История математического анализа очень увлекательна, а его постепенному развитию сопутствовали споры, касавшиеся бесконечности, в частности бесконечно малых величин, поэтому математический анализ также называется анализом бесконечно малых.
Анализ бесконечно малых
Почему он называется анализом и какое отношение к нему имеют бесконечно малые? Понятие «анализ» указывает, что в математическом анализе решение задачи рассматривается как рабочая гипотеза, после чего проводится анализ того, каким образом стало возможным прийти к этому решению. Одним из наиболее выдающихся ученых, которые использовали этот метод, был Декарт, а истоки метода восходят ко временам Евклида.
Название «анализ бесконечно малых» объясняется использованием величин, связанных с геометрическими элементами. Эти величины делятся произвольное число раз (бесконечное деление), а затем рассматриваются как основные и неделимые составляющие всего. Как вы уже поняли, анализ бесконечно малых восходит к знаменитому методу исчерпывания, придуманному Евдоксом, и был систематически описан математиками XVII столетия, в частности Робервалем, Барроу, Ньютоном и Лейбницем.
Отметим еще одно важное совпадение. С одной стороны, математика к тому времени превратилась в самостоятельную дисциплину в том смысле, что в ней не использовались модели природы. Скорее наоборот: это природа должна была адаптироваться к математике, что следовало понимать не как гипотезу, а как методологию, позволяющую создать прочную теорию, которая, разумеется, должна была найти практическое применение. Пример: с помощью методов анализа стало возможным определить, что траектория снаряда представляет собой параболу — геометрическую фигуру, четко определенную на языке функций. Наиболее вероятно, что траектория снаряда не является идеальной параболой, но, перефразируя Торричелли, «тем хуже для снаряда».
Другой важный момент — появление в теоретической физике двух новых понятий: тело и материальная точка. Первое ввел Декарт, а второе — Ньютон. Яблоко, которое якобы упало на голову Ньютону, было не спелым фруктом, приятным на вкус, а телом конкретных размеров, которое методами анализа можно свести к материальной точке.
Также следует учитывать, что в то время физика носила ярко выраженный прикладной характер: ее задачи имели исключительно практическую направленность.
Например, известный оптический закон о том, что угол падения луча равен углу его отражения, очень важен при конструировании оптических приборов, однако эти углы отсчитываются от нормали, проведенной к отражающей поверхности в заданной точке. Если эта поверхность является прямой, к ней достаточно провести перпендикуляр в заданной точке, но если речь идет о криволинейной поверхности, как в большинстве оптических инструментов, то возникает интересная геометрическая задача. Как показано на рисунке, нормаль к криволинейной поверхности в точке — это прямая, перпендикулярная касательной к кривой в заданной точке, но алгоритм построения касательной к произвольной кривой в то время был неизвестен.
Касательная «прикасается» к кривой в единственной точке. Перпендикуляр к касательной в этой точке, по определению, является нормалью к кривой.
Еще один пример связан с нахождением максимумов и минимумов. Вернемся к примеру со снарядом. Очевидна необходимость вычисления максимальной дальности полета снаряда (а в некоторых случаях — максимальной высоты) в зависимости от угла наклона орудия.
Следующие четыре нерешенные задачи предопределили зарождение математического анализа, или анализа бесконечно малых:
— построение касательной к кривой в точке;
— расчет максимумов и минимумов функции;
— расчет квадратур, то есть вычисление площади, ограниченной одной или несколькими кривыми;
— спрямление кривых, то есть вычисление длины кривой между двумя ее точками.
Во всех этих задачах присутствуют бесконечно малые величины.
Ньютон и Лейбниц считаются родоначальниками математического анализа, в котором они систематизировали знания, накопленные их предшественниками. Они следовали разными путями, и им обоим пришлось столкнуться с загадками бесконечности, которые они решили каждый по-своему.
* * *
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ЭЙЛЕРА
С помощью интегралов можно рассчитывать не только площади плоских фигур, но также длины кривых, объемы тел, ограниченных произвольными поверхностями, и тел вращения. В общем случае интегралы позволяют найти любое значение, выраженное в виде бесконечной суммы бесконечно малых величин, то есть почти все что угодно. Сфера практического применения интегралов столь широка, что они образуют отдельный раздел прикладной математики. Вне зависимости от того, где выполняется вычисление интегралов, на маленьких калькуляторах или в мощных компьютерных программах, сложно представить инженера, которому не требовалось бы интегральное ис числение. В 1770 году швейцарский математик Леонард Эйлер (1707–1783) создал трехтомный труд по интегральному исчислению. В некотором смысле все современные книги по математическому анализу являются всего лишь измененными и обновленными изданиями этого труда, в котором даже спустя 150 лет после публикации никто не смог найти ни единого недочета. По этой причине «Интегральное исчисление» Эйлера считается важнейшей работой по математическому анализу из когда-либо написанных.
Обложка первого тома «Интегрального исчисления» Эйлера .
Ньютон
Исаак Ньютон (1643–1727), который считается скорее физиком, чем математиком, внес чрезвычайно важный вклад в создание математического анализа. Он разработал оригинальную систему решения задач о квадратурах и о спрямлении кривых. Для этого он использовал бесконечные ряды — выражения, которые определяются уравнением, первый член которого содержит изучаемую функцию, а второй — бесконечную сумму функций, имеющих схожее поведение. Например, первым членом следующего уравнения является логарифмическая функция, вторым — сумма бесконечного числа степенных функций, поведение которых известно:
* * *
ТАИНСТВЕННАЯ НАУКА
«Математические начала натуральной философии» Ньютона всегда считались непростыми для понимания — это неудивительно, если учесть, что Ньютон умышленно усложнил свою работу.
Как-то раз он признался другу, что поступил так, чтобы «избежать атак со стороны шарлатанов от математики»: предыдущие работы Ньютона, посвященные природе света, уже подвергались ожесточенной и не всегда оправданной критике. Некоторые из полученных результатов Ньютон и вовсе записал шифром. Следующая последовательность букв и цифр
6а сс d ае 13eff7i 31 9n4о 4q rr 4s 9t 12vx
отнюдь не сложный ключ или числа из компьютерной программы. Это так называемый логогриф — способ шифрования, который Ньютон использовал для описания своего метода анализа флюксий, чтобы Лейбниц не смог прочитать его записи и приписать их авторство себе. Говорят, что последнему понадобилось бы потратить на расшифровку так много сил, что быстрее было бы самостоятельно прийти к аналогичным результатам.
* * *
Исаак Ньютон на портрете Гэтфрида Кнеллера .
Суть метода Ньютона заключается в том, что с увеличением числа слагаемых второго члена уравнения мы все больше и больше приближаемся к истинному значению функции. Если мы хотим всего лишь произвести вычисления, достаточно знать желаемую величину ошибки, но если необходимо проанализировать логарифмическую функцию и изучить ее поведение, нужно, пусть и неявно, признать существование актуальной бесконечности как суммы ряда. Единственный комментарий Ньютона на эту тему содержится в его работе «Анализ с помощью уравнений с бесконечным числом членов»: «…Действительно, рассуждения в нем не менее достоверны и уравнения не менее точны, хотя мы, люди конечного ума, и не в состоянии ни обозначить, ни воспринять все члены этих уравнений так, чтобы точно узнать из них искомые величины». Здесь мы снова видим прагматичный подход Ньютона: ученый говорит, что наши способности воспринять актуальную бесконечность ограничены, но он признает ее существование как результат рассматриваемых уравнений с бесконечным числом членов.
Во втором издании своей работы «Метод флюксий и бесконечных рядов с приложением его к геометрии кривых», вышедшем в 1736 году (сама работа датирована 1672 годом), Ньютон использует так называемый метод флюксий. Этот метод предполагал интересный переход: Ньютон перестал рассматривать бесконечно малые как нечто статическое и наделил их способностью двигаться. Он рассматривал переменную как непрерывно движущуюся точку (этим же свойством он наделил прямые и плоскости) и назвал флюентами переменные, обладающие этими свойствами, а флюксией — результат такого движения, то есть сравнение двух различных состояний такой точки. Мы не будем подробно описывать метод флюксий Ньютона и лишь повторим, что Ньютон не считал необходимым использовать в своих вычислениях бесконечно малые величины, так как это могло привести к различным противоречиям.
Он рассматривает эти величины «…не как состоящие из небольших частей, но как описывающие непрерывное движение. Линии описываются и, следовательно, создаются не наложением точек, а непрерывным движением точек».
С помощью метода флюксий Ньютону удалось найти касательные к кривым, площади подграфиков, длины кривых, а также максимумы и минимумы функций и точки перегиба для различных кривых. Ему удалось сделать это, избежав проблем, связанных с использованием бесконечно малых величин, однако за это ему пришлось заплатить свою цену. Анализ, построенный на этих предпосылках, имел важные ограничения и открыл путь к другим разделам математики, где властвовали дифференциалы — странные бесконечно малые математические объекты, неразрывно связанные с актуальной бесконечностью.
Метод флюксий изложен во французском издании книги Ньютона , вышедшем в 1740 году.
Лейбниц
Первые математические труды Готфрида Лейбница (1646–1716) были посвящены комбинаторике. В них уже проявилась гениальность ученого, однако они были устаревшими и имели определенные черты, характерные для средневековой науки, которой в немецких университетах той эпохи уделялось большое внимание. В 1672 году Лейбниц отправился в Париж с важной дипломатической миссией. Именно тогда основным родом его занятий стала математика — отчасти это произошло под влиянием Христиана Гюйгенса, который познакомил Лейбница с последними математическими открытиями.
В этот период Лейбниц пишет первые работы, посвященные суммам бесконечных рядов. Одним из наиболее примечательных результатов стал полученный им и названный в его честь ряд, в котором устанавливается неожиданная связь между числом 71 и нечетными числами:
Несомненно, важнейшими работами Лейбница стали его труды по анализу бесконечно малых, положившие начало важнейшему разделу математики — математическому анализу. Неоценимую роль сыграли верно выбранные обозначения. Так, с помощью знаков d и введенных им для обозначения дифференциала и интеграла, стало возможным объединить множество разрозненных и неоднозначных математических понятий. Лейбниц не всегда действовал внимательно и аккуратно, из-за чего многие его результаты были ошибочными, сравнивал себя с тигром, который «позволяет уйти добыче, которую не смог схватить в первый, второй и третий прыжок».
Прыжком Лейбница был переход от дискретного к непрерывному. Комбинаторика, которой он владел в совершенстве, — это дискретный мир, но мир функций и кривых является не дискретным, а непрерывным, и именно при переходе от одного к другому проявился математический гений и смелость Лейбница, так как он смог преобразовать неделимые Кавальери в новую математическую сущность — бесконечно малые, для чего создал особые алгоритмы. Рассмотрим ключевой элемент созданного Лейбницем анализа бесконечно малых, изложенный в упрощенном виде на языке современной математики.
* * *
СПОСОБНОСТИ К ЯЗЫКАМ
Лейбниц был сыном известного юриста и в шесть лет остался сиротой. Учился он самостоятельно и все силы отдал изучению латыни, так как именно на ней было написано большинство книг в библиотеке, оставшейся от отца. В десять лет Лейбниц уже читал классические труды на латыни и греческом, а в 13 — писал гекзаметром на латыни. Подобными выдающимися способностями к языкам отличается большинство известных математиков.
* * *
Нам известно, что прямая определяется двумя точками, но она также может определяться одной точкой и углом наклона. Например, прямые r 1 и r 2 , проходящие через начало координат, определяются углами наклона α и β соответственно.
Мы говорим об угле наклона не только применительно к математическому анализу, но и в повседневной жизни, например когда речь идет об угле наклона на участке автомагистрали.
С помощью транспортира можно узнать конкретную величину угла, например 24°. Другой способ измерить угол состоит в определении его тангенса. В прямоугольном треугольнике АВС тангенсом угла называется отношение длины противолежащего катета к прилежащему.
* * *
ОСНОВЫ МЕЖДУНАРОДНОГО ПРАВА
В 15 лет Лейбниц начал изучать право в Лейпцигском университете. Несмотря на то что большую часть времени он уделял изучению философии, через пять лет Лейбниц получил право на степень доктора юриспруденции, которую ему отказались присвоить ввиду юного возраста студента. После этого он перевелся в Альдорфский университет в Нюрнберге, где защитил позднее ставшую знаменитой диссертацию об историческом характере законодательства, в которой заложил основы международного права.
* * *
Будем обозначать тангенс буквами tg: tg(α) = АВ/СВ.
Теперь предположим, что дана непрерывная кривая (то есть ее можно нарисовать, не отрывая карандаша от бумаги) у = f(х) и мы хотим найти касательную к этой кривой в ее произвольной точке, которую обозначим Р. Как мы уже говорили, прямая определяется точкой и углом наклона. Точка Р уже известна, и единственное, что осталось найти, — угол наклона искомой прямой. Лейбниц в качестве основы всех своих вычислений использовал построение треугольника, который он называл характеристическим треугольником. По сути, этот треугольник стал краеугольным элементом анализа бесконечно малых.
Обозначим координаты точки Р через х и у. Теперь выберем точку Q кривой и обозначим ее координаты х + Δх, у + Δу. Нетрудно показать, что угол наклона прямой, проходящей через точки Р и Q, определяется как tg(α) = Δу/Δх. Если теперь мы приблизим точку Q к точке Р, ничего особенно не изменится — просто уменьшатся Δх и Δу. Это приближение можно осуществлять непрерывно, так что упомянутые нами изменения х и у будут сколь угодно малыми. В определенный момент они станут достаточно малыми, чтобы ими можно было пренебречь, то есть они не будут влиять на результат. Эти бесконечно малые величины Лейбниц назвал дифференциалами, dx и dy соответственно.
При непрерывном приближении точки Q к точке Р прямая, соединяющая эти точки, приближается к касательной кривой в точке Р так, что искомый угол наклона α можно будет получить из формулы
Когда расстояние между Р и Q станет бесконечно малым, будет выполняться условие
* * *
ПИСЬМА ПРИНЦЕССАМ
Во многих областях Лейбниц известен прежде всего как философ, а не как математик. В возрасте 20 лет он уже опубликовал свои знаменитые «Рассуждения о комбинаторном искусстве».
Несмотря на то что многие из его фундаментальных результатов изложены в таких работах, как «Новые опыты о человеческом разуме» (1703) или «Монадология» (1714), важная часть философских размышлений Лейбница содержится в переписке с принцессами Софией, Софией Шарлоттой и Каролиной — с ними он был связан не только интеллектуальной перепиской, но и теплыми дружескими узами.
Принцессы действительно достаточно хорошо разбирались в философии и в некотором роде были единственными, кто мог способствовать созданию научных сообществ вне университетов для свободного общения интеллектуалов, не ограниченного рамками религиозных догм.
* * *
Этот прямоугольный треугольник, катетами которого являются dx и dy, является тем характеристическим треугольником, о котором мы говорили выше. По сути, его катеты бесконечно малой длины совпадают со сторонами многоугольника с бесконечным числом сторон, в виде которого можно представить исходную кривую. Основная разница между этими величинами заключается в том, что Лейбниц работает с ними как с числами (с некоторыми ограничениями) и использует их для получения конкретных результатов. С их помощью ему даже удалось решить задачу о квадратуре, то есть вычислить площадь, ограниченную кривой. Говоря проще, если площадь некоторой фигуры состоит из дифференциалов, достаточно сложить их, чтобы узнать искомую площадь (в этом смысле дифференцирование и интегрирование являются обратными операциями).
Потрет Гэтфрида Лейбница в возрасте приблизительно пятидесяти четырех лет.
* * *
ЛЕЙБНИЦ И ОРДЕН РОЗЕНКРЕЙЦЕРОВ
В возрасте 20 лет Лейбниц вступил в ряды таинственного ордена розенкрейцеров, членами которого также были Ньютон и Декарт. Не следует удивляться — в то время ученым сложно было получать необходимую для исследований информацию из официальных источников, и членство в подобных обществах было одним из факторов их научного прогресса.
Условием вступления в орден было проведение алхимических опытов, и Лейбниц, который в итоге занял пост секретаря братства, занялся выполнением экспериментов, описанных на латыни в объемном труде алхимика Василия Валентина. Через братство он познакомился с первооткрывателем фосфора Хеннигом Брандом и помог ему выделить фосфор из мочи целого полка солдат для последующего коммерческого использования. Лейбниц также активно сотрудничал с Фридрихом Гофманом, возглавлявшим кафедру медицины в Университете Галле. Одним из результатов их совместной работы стали знаменитые гофманские капли, которые до сих пор можно встретить в некоторых немецких аптеках.
Храм братства Розы и Креста, рисунок из книги Теофилуса Швейгхардта Константиенса , 1618 год.
* * *
Бесконечно малые величины не были с восторгом приняты математиками той эпохи. Характеристический треугольник использовался в рассуждениях, но так и не получил строгого определения. Он лишь представлял нечто происходящее в загадочном и непонятном мире бесконечно малых, и его использование предполагало принятие актуальной бесконечности, как бы ученые ни стремились этого избежать.
Кроме того, следовало каким-то образом уйти от архимедовского принципа сравнения величин, и Паскаль, Лопиталь, Бернулли и сам Лейбниц в итоге стали рассматривать бесконечно малые как особые величины, которые в определенных условиях равняются нулю. Лейбниц неспроста дал своей работе название «О скрытой геометрии и анализе неделимых и бесконечных величин».
Эпсилон
Когда говорят об эпсилонах или о языке эпсилон-дельта, речь идет вовсе не о секретных кодах Министерства обороны, а о сложном математическом аппарате, который напрямую связан с понятием предела. Первое определение понятию предела сформулировал Бернард Больцано (1781–1848), не получивший, к сожалению, при жизни должного признания. Первым, кто использовал это понятие на практике, был Огюстен Луи Коши (1789–1857), однако окончательное строгое определение предела дал Карл Вейерштрасс. Определение предела на языке эпсилон-дельта является чрезвычайно точным в той части, которая касается делимости на бесконечное множество частей. Хотя это определение очень сложно понять тому, кто не владеет некоторыми математическими знаниями, оно тем не менее долгое время использовалось в учебниках для средней школы. Мы не хотим сказать, что старшеклассники недостаточно умны, чтобы понять его, но не стоит ожидать, что все поймут его с одинаковой легкостью. Во многих учебниках оно приводится мелким шрифтом, и преподаватели обходят его молчанием.
Карл Вейерштрасс на литографии 1895 года. Этот немецкий математик был первым, кто использовал на практике язык эпсилон-дельта.
* * *
СПОРЫ ГЕНИЕВ
Переписка, несомненно, является древнейшей формой общения между учеными. С ее помощью формулируется и решается множество задач. По сравнению с другими формами общения письма обладают преимуществом — конфиденциальностью: они адресуются конкретному человеку или группе людей. В виде переписки проходили многие научные дискуссии.
Одной из самых известных стало жаркое противостояние между Ньютоном и Лейбницем об авторстве математического анализа. Абсолютно независимо друг от друга они получили аналогичные результаты, однако Ньютон опубликовал свои работы первым, что дало ему основания обвинить Лейбница в плагиате. Это привело к ожесточенному и абсурдному спору, не имевшему аналогов в истории науки.
* * *
Попробуем сделать понятие предела более ясным, несколько упростив его.
По сути оно имеет много общего с понятием накопления. Представим, что перед входом в помещение образовалась очередь. Можно заметить, что люди постепенно становятся ближе ко входу и друг к другу. Это совершенно естественно: изначально, когда в очереди немного людей, они стараются сохранять комфортное расстояние между собой, но по мере того как число людей растет, расстояние между ними уменьшается. Интересно, что мы говорим о двух разных расстояниях, которые, однако, тесно связаны между собой: о расстоянии между началом очереди и входом и о расстоянии между людьми в очереди, которое по мере того как мы приближаемся к концу, увеличивается. Это логично, так как те, кто становится в очередь, стараются сохранять комфортное расстояние между собой, но по мере того как очередь движется вперед, люди чувствуют давление тех, кто находится позади. Можно сказать, что люди скапливаются у входа.
Можно определить степень скопления людей с помощью параметра, который будет описывать, например, изменение расстояния между людьми в очереди по мере приближения к ее началу. Как правило, этот параметр будет постепенно уменьшаться.
В очереди, например у входа в кинотеатр, люди собираются у дверей, где расстояние между ними будет минимальным. По мере отдаления от входа расстояние между людьми увеличивается.
Степень скопления людей можно определить, выбрав в качестве единицы измерения конкретное расстояние, например 50 см. Если в 50 см от входа находятся люди, это будет соответствовать определенной степени скопления. В зависимости от величины этой единицы измерения число людей будет изменяться. Аналогично можно измерить степень скопления людей, оценив расстояние между ними.
Здесь возникает первый интересный вопрос: когда мы видим скопление людей, логично предположить, что они собрались по какой-то причине, то есть это скопление возникает вокруг определенного места, где происходит что-то важное. Когда мы видим на дороге скопление муравьев, то сразу же понимаем, что где-то поблизости находится еда или вход в муравейник. Еще один пример — скопление машин на автомагистрали, которое служит признаком того, что поблизости находится пункт оплаты проезда или произошла авария. Эти примеры помогут нам понять одно из самых интересных открытий в истории математики. Оно касается существования определенных чисел, которые в течение веков скрывались в мире бесконечно малых.
В предыдущих примерах речь шла о дискретных множествах. Рассмотрим непрерывные величины, так как они допускают возможность бесконечного деления.
Оставим скопления людей и автомашин и рассмотрим возможные множества точек на прямой. Допустим, что дана последовательность точек а 1 , a 2 , а 3 , а n …, которые обладают одним свойством: соседние члены последовательности располагаются все ближе и ближе друг к другу. Очевидно, что они скапливаются вокруг некоторой точки — обозначим ее Р. Допустим, что выбранной нами основной мерой длины является отрезок длиной d. Если мы поместим один конец этого отрезка в точку Р, то увидим, что некоторые точки последовательности окажутся внутри этого отрезка длиной d.
Более того, мы сможем найти точку а n , после которой все точки будут располагаться внутри отрезка d. Если мы уменьшим длину отрезка и сделаем ее равной d' < d, то все точки, начиная с более удаленной, а m , будут располагаться внутри этого нового отрезка. Именно такое значение имеет эпсилон в математическом анализе.
Мы можем гарантировать, что для любой величины d всегда найдется такое n, начиная с которого все элементы последовательности будут находиться внутри отрезка d. В этом случае говорят, что последовательность сходится в точке Р. Это означает следующее: во-первых, эта последовательность бесконечна, во-вторых, расстояние между точкой Р и произвольным членом последовательности может быть сколь угодно малым.
Когда мы работаем с дискретными множествами, все изложенное выше практически неприменимо. Рассмотрим последовательность чисел 100, 50, 25, 12, 6, 3, 1 (можно представить эту последовательность как очередь из семи чисел у входа, которым, например, является ноль). Очевидно, что разница между произвольным членом последовательности и нулем постепенно уменьшается, равно как и разница между двумя соседними членами последовательности. Например, между 100 и 50 находится 49 чисел, между 6 и 3 — всего два. Тем не менее нельзя сказать, что члены последовательности скапливаются в окрестности точки 0. Очевидно, что если мы возьмем отрезок длиной 1/2 и поместим один из его концов в точку 0, на этом отрезке не будет находиться ни один член последовательности. А если мы рассмотрим последовательность
то вблизи нуля всегда будет находиться какой-либо ее член, сколь бы малым ни было расстояние до нуля.
На языке математики эти расстояния называются окрестностями. Окрестность подобна скобкам, в которые заключена точка Р. Основная идея заключается в том, что сколь малыми ни были бы эти скобки (то есть радиус окрестности), в них всегда будут находиться элементы последовательности. В языке эпсилон-дельта основную роль играет соотношение между двумя числами: шириной скобок (радиусом окрестности, который обычно обозначают ε — эпсилон) и числом n, определяющим элемент а n , начиная с которого все элементы последовательности будут располагаться внутри заданной окрестности. На языке математики это звучит так: «Для любого эпсилон существует n, такое что…»
Именно так определяется понятие бесконечного деления, очень близкое к понятию предела. Когда в одном из парадоксов Зенона интервал делится пополам бесконечное число раз, мы формируем последовательность, подобную описанной в предыдущем примере. Теперь мы можем воспользоваться строгим определением перехода к пределу и подтвердить, что последним членом последовательности будет 0. Это не помогает разрешить парадокс, так как ситуация, по сути, не изменилась: точки образуют бесконечную последовательность и скапливаются вблизи нуля, и мы считаем, что существует последняя точка последовательности, 0, но в действительности 0 не является членом этой последовательности. Это утверждение не является оправданным, но четко определено на языке математики. Как говорил Бертран Рассел, «математика может быть определена как доктрина, в которой мы никогда не знаем ни о чем говорим, ни того, верно ли то, что мы говорим».
В действительности Коши в своем определении предела использовал не точки, которые скапливаются вокруг некоторой данной точки, а точки, которые скапливаются рядом друг с другом. Иными словами, скопление точек, которое рассматривал Коши, подобно скоплениям автомобилей на разных участках дороги, вызванным множеством аварий в разных местах. Ситуация значительно осложняется тем, что если мы рассматриваем исключительно рациональные числа, то прямая, на которой они располагаются, не будет заполнена — на ней останутся промежутки. Например: дана последовательность точек (теперь мы связываем точки на прямой с рациональными числами), которые скапливаются все плотнее и плотнее. Эту ситуацию можно четко определить на языке математики, что сделал Коши. Однако проблема заключается в том, что эти точки могут скапливаться вокруг пустого места на прямой, точнее вокруг точки, которой не соответствует никакое рациональное число.
Так происходит, например, в случае с последовательностью
о которой мы говорили в главе 2 и которая сходится к числу √2, а оно не является рациональным. Разумеется, мы можем построить прямоугольный треугольник, гипотенуза которого будет равна √2, но так мы определим это число геометрически, а во времена Коши математики пытались дать определение числам чисто арифметическими или аналитическими методами. Рациональные числа, по сути, вообще не были определены как числа, пока Дедекинд и, позднее, Кантор не сформулировали для них точной дефиниции. Последний сделал не только это, но и устранил промежутки на числовой прямой, которых в действительности существует бесконечное множество, так как иррациональных чисел, равно как и рациональных, бесконечно много.
Однако Кантор заслуживает отдельной главы, ведь он не только заполнил числовую прямую, устранив эти промежутки, но и первый встретился с бесконечностью лицом к лицу.