В последние годы жизни фон Нейман по-новому объединил прикладную математику, применявшуюся главным образом в военных целях, с чистой. В результате ученый занялся исследованием логической структуры репродукции живых существ и работой над клеточными автоматами, а также математикой, на которой основана работа нашего мозга. Ученый рассматривал мозг как нейронную сеть, которую можно сконструировать с помощью компьютера.

В конце Второй мировой войны многие ученые захотели отойти от военных задач и вернуться к привычной академической деятельности. В этих обстоятельствах основной костяк исследователей, работавших на Министерство обороны США, сокращался с каждым днем. Однако из-за огромного прогресса в создании ядерного оружия в мире сохранялось военное напряжение, для которого появился эвфемизм «холодная война».

К сугубо профессиональным мотивам ученых добавлялись и этические. Научное сообщество разделилось на две группы. С одной стороны были те, кто не хотел принимать участие в наращивании ядерного вооружения, с другой — те, кто считал это единственной гарантией достижения мира во всем мире. Несомненно, фон Нейман относился к последним. Ситуация осложнялась еще и тем, что исследования в области оружия массового поражения не только не прекратились, но и двигались все дальше: появилась термоядерная бомба — самый большой разрушительный механизм, когда-либо созданный человеком.

ВОДОРОДНАЯ БОМБА

Существует мнение, что термоядерное оружие, или водородная бомба, — самый значительный научный проект в истории. Вычислительные задачи, которые пришлось решать в ходе его разработки, были гораздо сложнее тех, с которыми столкнулись участники Манхэттенского проекта. Чтобы справиться с ними, фон Нейман создал новые программы для вычислительной техники, которая выпускалась на основе архитектуры, спроектированной им самим. Он даже задался вопросом, превышает ли объем предстоящих вычислений те, что выполнены за всю историю человечества. Однако ученый быстро пришел к выводу, что это невозможно, учитывая вычисления, которые делают дети в школе.

Принцип действия водородной бомбы основывается на энергии, высвобождаемой в результате синтеза двух ядер - дейтерия и трития (двух изотопов водорода), которые образуют ядро гелия и порождают цепную реакцию нейтронов с последующим выбросом энергии. Для этого синтеза нужно огромное количество энергии — столько, сколько получается в результате ядерного взрыва. Таким образом, к его получению ведет процесс деления — синтеза — деления. Вначале провоцируется ядерный взрыв, порождающий энергию, достаточную для того, чтобы расплавить ядра и, в свою очередь, высвободить еще больше энергии, которая пойдет на расщепление новых ядер,— энергия, получившаяся при этом, и будет результатом взрыва. Из этого краткого описания уже понятно, что используемые вычисления были гораздо сложнее тех, которые применялись при конструировании первой бомбы. Однако вся вычислительная часть была готова за шесть месяцев — рекордно короткий срок для того времени.

Первая водородная бомба была взорвана 1 ноября 1952 года на атолле Эниветок Маршалловых островов. Температура в центре взрыва превышала 15 миллионов градусов. Взрыв первой водородной бомбы встретил критику и пробудил немало страхов, однако фон Нейман защищал проект при помощи по меньшей мере любопытного рассуждения. Он понимал, что радиоактивное загрязнение представляет собой немалую угрозу для окружающей среды, и тем не менее считал, что любое действие имеет свою цену. Ученый приводил в пример количество человеческих жертв, связанных с появлением автомобилей.

Работа фон Неймана над ядерной энергией, к тому же в самом разрушительном ее виде, привела к двум серьезным последствиям. Одно из них было психологическим, второе — физическим; оба проявились к концу жизни ученого. Первое воплотилось в растущем пессимизме, от которого фон Нейману так и не удалось отделаться. Ученый считал, что технологии, созданные человеком, намного превысили его способности контролировать их. Он был твердо убежден, что ядерный холокост может быть отложен на некоторое время, но в конце концов неизбежен. Больше всего его расстраивала неспособность правительств придерживаться необходимой политики, чтобы избежать трагического конца. Вторым последствием был рак кости, который и стал причиной смерти ученого. Скорее всего, заболевание стало результатом радиоактивного облучения на протяжении длительного времени: фон Нейман вел себя слишком легкомысленно и не предпринимал необходимых мер безопасности. 

МАТЕМАТИКА ВОЙНЫ

Сегодня этот набор символов ничего или почти ничего не сказал бы несведущему лицу:

db(t)/dt = - kr ∙ r(t) b(0) = B

dr(t)/dt = - kb ∙ b(t) r(0) = Rw.

Математик же увидит здесь дифференциальные уравнения с начальными условиями. Но оба они вряд ли заподозрят, что перед ними — одна из многочисленных моделей сражений НАТО. Здесь указаны боевое подразделение, количество операций, проведенных за время t, и тому подобные параметры. Несомненно, уровень сложности современных военных стратегий делает математику необходимым инструментом. С другой стороны, это неудивительно, учитывая, что высокий технологический уровень современного оружия требует использования сложнейших устройств, таких как большие компьютеры, сложные сети коммуникации и несколько контролирующих спутников. Сегодня уже не обязательно владеть азами геометрии или дифференциального исчисления, как требовалось раньше, но необходимо быть экспертами в области криптографии, теории вероятностей и теории игр, и на этом список не заканчивается. Математика приобретала все большее значение в военном образовании, особенно в инженерном деле. Во время Первой мировой войны, с появлением гидролокаторов и новых аэродинамических теорий, большинство технологий ждало появления математической базы. Это появление было таким ошеломляющим, что французский математик Эмиль Пикар (1856-1941), профессор по дифференциальному исчислению в Сорбонне, начал тревожиться, опасаясь, что в будущем студенты математики будут заниматься только прикладной математикой. Время показало, что его опасения были необоснованны.

Военные маневры НАТО. Технический прогресс значительно изменил облик военных кораблей.

ХОЛОДНАЯ ВОЙНА

После того как Советский Союз 22 августа 1949 года взорвал свою первую атомную бомбу, ядерный конфликт между США и СССР был неизбежен. Ядерное вооружение позволяло главным мировым державам стереть с лица Земли любого противника, просто нажав на кнопку. По крайней мере все были в этом уверены. Вполне вероятно, что размеры ядерных арсеналов того времени были преувеличены, но совершенно точно: молниеносная ядерная атака могла полностью разрушить большие города, в которых находились органы власти мировых держав.

Фон Нейман был не единственным воинственно настроенным ученым. Британский математик Бертран Рассел, в то время пользовавшийся большой популярностью, тоже выступал за войну предупредительного характера. Но его высказывания были не такими острыми, как слова фон Неймана, поскольку Рассел предоставлял противнику альтернативу: сдайся, покорись США — и ты избежишь ядерного холокоста. Венгерский ученый же утверждал, что удар должен быть неожиданным: не нужно никого предупреждать.

Его идея предупредительной атаки состояла в том, чтобы как можно скорее уничтожить военную мощь СССР, не дожидаясь провокаций и, по возможности, пока граждане Союза будут спать. При оценке такого подхода фон Неймана надо учитывать два аспекта: эмоциональный и рациональный. Первый относится к началу его жизни, когда семье ученого пришлось бежать из Будапешта от красного террора Белы Куна, и в глазах фон Неймана коммунизм получил черную метку. С другой стороны, ученый был рациональным математиком с холодным умом, он думал в терминах стратегий и решений, которые находили выражение в числах, уравнениях, моделях и аксиомах. В таком сугубо рациональном смысле сценарий войны был сценарием игры, в которую он часами играл еще ребенком со своим братом Михалем, сидя перед доской с кригшпилем.

Фон Нейман был экспертом в теории игр, что, как мы уже видели, подразумевает способности принимать решения и определять стратегии. Эти два качества особенно ценятся на войне. Неудивительно, что список организаций (так или иначе относящихся к военной элите), которые консультировал фон Нейман, был очень длинным. Его часто критиковали за слишком большую приверженность военным интересам и за то, что математик его уровня тратит большую часть своего времени на решение вопросов, на первый взгляд очень далеких от чистой науки. В этом была большая доля правды, но необходимо также учесть, что именно в этих кругах, как в случае с корпорацией РЭНД, ученый мог получить все необходимые инструменты, прежде всего финансовые, чтобы свободно воплощать научные идеи, реализация которых в противном случае могла натолкнуться на серьезные препятствия. В сложившейся ситуации военные круги, движимые прагматическими мотивами, были более гибкими. Гораздо большей критики заслуживали академические организации, которые всегда с большой сдержанностью относились к новым проектам. 

ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР РЭНД

После окончания Второй мировой войны большинство ученых, работавших на службы безопасности США, вернулись на свои прежние рабочие места в университетах или поступили на работу в частные компании. В армии произошла самая настоящая утечка мозгов. Тогда в 1946 году военно-воздушными силами американской армии была основана корпорация РЭНД (RAND, Research And Development). В 1947 году она стала независимой от армии. Организация была создана как think tank — хранилище идей. Ее сотрудники должны были «думать о немыслимом», в ней развивались исследовательские проекты, спектр которых варьировался от межконтинентальных ракет до исландской фонетики. Фон Нейман был принят на работу в РЭНД в декабре 1948 года со специальным контрактом на 200 долларов в месяц, который не обязывал его даже присутствовать на месте. Его просто попросили, чтобы то время, которое он тратил на бритье каждое утро, он посвящал просмотру какого-либо проекта, над которым работал центр, и сообщал свое мнение о нем.

Главное здание центра РЭНД на пляже Санта-Моники, 1958 год.

ДИЛЕММА ЗАКЛЮЧЕННОГО

В период работы в РЭНД фон Нейман заинтересовался математической подоплекой на первый взгляд очень простой задачи — дилеммы заключенного. Однако она таила много сложностей и к тому же перекликалась со сценарием сдерживания ядерной гонки, над которым в то время велась интенсивная работа.

Когда Мерил Флад и Мелвин Дрешер, исследователи центра РЭНД, придумали эту простую игру, которую Альберт Вильям Такер, еще один сотрудник этой организации, назвал дилеммой заключенного, они и представить себе не могли, что создали одну из главных задач теории игр.

Дилемма заключенного состоит в следующем. Два члена преступной группировки попали в тюрьму. У полиции есть основания подозревать, что они совершили преступление, за которое следует наказание в виде шести лет заключения, но у нее недостаточно доказательств. Без главной улики их могут осудить всего на год тюрьмы за меньшее преступление. Полиция предлагает им такой уговор: если один даст показания против другого, то его освободят, а второго приговорят к десяти годам. Если они оба обвинят друг друга, им обоим дадут по четыре года тюрьмы. Бандитов держат в раздельных камерах, чтобы ни один из них не знал, какое решение принял второй. Если мы назовем заключенных A и В, то суть ситуации можно отразить в следующей платежной матрице.

  В не обвиняет А B обвиняет А
А не обвиняет В 1, 1 10, 0
А обвиняет В 0, 10 4, 4

Поскольку они не могут согласовать свои стратегии, принятие решений становится непростой задачей. Сначала кажется, что самым выигрышным поведением будет самое эгоистичное, которое учитывает интересы конкретного заключенного. Тогда в случае осуждения ему придется провести в тюрьме самое большое четыре года по сравнению с максимальным наказанием в десять лет, а если повезет и второй преступник воздержится от обвинения, то можно вообще избежать срока.

Такой ход мысли кажется довольно разумным, но надо иметь в виду, что второй заключенный рассуждает точно так же. Поэтому вполне вероятно, что в конце концов обоим дадут по четыре года. Эта стратегия может считаться доминантной. Тем не менее ясно, что это не самое лучшее решение, ведь если они оба откажутся давать показания друг против друга, то срок составит всего один год. Таким образом, лучшей стратегией будет кооперация, но это значит, что мы должны быть уверены в позиции нашего партнера, а гарантий у нас нет.

Существует целая область математики, изучающая подобные ситуации, которые считаются стратегическими играми. Игра начинается с числовой таблицы, иногда очень сложной, а стратегиями являются наилучшие из возможных ходов игроков. Если использовать холодный интеллект, теорию вероятностей, так называемое математическое ожидание и алгебру, то мы получим рациональные выводы, согласно которым для каждого игрока лучше всего не следовать эгоистическим побуждениям. То, что один игрок считает лучшим для себя вариантом, может таковым и не быть, если учитывать возможные действия остальных игроков. Очень часто идеальным решением, или оптимальной стратегией, будет кооперация. Так все получают максимальный возможный выигрыш с наименьшими потерями. Опытные данные показывают, что в дилемме заключенного игроки предпочитают обвинять, нежели доверять, и с точки зрения математики ошибаются.

Если вопрос о дилемме заключенного возникает в неформальной обстановке, например за обедом между друзьями, которые хотят немного поразмышлять за чашкой кофе, мы можем быть уверены в двух вещах: во-первых, размышлять они будут долго, а во-вторых, не придут ни к какому заключению. Дело в том, что у дилеммы заключенного нет удовлетворительного решения, так как эта ситуация больше похожа на парадокс, чем на логическую загадку. Два возможных варианта, которые кажутся правильными (оба кооперируют или оба обвиняют), очень трудно объяснить с рациональной точки зрения.

Мы знаем, что в ситуациях такого типа на принятие решения могут влиять самые разные факторы, например мораль или эмоции. Можно положиться на интуицию, довериться предсказаниям гадалки или просто кинуть кости и уповать на волю случая. Но в любом случае останется открытым вопрос: существует ли метод, позволяющий принять это решение рациональным способом? Можно ли придать этой задаче математический характер? Желание математизировать реальность, присущее фон Нейману, заставило его заинтересоваться дилеммой заключенного.

Интересно и даже в какой-то степени неизбежно отставить в сторону при рассмотрении этой задачи факторы морального толка («предавать товарища нехорошо» или «за такой выбор меня будет мучить совесть»), так как они еще больше запутывают и не помогают принять решение. Нечто похожее происходит с кооперативными стратегиями. Кооперация предпочтительней не из-за этического аспекта, который не относится к сфере математики: она просто является наилучшей стратегией для получения максимального выигрыша с минимальным риском в конкретной игре, в которой есть конфликт интересов.

Чтобы избежать такой путаницы, лучше всего представить дилемму как игру в казино, в которой можно выиграть или проиграть какое-то количество денег, а не как трагический рассказ, в котором идет речь о жизни людей. Такой метод предлагает Вильям Паундстоун в своей книге Prisoner's dilemma {«Дилемма заключенного», 1992).

Речь идет об игре с двумя участниками, которая проходит всего один раз. Чтобы повторить ее, придется поменять обоих игроков. Единственное условие, которое стоит перед участниками, — одержать победу, как и в любой другой игре. Это кажется очевидным, но на самом деле нуждается в уточнении. Если игрок в покер хочет обмануть соперника с помощью блефа, нет смысла говорить, что это противоречит моральным принципам. Это глупо, ведь участники должны придерживаться правил без обмана и, главное, играть, чтобы выиграть. Такой подход особенно важен, когда теория игр выходит за рамки простого времяпрепровождения и применяется в военном сценарии.

Вернемся к дилемме в версии с казино: в ней участники играют за столом, под которым размещен электронный аппарат, невидимый противнику. Каждый игрок должен принять решение, сотрудничает он с соперником или нет. Крупье объявляет, в какой момент игроки могут нажимать на соответствующие кнопки. После того как установлен размер заклада, платежная матрица может иметь следующий вид.

КООПЕРАТИВНЫЕ ИГРЫ

В кооперативных играх участники преследуют общую цель, например выиграть выборы, улучшить управление компанией или повысить ее прибыль. Для достижения этой цели они объединяются в корпорации. Создается ситуация, обратная так называемым некооперативным, или антагонистическим, играм, в которых решающее значение имеет индивидуальная стратегия. Яркий пример обоих понятий можно найти в военных играх. Во время холодной войны существовало нестабильное равновесие между двумя мощными мировыми державами — СССР и США. Они вели антагонистическую игру с односторонними стратегиями. Было понятно, что такая некооперативная игра может иметь фатальные последствия для участников, и, таким образом, были заключены договоренности об остановке гонки ядерных вооружений.

Пейнтбол — кооперативная игра, в которой симулируются военные действия.

Объединение ради победы

Примером кооперативных игр могут быть ролевые игры. Они похожи на театральную постановку, в которой участники играют роли вымышленных персонажей, следуя указаниям рассказчика, придумывающего сценарий, но игроки вольны решать, что им делать в установленных рамках. Таким же образом, если играть в домино каждый за себя, это будет некооперативная игра, если играть парами — кооперативная.

В сотрудничает В не сотрудничает
А сотрудничает (2, 2) (0, 3)
А не сотрудничает (3, 0) (1, 1)

Получается, что при кооперации каждый выигрывает 2 евро, если ни один не сотрудничает — по одному, если один сотрудничает, а второй нет, то первый не получает ничего, а второй — 3 евро. В последнем случае игрок, что называется, остается в дураках, и большая часть участников пытается избежать этого всеми силами.

Эта платежная матрица может иметь несколько вариантов, например проигрыши в ней могут обозначаться отрицательными числами. Это приблизило бы нас к дилемме заключенного в ее классической версии, но она может использоваться как модель для изучения дилеммы, если удовлетворяет следующим требованиям: один из результатов должен представлять собой приз (то есть когда оба игрока сотрудничают, оба получают 2 евро), другой — наказание (когда оба не сотрудничают), а третий (не сотрудничает только один) — предусматривать приз для одного из них с выигрышем больше, чем при обоюдной кооперации.

ТЕОРИЯ АБСТРАКТНЫХ АВТОМАТОВ

Было бы ошибкой полагать, что после войны вся научная деятельность фон Неймана была сконцентрирована исключительно на военных проектах. Из его биографии ясно видно, что его ум никогда не был занят чем-то одним.

Одной из основных задач, над которыми фон Нейман работал в этот период своей жизни, был универсальный самовоспроизводящийся клеточный автомат. Эта задача затрагивала вопрос репродукции — великой загадки жизни. Ученый хотел доказать, что это явление подчиняется не таинственным законам, а более или менее простым математическим правилам — настоящему языку природы.

Универсальный автомат фон Неймана — это машина, состоящая из модуля, который при помощи четких инструкций и имеющихся материалов может смоделировать все что угодно, а также имеет необходимые инструкции для воспроизведения себя самого. Фон Нейману пришлось добавить одно условие, чтобы избежать так называемой бесконечной регрессии: где- то в машине должны содержаться инструкции, описывающие ее саму. Таким образом, эти инструкции должны были содержать другие инструкции, которые их описывают, и так далее. Но в любом случае машина не может иметь такую бесконечную регрессию. Чтобы решить эту проблему, фон Нейман добавил третий элемент — репродуктор инструкций. Таким образом, полная версия устройства состояла из конструктора, списка программ-инструкций и репродуктора. В первой фазе список программ-инструкций подвергался интерпретации, а во второй — просто копировался.

Для создания самовоспроизводящегося устройства в компьютере необходимо было сделать автомат, который не уступал бы машине Тьюринга. Теоретически для этого можно использовать логические выражения NOT-AND-OR (нет-и-или). Например, можно сделать выражение NOT с так называемым планерным ружьем Госпера, но эта схема слишком сложна, чтобы описывать ее здесь. Фон Нейман доказал, что при таких условиях клеточный автомат с 200 тысячами состояний смог бы самовоспроизводиться, однако его описание превышает наши вычислительные способности.

Если однажды клеточный автомат фон Неймана будет создан, это значит, что где-то появится робот, окруженный материалами, который примется за работу и по истечении определенного времени создаст свою точную копию. Потом их станет две, потом четыре и так далее в геометрической прогрессии. Однако фон Нейман не мог предвидеть того (и сегодня никто не может этого сделать), как эти роботы будут вести себя по отношению к людям. Это важный вопрос, ведь за короткое время количество роботов стало бы огромным, и их становилось бы все больше.

В 1948 году фон Нейман спроектировал универсальный конструктор. Эта машина, следуя заданным инструкциям, могла собрать другую машину из материалов, находящихся рядом. Нечто подобное мы можем наблюдать на любой роботизированной фабрике. Но ученый хотел пойти еще дальше и снабдить машину инструкциями и материалами, необходимыми для создания точной копии самой себя; другими словами, он хотел создать клеточный автомат. Природа, в которой мы живем, изобилует клеточными автоматами, ДНК — один из них. Любопытно, что фон Нейман — один из самых выдающихся теоретиков XX века — хотел преодолеть теорию с помощью своей самовоспроизводящейся машины, которую назвал «Кинематон».

Пока фон Нейман сражался с многочисленными техническими трудностями, возникшими при создании «Кинематона», его друг, американский математик польского происхождения Станислав Улам, дал ему хороший совет. Если фон Нейман хотел досконально изучить законы, на которых основывался этот процесс, ему надо было отложить в сторону ручную сборку и заняться виртуальной моделью. Тогда ученый изменил свою тактику и создал простую бесконечную матрицу, в которой можно было представить каждую клетку, как если бы перед нами лежал разграфленный листок, и каждая графа была бы занята. Все клетки должны иметь некое состояние, а их число должно быть конечным. В оригинальной модели фон Неймана для каждой клетки существовало 29 состояний. Идея заключалась в том, что, исходя из заданных правил, каждое состояние каким-то образом зависело от состояния соседних клеток и от своего предыдущего. Таким образом, система напоминала живые системы, по крайней мере в том смысле, что клетки могли меняться и входить в контакт с другими, находящимися в похожем или таком же состоянии. Итак, фон Нейман хотел исследовать очень сложную структуру при помощи очень простой модели — клеточных автоматов. 

РОБОТОТЕХНИКА

Термин «робот», происходящий от чешского слова robota (подневольный труд), впервые появился в театральной пьесе *Россумские универсальные роботы» чешского драматурга Карела Чапека.

Она была поставлена в январе 1921 года в Праге. Действие в ней разворачивается вокруг фабрики, на которой создают механических существ для службы человеку. В конце пьесы роботы уничтожают людей. Робототехника — прикладная наука, на основе которой при помощи кибернетики и технической инженерии можно построить машину, управляемую специальной программой и способную обращаться с предметами, а также в некоторой мере взаимодействовать с окружающей средой.

Ее цель — замена людей на ряде однообразных, а также слишком тяжелых для человека или просто опасных операций. Тело робота состоит из механических элементов из металла или пластика и двигается благодаря сервомотору. Нервная система сформирована электропроводами, в венах течет смазывающее масло. Его мозг не просто похож на компьютер — это и есть компьютер. Однако часто встречается ошибочное представление о том, что робот должен походить на человека (в узком понимании посудомоечная машина — тоже робот). Робот должен отвечать трем основным характеристикам.

1. Его можно запрограммировать, как и компьютер.

2. Он должен быть машиной, способной выполнять конкретные действия в окружающей его среде.

3. Он должен быть гибким.

Третье свойство вытекает из двух предыдущих, так как, с одной стороны, подразумевает способность оперировать широким спектром программ, а с другой — взаимодействовать со средой разными способами.

Робот, играющий на фортепиано. Шанхайский музей науки и техники, Китай.

КЛЕТОЧНЫЙ АВТОМАТ

Клеточный автомат — это математическая абстракция клеточных процессов, которые наблюдаются в живых организмах. Его можно определить как динамическую систему, состоящую из двух компонентов: пространства клетки и правил поведения.

По определению клеточное пространство — это пространство фон Неймана, в котором его элементы, называемые клетками, находятся в состоянии, определяемом либо конечным числом значений {v1 ..., vn}, либо любым непрерывным значением. Это определение может показаться немного путаным, но его цель — показать, что даже если результат выглядит как очень простая игра, он не лишен математического формализма. Но чтобы выражаться понятнее, сведем рассуждения к простой формулировке, которая и используется в теоретических описаниях. Для начала пространство фон Неймана становится двумерным, чтобы его можно было представить на листке, в котором каждый квадратик обозначает клетку. Из двух множеств значений мы не будем рассматривать непрерывное множество, так как весь процесс происходит во внутренних механизмах компьютера, а они всегда работают с дискретными величинами. Из возможных множеств {v1 ..., vn} этих дискретных значений оставим только два — {1, 0}. Первое означает, что клетка жива, второе — что она мертва. Мы также можем выбрать два разных цвета. Итак, возьмем лист бумаги в клетку и ограничим нашу зону работы, например, квадратом со стороной 7 клеток. Затем возьмем черный фломастер и закрасим клетки (см. рисунок 1 на следующей странице).

КИБЕРНЕТИКА

Кибернетика — это наука, изучающая различные формы коммуникации, которые могут возникать между двумя механизмами, и законы, управляющие коммуникацией между человеком и машиной. Отцом кибернетики считается венгерский математик Норберт Винер (1894-1964). В 1948 году он написал книгу «Кибернетика, или Управление и связь в животном и машине», которая стала бестселлером и позволила автору улучшить свое — до этого нестабильное — материальное положение.

Норберт Винер.

У нас появится пространство, в котором есть живые клетки, обозначенные черным цветом, и мертвые, обозначенные белым. Теперь остается только установить правила развития, то есть детально описать, как эти клетки будут развиваться в своей среде. Если вышеупомянутый рисунок представляет собой фазу 1, у нас должен быть какой-то критерий, чтобы перейти к фазе 2 и, разумеется, чтобы перейти от фазы 2456 к фазе 2457. Говоря математическим языком, нам нужен алгоритм, который, если известно состояние фазы N, позволяет сконфигурировать состояние фазы N + 1. Поскольку в нашей решетке на данный момент нет никаких странных элементов вроде пакменов или тому подобных, на каждую из наших клеток могут действовать только другие клетки из ее окрестности. Одна из самых простых окрестностей — это окрестность по сторонам света (север, юг, запад, восток); то есть клетка может взаимодействовать только с клетками, расположенными над ней, под ней или по сторонам от нее. В этом случае она называется окрестностью фон Неймана. Если к этому мы прибавим диагонали, то получим так называемую окрестность Мура. Становится понятно, что возможности определения окрестностей почти безграничны. Мы можем сказать, например, что влиять будут только клетки, которые находятся на определенном расстоянии г. Существуют очень сложные правила окрестностей, которые описываются посредством матричных функций, но мы их не будем рассматривать в этой книге. Начнем с вышеуказанного клеточного пространства и определим правила, которые действуют для окрестности Мура.

1. Клетки с четным количеством живых соседних клеток умирают.

2. Клетки с нечетным количеством живых соседних клеток порождают живую клетку.

РИС. 1

РИС. 2

Таким образом, мы получим три фазы, показанные на рисунке 2.

Можно также начать с меньшего количества ячеек и установить другие правила. Несомненно, дойти до определенной фазы и наблюдать за результатом (существуют простые компьютерные программы, которые могут быстро показать нам фазу 1000) — интереснейшее занятие. Мы увидим удивительные фигуры и ситуации: можно создать устойчивые конфигурации, вымершие виды, натюрморты, хищников или структуры, которые двигаются в решетке, не теряя своей формы.

Это вариант игры «Жизнь», созданной британским математиком Джоном Хортоном Конвеем в 1970 году. Помимо того что это просто очень интересная игра, имеющая важное применение в математике, она может быть полезным инструментом в исследованиях и помогает понять некоторые сложные природные процессы, так как является мощной моделью, которую можно применить, например, при изучении влияния разлива нефти на морскую фауну.

ОТ МЕЧТЫ ЛЕЙБНИЦА К МЕЧТЕ ФОН НЕЙМАНА

Развитие человеческой мысли скрыто от нас, оно следует законам, которые пока не удалось выявить. Однако в истории науки были великие мыслители, считавшие, что если можно было бы обозначить идеи номерами и присвоить каждой свое число, то достаточно было бы произвести вычисления с этими числами, чтобы узнать, какие из них верные, а какие ложные. Собственно, это и было мечтой Готфрида Лейбница (1646-1716).

Немецкий поэт Фридрих Гёльдерлин (1770-1843) однажды сказал: «Когда человек мечтает, он король, когда размышляет — нищий». Несомненно, Лейбниц очень походил на короля...

Тем не менее для таких научных деятелей, как Паскаль, Лейбниц или Декарт, склонных в своих размышлениях если не к прагматизму, то, по крайней мере, к некоей конкретике, размышлять означало воплощать свои идеи на практике. И в этот момент мечта могла обернуться кошмаром. Следовательно, нас не должно удивлять, что результаты их первых выводов воплощались в вычислительных машинах, ведь вычисление — одна из первых абстрактных операций, выполняемых человеческим разумом. К тому же время показало, что действие самых продвинутых «думающих» машин, которые мы способны сделать, основано на вычислениях по строго определенным правилам компьютерной алгебры. Эта сложная и очень специализированная область математики, появившаяся вместе с информатикой, начала зарождаться еще в сознании философов и математиков.

Истина слишком сложна, нам дано лишь немного приблизиться к ней.

Джон фон Нейман

Вычислительная машина, спроектированная Лейбницем, была сложнее машины Паскаля, так как могла не только складывать и вычитать, но и умножать, делить и извлекать квадратные корни. Между началом ее создания и днем, когда Лейбниц увидел ее в собранном виде, прошло почти 23 года. Ученый дал ей говорящее название — Getrocknetsrechenmaschine (ступенчатая вычислительная машина). Действительно, она производила умножение путем последовательного сложения, но ее механизмы были слишком сложны технически для того времени, и она никогда не работала нормально. Несмотря на свою неудачу, Лейбниц посвятил себя размышлению над революционной идеей: если числа можно было бы представить на основании 2, это не только упростило бы механизмы машины, но и позволило бы применить к процессу вычисления бинарную логику.

ИГРА «ЖИЗНЬ

Два специалиста по клеточным автоматам могли бы вести диалог такого рода.

— Я уже несколько недель работаю над «Жизнью 4555»».

— Очень интересно. А я — над «Жизнью 5766»». Ищу модель того, как распространяются пожары в лесах.

Чтобы этот разговор был понятен, надо знать значения этих четырех цифр. Первая обозначает минимальное количество клеток, которое должно окружать живую клетку для того, чтобы она не умерла. Вторая — то же самое, но наоборот: это максимальное число. Третья — это минимальное число живых клеток в окружении для того, чтобы у клетки была возможность вновь ожить. Четвертая и последняя — максимальное число соседних клеток для того, чтобы ожить. То, что сегодня называется игрой «Жизнь»», является математической теорией, простой и очень любопытной. Ее возможное применение может быть теоретическим или практическим, например при изучении репродукции раковых клеток, зараженных деревьев в лесу, распространения пожаров или роста кристаллов.

Интерактивное табло, на котором идет игра «Жизнь». Музей искусства Сан-Хосе, Калифорния.

По Лейбницу, мир делится на два разных уровня. Физический уровень погружен в пространство и время, события в нем развиваются по своим законам (у всего есть следствие и причина), и его явления объясняются с помощью механики. Второй уровень — метафизический, в нем нет ни времени, ни пространства, ни причин, ни следствий, только числа. Сущность этого уровня Лейбниц ясно описал в следующем отрывке:

«Рассуждая с метафизической точки зрения, мы не более правы, когда говорим, что корабль движет воду и создает воронки, чем когда утверждаем, что вода сама создает их и вследствие этого корабль движется в соответствии с ними».

Исходя из этого Лейбниц пытался найти универсальный язык, который включал бы все термины метафизического мира и способы их взаимодействия, чтобы породить новые истины и иметь возможность контролировать этот механизм взаимодействия. Благодаря работе над такой задачей Лейбниц стал считаться отцом символической логики. Он предложил присвоить простые числа простым терминам и их произведения — всем остальным. Для воплощения этой идеи на практике Лейбниц создал алгебру всего с двумя связками — отрицанием и соединением, — заложив основы бинарной логики.

Воплотилась ли мечта Лейбница в жизнь? Некоторые ее аспекты — да, а некоторые, возможно, не воплотятся никогда. Британский математик Ада Лавлейс (1815-1852) — первый программист в истории — возможно, знала об амбициозном замысле Лейбница, так как однажды, говоря о компьютерах, заметила:

«Аналитическая машина не имеет претензий на создание чего- либо. Она может выполнить все что угодно — при условии, что знает верный способ. Она может провести анализ, но не в состоянии вскрыть аналитические связи или открыть истины. Ее потенциал заключается в том, чтобы помочь нам сделать возможным то, о чем у нас уже есть первоначальные знания».

Лейбниц мечтал о машине, которая сможет соперничать хотя бы с частью человеческого разума. Фон Нейман же мечтал о создании универсального языка, с помощью которого это было бы возможным.

ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ

В 1943 году двое американских ученых — нейролог и кибернетик Уоррен Маккалок (1898-1969) и логик Уолтер Питтс (1923-1969) — создали вычислительную модель, симулирующую работу нервной системы. В ней существовали узлы, связанные друг с другом, как аксоны связывают дендриты в биологических системах. Так появились искусственные нейронные сети (ANN, от Artificial Neural Networks). Фон Нейман работал над расширением и развитием сетей, предложенных Маккалоком и Питтсом.

ANN в основном делятся на два типа: биологические, которые пытаются воспроизвести такие свойства, как слух или зрение, и ориентированные на практическое применение, но мало напоминающие биологические системы. Джон фон Нейман подсчитал, какое примерно количество информации сохраняется в нашей памяти за среднюю по продолжительности жизнь. В результате он получил число, равное 2, 8 · 1020 (280000000000000000000 бит), что очень сложно себе представить, как бы мы ни старались.

Фон Нейман рассматривал нервные клетки как электронные устройства, способные порождать биты: 1 — когда они порождают электрический импульс и 0 — когда находятся в состоянии покоя. Эта система чрезвычайно сложна и сочетает в себе электрохимические и механические процессы, но ее основа должна включать логическую и арифметическую части, обе из которых одинаково важны. Из этого ученый сделал вывод, что мозг можно рассматривать так же, как и современные вычислительные машины, и возвращался к логической структуре как к инструменту для создания модели. Он мог бы применить такую модель и к языку, в неформальном его понимании. По этому поводу фон Нейман сделал заявление, в котором проявился его онтологический подход к математике. Дословно он сказал, что «такие языки, как греческий или санскрит, представляют собой факты истории, а не абсолютную логическую необходимость». В первом случае речь идет о процессе обучения, выполняемом центральной нервной системой, в то время как во втором — о процессе, являющемся частью самой структуры, а он должен иметь тесную связь с математикой. Это все равно что заявить, что математика не «придумана» людьми, а является частью самой их природы.

В декабре 1949 года в университете штата Иллинойс фон Нейман прочел лекцию Theory and Organization of Complicated Automata («Теория и организация клеточных автоматов»). Схема была следующей: если рассматривать мозг как вычислительную машину, то когда мы используем его для коммуникации с другим человеком, мы делаем это при помощи вторичного языка, который является продуктом первичного языка, хранящегося в нервной системе. Эти два языка изначально могут очень отличаться друг от друга.

Точность, эффективность и глубина математики заставляют предположить, что первичный язык нашей нервной системы должен быть к ней очень близок. То есть наш разум — по крайней мере изначально — имеет математическую природу. Фон Нейман изложил все эти результаты в рукописи, которую не успел закончить и которая была опубликована в незавершенном виде после его смерти под названием The Computer and the Brain («Компьютер и мозг»).

БИОНИКА

Развитие кибернетики привело к появлению бионики — науки, которая занимается симуляцией действий человека и животных.

В ней воплотились достижения биологии и электроники, позволившие исследовать принципы, по которым устроены живые существа. Сегодня бионику применяют в создании моделей молекул белка и нуклеиновых кислот.

Несмотря на большой технический прогресс в области бионики, пока выполнена лишь малая часть из намеченного в 1950-е годы. Можно даже сказать, что бионика стала провалом по сравнению с информатикой. Но это и неудивительно. Возьмем для примера хотя бы сетчатку глаза, выполняющую до 10 миллионов распознаваний в секунду,— для ее воссоздания требуется компьютер, обрабатывающий более миллиарда инструкций в секунду. Все биологическое аппаратное обеспечение, обрабатывающее изображение в сетчатке, весит около 20 миллиграмм, а весь мозг — примерно 1500. Для воссоздания их деятельности потребовалась бы машина размером с персональный компьютер, способный обрабатывать более 100 миллиардов инструкций в секунду. И это притом, что на сегодняшний день способности ПК могут сравняться лишь с мозгом маленьких аквариумных рыбок.

Бионическая рука.

ПОСЛЕДНИЕ ГОДЫ

Начиная с 1950-х годов фон Нейман консультировал множество государственных и частных компаний. Он был членом комитета по консультированию Национальной баллистической лаборатории в Мэриленде, артиллерийского отдела военноморского флота США в Вашингтоне, Лос-Аламосской лаборатории, директором проекта по разработке электронного компьютера Института перспективных исследований Принстона, проекта по особому оружию Вооруженных сил США и группы оценки систем в той же организации.

Начиная с 1952 года ученый стал членом Комиссии по атомной энергии США, а в 1955 году принес присягу как член этой комиссии по указу президента страны Дуайта Эйзенхауэра. Его способности работать и принимать решения в очень сложных условиях привели к тому, что фон Нейман посвящал много времени занятиям, далеким от чистой науки.

Финансовое положение ученого было довольно хорошим: только от Института перспективных исследований Принстона он получал 12500 долларов в год. Он жил со своей матерью, женой Кларой и дочерью Мариной в большом доме под номером 26 по Весткут-роад и часто устраивал светские рауты, на которых присутствовали разные знаменитости. Сам фон Нейман тоже был известным персонажем: средства массовой информации, в том числе радио и телевидение, часто просили его прокомментировать какую-либо тему, иногда даже вмешиваясь в его личную жизнь.

Летом 1955 года ученый начал жаловаться на сильные боли в левом плече. Поначалу он подумал, что причиной тому было его недавнее падение, но боль, которая должна была бы отступить через несколько дней, все не проходила. Фон Нейману пришлось сделать хирургическую операцию. Именно тогда ему был поставлен диагноз — рак кости. Позже выяснилось, что это был вторичный рак, вызванный раком простаты. Самой популярной версией причины болезни было то, что фон Нейман не предпринимал необходимых мер безопасности, предусмотренных протоколом, когда работал в радиоактивной среде. Многие намекали: он был немного самоуверенным и считал, что ничто не сможет ему навредить, даже облучение, которому он подвергался, как и большинство участников Манхэттенского проекта. Действительно, не один он заболел раком.

Не будем описывать, как чувствует себя человек, которому поставили диагноз «рак в последней стадии». Врачи давали ему полтора года жизни. В 1955 году болезнь поразила спинной мозг ученого, и ему пришлось пересесть в инвалидное кресло. Фон Нейману предоставили все необходимые условия для того, чтобы он продолжал консультационную деятельность и закончил некоторые свои проекты. Среди них были создание баллистической ракеты и более научная задача — разработка искусственного мозга, который смог бы постепенно, маленькими шагами, приблизиться к мозгу человека.

В последний раз фон Нейман появился на публике в феврале 1956 года — в Белом доме, когда президент Эйзенхауэр вручил ему медаль Свободы (Medal of Freedom). После этого он уже не выходил из дома. На конец марта того года была запланирована авторитетная конференция Силлмана в Йельском университете. Фон Нейман был приглашен выступить на ней й рассказать о своей работе по взаимодействию компьютера и мозга. Поскольку сам ученый не мог принять в ней участие, университет предложил, чтобы кто-то другой прочел текст выступления за него. Однако фон Нейману не удалось завершить эту последнюю задачу, и рукопись так и не была обнародована. В апреле 1956 года он был госпитализирован в больницу Уолтера Рида, из которой больше не вышел. Несмотря на плохое состояние здоровья, фон Нейман попросил оборудовать ему временный кабинет, где он мог бы продолжить работу.

Из-за сильных болей врачам пришлось давать ученому большие дозы морфина, что отразилось на его мыслительных способностях, и это постепенное ухудшение интеллекта было самым нестерпимым следствием для фон Неймана. Незадолго до смерти он удивил всех, обратившись к религии: до сих пор ученый был убежденным агностиком. Возможно, фон Нейман искал утешения, которого нигде больше не мог найти. Но все было бесполезно, поскольку, по свидетельству близких, на протяжении последнего года его дни и ночи были непрекращающейся адской мукой.

Джон фон Нейман умер в Вашингтоне 8 февраля 1957 года в возрасте 54 лет.

Вы будите меня среди ночи, чтобы сказать, что я прав?

Будите, если я ошибаюсь!

Джон фон Нейман

МАТЕМАТИЧЕСКИЕ ВЗГЛЯДЫ ФОН НЕЙМАНА

В математике можно провести разделение на чистую науку и прикладную. Сегодня в большинстве университетов они считаются разными дисциплинами, но так было не всегда. В начале XX века технический прогресс требовал от инженеров все большего использования математики и если не создания, то по крайней мере адаптации различных математических инструментов к их работе. С другой стороны, новые открытия, которые произвели революцию в физике (главным образом теория относительности и квантовая механика), породили математическую физику — самостоятельную дисциплину на границе чистой и прикладной математики. Хотя это не всегда признается, но обычно между чистыми и прикладными науками существует некоторая дистанция. В этом контексте термин «чистая» можно понимать в самом буквальном смысле. По мнению пуристов, теоретические исследования не должны зависеть от материальных потребностей окружающего мира. Случай фон Неймана действительно уникален, поскольку его гений проявился как в чистой теории, так и в создании математических инструментов и даже механических устройств для решения вполне конкретных задач. Ему были одинаково подвластны обе области. Ученый занимался такими задачами чистой математики, как аксиоматизация теории множеств и квантовая механика, а также получил прекрасные результаты в таких земных вопросах, как экономическая теория, баллистика и проектирование взрывателя атомной бомбы. Немногие ученые могли похвастаться подобной универсальностью, которой фон Нейман посвятил любопытные размышления в своей статье The Mathematician («Математик»). Она была опубликована в полном собрании его сочинений, и в ней говорится о двойственной природе математической науки, по отношению к которой фон Нейман в конце концов занимает четкую позицию.

Я ехал по дороге, деревья справа выстраивались в идеально правильную линию на скорости 60 км/час. Вдруг одно из них встало прямо передо мной.

Джон фон Нейман

Кажется, что из-за высокого уровня абстракции чистая математика может быть очень далека от того, что мы называем реальностью. Однако фон Нейман утверждал, что в математике всегда присутствует эмпирический зародыш, то есть она всегда основывается на каком-либо прямом реальном опыте. Он приводил два примера. Первый — геометрия, дисциплина, вместе с которой родилась математика. Сама этимология этого слова является достаточным доказательством, так как подразумевает измерение предметов. Аксиоматизация, проведенная Евклидом, отдаляет ее от эмпиризма и превращает в чистую науку. Многовековая проблема пятого постулата объясняется, по мнению фон Неймана, тем, что это единственный из всех пяти постулатов, в котором появляется бесконечное пространство, далекое от нашего опыта. Оно вновь находит свое место в реальности с момента использования неевклидовой геометрии в таких областях физики, как, например, теория всеобщей относительности. Второй пример — исчисление (исходная точка современной математики), зародившееся в трудах немецкого астронома и математика Иоганна Кеплера (1571-1630), когда тот пытался вычислить объемы фигур с изогнутыми поверхностями, что в конце концов привело к появлению понятия интегралов.

Фон Нейман привел и третий пример, в котором углублялся в область логики и философии. Может показаться, что в них нет ничего эмпирического, как в случае с теорией множеств, заставившей пересмотреть основания математики. От таких абстрактных систем можно ожидать абсолютной строгости, которая развеивает и тень сомнения по поводу истинности устанавливаемых истин. И тем не менее теоремы Гёделя нанесли удар математике и не оставили ей шанса на обретение непротиворечивых логических оснований. Перед лицом этого отрицания непротиворечивости фон Нейман предложил принимать математику такой, какая она есть, — как реальность, которую мы исследуем, так же как мы принимаем существование электрона, — а это в каком-то смысле возвращает данной науке ее эмпирический характер. Дословно он сказал следующее:

«Многие из лучших математических открытий вдохновлены опытом, и с трудом можно представить себе существование строгого математического понятия, неизменного и отделенного от всего человеческого опыта».

16 февраля 1956 года президент Дуайт Эйзенхауэр наградил фон Неймана, члена Комиссии по атомной энергии, медалью Свободы за его ценный вклад в работу над безопасностью США.

Фон Нейман читает лекцию о своей работе над вычислительными машинами в Американском философском обществе.

Впоследствии фон Нейман утверждал, что, напротив, перед математикой стоит риск вырождения. Он сравнил математику и физику. Последняя функционирует в гораздо более узких областях и имеет гораздо меньше ответвлений. Из этого вытекают два важных следствия. Во-первых, теоретический физик потенциально может иметь общие сведения, которые позволяют ему иметь представление по крайней мере о половине всего познаваемого в предмете его изучения, в то время как профессиональный математик, например сам фон Нейман, едва ли может надеяться на то, что знает хотя бы о четверти. А сегодня этот объем, несомненно, существенно сократился. Второй аспект относится к самой природе исследовательской работы. Перед лицом проблемы физик чувствует себя обязанным найти решение, так как обычно она тормозит развитие всей теории, и ученый не может обойти ее вниманием. Для математика же дела обстоят по-другому. Если он не может найти решение какой-либо проблемы, он просто отложит ее и перейдет к другой — математическая теория от этого не пострадает. Фон Нейман даже утверждал, что выбор конкретной задачи определяется исключительно эстетическими вкусами.

В конце статьи он предупреждал об опасности того, что математика может слишком далеко отойти от своих источников. Слишком узкая специализация абстрактной математики и ее постоянное отдаление от реальности могут привести к вырождению. Фон Нейман писал:

«В любом случае, если дело дойдет до этой точки, мне кажется, что единственным спасением будет возвращение к источнику: к введению более или менее эмпирических идей. Я убежден, что это необходимое условие для того, чтобы математика сохраняла свою свежесть и жизнеспособность, и что оно будет действенным и в будущем».

В наше время создается порядка 200 тысяч математических теорем в год. Разумеется, никто не в состоянии проверить даже малую часть тех истин, которые они предлагают. Прогнозы фон Неймана сбылись, причем в своей худшей части.