к стволовым клеткам объясняется их способностью к самообновлению и дифференциации во множество разных типов клеток. Эмбриональные стволовые клетки плюрипотентны, т. е. способны дифференцироваться более чем в двести типов клеток взрослого организма при наличии соответствующих стимулов и условий. Большинство клеток взрослого организма не являются плюрипотентными, хотя некоторое количество плюрипотентных взрослых клеток можно найти, например, в пуповинной крови. Большинство клеток взрослого организма способно дифференцироваться только в близкие по свойствам клетки. Например, клетка крови может дать начало разным типам клеток крови, но никогда не дифференцируется в клетку сердца или нервную клетку.

Одним из наиболее значительных достижений за последние несколько лет стало успешное перепрограммирование рядовой клетки взрослого организма в плюрипотентную стволовую клетку. Такие индуцированные плюрипотентные клетки создаются с помощью специализированных белков, активирующих экспрессию определенных генов в клетке взрослого организма, чтобы они стали похожими на эмбриональные стволовые клетки. Первые индуцированные плюрипотентные клетки были получены из клеток взрослой особи мыши в 2006 году, а в 2007 году – из клеток человека. Многие типы клеток взрослого организма, в том числе клетки кожи, десен, волос и яичек, могут быть перепрограммированы в плюрипотентные. Возможно, в будущем ученые научатся лечить пациента стволовыми клетками, созданными из его собственных тканей. В настоящее время исследователей больше всего беспокоит способность таких клеток вызывать образование опухолей.

Хотя многие исследования в области стволовых клеток по-прежнему проводятся на животных или в ходе лабораторных экспериментов, ученые надеются в скором времени применить свои открытия в восстановлении или регенерации поврежденного сердца человека. После сердечного приступа во многих случаях некроз поражает участки миокарда, из-за чего может развиться сердечная недостаточность. Сердечная недостаточность, возникающая по другим причинам, также связана с повреждением и омертвением клеток сердца. Во взрослом организме сердечная мышца регенерируется очень медленно, после поражения в результате сердечного приступа или иной болезни замениться здоровыми может лишь ограниченное количество клеток. В настоящее время исследуется стратегия профилактики и лечения сердечной недостаточности путем введения стволовых клеток в поврежденное сердце для стимуляции роста новых сократительных клеток миокарда. Стволовые клетки могут быть доставлены путем инъекции через кровь, или непосредственно в сердце, или через катетер. Чем больше ученые узнают о том, какие типы клеток наиболее эффективны в лечении сердечно-сосудистых заболеваний и как их оптимально доставлять в пораженные участки, тем ближе тот день, когда мы сможем восстанавливать человеческое сердце на клеточном уровне. Мы с вами являемся свидетелями удивительного этапа в развитии науки и медицины и следим за становлением таких технологий и методик лечения, которые раньше даже не могли себе представить.