3.1. Понятие скрытой пропускной способности
Для стеганографических систем важно определить, насколько большой может быть пропускная способность каналов передачи скрываемых сообщений и как она зависит от других характеристик стегосистем и условий их использования. Неформально определим, что под пропускной способностью каналов передачи скрываемых сообщений или просто скрытой пропускной способностью (ПС) будем понимать максимальное количество информации, которое может быть вложено в один элемент контейнера. При этом скрываемые сообщения должны быть безошибочно переданы получателю и защищены от атак нарушителя, таких как попытки обнаружения факта наличия канала скрытой связи, чтения скрываемых сообщений, преднамеренного ввода ложных сообщений или разрушения встроенной в контейнер информации. Канал скрытой связи образуется внутри канала открытой связи, для которого в работах К.Шеннона по теории информации определена пропускная способность [1]. Пропускная способность канала открытой связи определяется как количество информации, которое потенциально можно передать без ошибок за одно использование канала. При этом не предъявляется никаких требований к защищенности от атак организованного нарушителя. Поэтому логично предположить, что скрытая пропускная способность должна быть меньше пропускной способности канала открытой связи, в котором за одно использование канала передается один элемент контейнера, в который вложена скрываемая информация.
Существуют различные подходы к определению количества информации, защищаемой от различных атак нарушителя стеганографическими методами. Эти различия, в частности, обусловлены различием в цели защиты информации, моделями нарушителя, его возможностями, реализуемыми им атаками на стегосистемы, видом используемых контейнеров и скрываемых сообщений и многими другими факторами. Методами теории информации оценим для различных стегосистем величину пропускной способности каналов передачи скрываемой информации. Теоретико-информационные методы позволяют получить строгие оценки количества скрываемой информации, и эти оценки могут быть использованы как теоретически достижимые верхние пределы скорости передачи скрываемой информации для стегосистем с произвольными принципами их построения.
Рассмотрим два основных подхода к оценке пропускной способности каналов передачи скрываемой информации. Первый из них, развиваемый в работах [2,3], ориентирован на стегосистемы, в которых защищаемые сообщения должны быть безошибочно переданы в условиях активного противодействия нарушителя. Этот подход описывает сценарий скрытия безизбыточных сообщений в контейнерных данных, и учитывает, что кроме искажений сообщений при их внедрении в контейнер возможны их преднамеренные искажения со стороны нарушителя, а также искажения случайного характера, вызванные непреднамеренными помехами канала связи или искажениями при сжатии контейнера. Рассматриваемый нарушитель, кроме пассивных действий анализа, может использовать и активные действия, поэтому активный нарушитель далее называется атакующим. Целью атакующего является разрушение скрываемой информации. Такая постановка задачи информационного скрытия характерна для систем цифрового водяного знака (ЦВЗ).
Сформулируем задачу информационного скрытия как задачу безошибочной передачи скрываемой информации при воздействии случайных и преднамеренных помех и определим максимальную скорость безошибочной передачи при различных стратегиях действий скрывающего информацию и атакующего. Данный подход определяет теоретически достижимую скорость достоверной передачи скрываемых сообщений, хотя в явном виде и не оценивает защищенность скрываемого сообщения от обнаружения факта его существования. Однако для ряда стегосистем не требуется скрывать факт использования стеганографической защиты: обладатель авторских или имущественных прав на защищаемый водяным знаком контейнер, как правило, открыто объявляет о применении системы ЦВЗ. В рассматриваемом подходе исследуются условия, при которых скрываемая информация гарантированно передается в условиях произвольных попыток нарушителя по ее разрушению. Например, такая задача может решаться при доставке скрываемой информации по каналам, в которых противоборствующая сторона пытается сорвать скрытую связь ее радиоэлектронным подавлением. В этой задаче знание нарушителем параметров стегосистемы и возможных стратегий действий скрывающего информацию не должно позволить нарушителю оптимизировать разрушающее воздействие и оценить эффективность подавления. Особенностью таких стегосистем является то, что разрушающее воздействие происходит только в момент передачи скрываемых сообщений и должно выполняться в режиме реального времени. Второй особенностью является априорная неизвестность для законного получателя скрытно доставляемой ему информации. Третьей особенностью является то, что нарушитель, как правило, не способен оценить эффективность своего подавления. «Слепое» подавление объясняется тем, что противоборствующая сторона ставит помехи в скрытом канале, о существовании которого она только подозревает. Иная картина в другой задаче информационного скрытия, в которой активный нарушитель пытается разрушить цифровой водяной знак, чтобы присвоить себе контейнер. Нарушитель может произвольно долго осуществлять разрушающее воздействие, выбирая ту стратегию противоборства, при которой, разрушив ЦВЗ, он сохранит требуемое высокое качество контейнера. В этой задаче нарушитель точно знает о существовании скрываемой информации, и используя общеизвестный детектор ЦВЗ, способен оценить эффективность своих атак на водяной знак.
Второй подход, развиваемый в работах [4,5], дает оценки скрытой пропускной способности при вложении скрываемых сообщений в избыточные контейнерные данные. Такой подход учитывает, что контейнеры формируются реальными избыточными источниками с существенной памятью, такими как источники изображений, речевых или аудио сигналов и т. п. В этой задаче оценки пропускной способности зависят от характеристик необнаруживаемости скрытого канала. Данный подход ориентирован на стегосистемы, в которых реализуется скрытая передача априори неизвестной получателю информации, причем пассивный нарушитель пытается в процессе наблюдения выявить факт наличия скрытой связи и, при установлении этого факта, пытается читать скрываемую информацию. Известно большое количество работ по синтезу стегосистем, в которых предлагаются самые различные способы вложения в избыточные контейнеры [6–8]. Авторы этих работ оценивают количество информации, которое можно вложить незаметно с учетом используемых ими критериев необнаруживаемости. Известные оценки скрытой пропускной способности таких стегоканалов не учитывают возможные случайные и преднамеренные искажения стего при их передаче по каналу связи.
3.2. Информационное скрытие при активном противодействии нарушителя
В рамках первого подхода к оценке скрытой пропускной способности рассмотрим общую формулировку задачи информационного скрытия при активном противодействии, оказываемым нарушителем. Основные результаты этого подхода получены в работе [2].
3.2.1. Формулировка задачи информационного скрытия при активном противодействии нарушителя
Используем традиционные для теоретического описания задач защиты информации обозначения. Рассмотрим обобщенную структурную схему стеганографической системы передачи скрываемых сообщений, представленную на рис. 3.1. Пусть источник контейнерных данных формирует случайную переменную , берущую значения в множестве в соответствии с общеизвестным распределением контейнера p( #i_143.png ) , источник секретного ключа формирует стегоключ K, принадлежащий множеству , и источник скрываемых сообщений формирует сообщение М из множества сообщений М.
В задачах стеганографической защиты информации контейнер есть блок данных или блок преобразованных данных (таких как коэффициенты дискретного косинусного преобразования или вейвлет — преобразования) изображений, видео, аудиосигналов, или некоторого другого множества контейнерных данных, в которые встраивается скрываемая информация. Алфавит может быть в зависимости от постановки задачи непрерывным (например, множеством неквантованных коэффициентов преобразования) или конечным дискретным (например, множеством квантованных коэффициентов преобразования).
Рис. 3.1. Обобщенная структурная схема стеганографической системы при активном противодействии нарушителя
Пусть контейнер есть последовательность с N независимо и идентично распределенными отсчетами в соответствии с p( #i_143.png ) .
Секретный ключ доступен кодеру и декодеру стегосистемы. Каждый символ ключа K i независимо и равновероятно распределен по функции p(K). По признаку наличия секретного ключа стегосистемы напоминают криптографические системы. Например, в системах шифрования секретный ключ предназначен для исключения возможности чтения нарушителем защищаемого сообщения. В отличие от криптографических систем, основной целью использования секретного ключа в рассматриваемых стегосистемах является обеспечение неопределенности для нарушителя распределения скрываемого сообщения в контейнере. Заметим, что в криптографии ключ и защищаемые сообщения должны быть взаимно независимы. Напротив, в ряде задач информационного скрытия полезно допускать зависимость между контейнером и ключом. Опишем эти зависимости, используя совместное распределение p(#i_143.png ,k ). Пример таких зависимостей возникает, когда контейнерные данные доступны декодеру, что используется в ряде систем ЦВЗ [9,10]. В этом случае контейнер может рассматриваться как часть секретного ключа. В других стегосистемах в качестве секретной ключевой информации могут использоваться выбранные отправителем хэш-функции [11], правило размещения водяных знаков в контейнере [12,13] или исходные данные для формирования псевдослучайных последовательностей в системах с расширением спектра контейнера [4,14].
В рассматриваемой обобщенной схеме стегосистемы скрываемые сообщения М равномерно распределены во множестве сообщений М и должны быть безошибочно переданы декодеру. Скрывающий информацию подает пустой контейнер , ключ и сообщение М на вход стегокодера, формируя стегограмму , передаваемую получателю по незащищенному каналу связи. Стего перехватывается и обрабатывается нарушителем с целью разрушения или удаления сообщения М. Искаженное нарушителем стего обозначим и опишем атакующее воздействие условной функцией распределения . Эта обработка включает, как частный случай, формирование искаженного стего в виде , где есть детерминированное отображение.
Нарушителю полезно знать описание стегосистемы, используемой скрывающим информацию, и использовать это знание для построения более эффективного атакующего воздействия . В частности, если известная нарушителю система информационного скрытия не использует секретного ключа , нарушитель способен декодировать сообщение М и затем удалить его из стего . Поэтому необходимо хранить описание бесключевой стегосистемы в секрете. Заметим, что история развития систем защиты информации, в частности, криптографических систем, свидетельствует, что не стоит надеяться на сохранение в тайне принципов построения системы защиты при ее широком применении. Поэтому нашим основным предположением является: нарушитель знает распределения всех переменных в стегосистеме и само описание стегосистемы, но не знает используемого секретного ключа (принцип Керкхофа для систем защиты информации).
Пусть контейнер , стего X и модифицированное нарушителем стего Y принадлежат одному и тому же множеству X. Декодер получателя вычисляет оценку исходного скрываемого сообщения . Если , то атакующий сумел разрушить защищаемую стегосистемой информацию.
Рассмотрим часто используемую схему построения системы ЦВЗ, представленную на рис. 3.2. В данной схеме учитывается, что сообщение M обычно не принадлежит алфавиту X и имеет длину отличную от длины контейнера . Например, если ЦВЗ представляет собой изображение фирменного знака производителя информационной продукции, то такой водяной знак по форме представления и по своим характеристикам существенно отличается от заверяемого контейнера. Поэтому скрываемое сообщение (ЦВЗ) M преобразуется в кодовую последовательность длиной N символов, . Эта операция преобразует водяной знак M к виду, удобному для встраивания в контейнер . Заметим, что на рис. 3.2 показан случай, когда это преобразование независимо от контейнерного сигнала.
Рис. 3.2. Структурная схема стегосистемы водяного знака при активном противодействии нарушителя
Заверенное водяным знаком стего в общем случае формируется по правилу , где есть функция встраивания по ключу . В обозначении функции встраивания неявно указывается, что она выполняет преобразования над блоком длины N. В простейшем примере встраивание может выполняться по правилу для , где переменные , и принадлежат конечному алфавиту . В современных системах водяного знака применяются сложные построения функции , учитывающие характеристики чувствительности органов зрения или слуха человека и не являющиеся аддитивными [15]. Преобразование должно быть удобным для скрывающего информацию, а также должно минимизировать вносимые искажения в контейнер при условии обеспечения требуемой устойчивости к атакам нарушителя. Оптимальное построение таких функций представляет сложную задачу.
Формально определим вносимые искажения в стратегиях скрывающего информацию и нарушителя. Это завершает математическое описание стегосистемы и позволяет определить скорость безошибочной передачи для стегосистемы, представленной на рис. 3.1.
Пусть искажения в стегосистеме оцениваются в соответствии с ограниченной неотрицательной функцией вида где . Используемая мера искажения симметрична: , выполнение равенства означает совпадение . Следовательно, используемая мера искажения является метрикой. Метрика искажений расширяется на последовательности длиной N символов и следующим образом: . Теория информационного скрытия использует классические метрики искажения, такие как метрики Хэмминга и Евклида, а также метрики, учитывающие особенности слуховой или зрительной чувствительности человека [16].
Назовем искажение контейнера , вызванное встраиванием в него скрываемого сообщения искажением кодирования.
Определение 3.1: Стегосистема с длиной блока N, приводящая к искажению кодирования не более , есть совокупность множеств скрываемых сообщений M, контейнеров , стего и ключей и определенных на них функций кодирования f N и декодирования , где есть отображение контейнера , сообщения m и ключа в стего . Это отображение ограничено величиной среднего искажения кодирования :
; (3.1)
а есть декодирующее отображение принятой стегопоследовательности и ключа в декодированное сообщение
Таким образом, величина характеризует искажение контейнера, максимально допустимое при встраивании в него скрываемого сообщения. Данное определение, хотя формально описывает стегосистемы блочного типа, может быть расширено и на стегосистемы поточного типа, у которых окно обработки описывается скользящим блоком длины N. В этом случае параметр N стегосистемы по аналогии с непрерывными кодами может быть назван длиной кодового ограничения стегосистемы.
Обычно искажение мало, так как встраиваемое в контейнер сообщение должно быть незаметным для нарушителя. В стегосистемах, в которых контейнер представляет полезный для получателя информационный сигнал, величина ограничивается отправителем сообщений для сохранения высокого качества контейнера. В системах ЦВЗ требование минимизации формулируется как требование прозрачности водяного знака, заверяющего контейнер.
Заметим, что данное определение искажения использует усреднение относительно распределения и относительно равномерного распределения сообщений. Это позволяет воспользоваться классическими методами теории информации, сформулированными К. Шенноном [1]. Также возможно, но более сложно использовать для анализа стегосистем максимальное искажение контейнеров, где максимум отыскивается для распределений , и m.
Распределения , p(m) и выбор отображения fN определяют конкретный вид распределения множества формируемых стегограмм.
Определение 3.2: Атакующее воздействие без памяти, приводящее к искажению D 2 , описывается условной функцией распределения из множества во множество , такой что
. (3.2)
По определению есть максимальная величина искажения стегограммы, вызванное преднамеренными действиями нарушителя. Физический смысл ограничения величины заключается в следующем. В системах ЦВЗ нарушитель, пытаясь удалить водяной знак из заверенного контейнера, вынужден сам уменьшать величину , чтобы не исказить ценный для него контейнер. В других стегосистемах величина ограничивается имеющимся у атакующего энергетическим потенциалом постановки помех, возникающими помехами для других каналов связи при использовании совместного ресурса и другими причинами.
Резонно предположить, что для реальных стегосистем обычно выполняется соотношение D 2 => D 1 .
В соответствии с определением 3.2 атакующее воздействие описывается и ограничивается усредненными искажениями между множествами и . В других случаях, если атакующий знает описание функции f N , то атакующее воздействие описывается и ограничивается усредненным искажением между множествами и :
. (3.3)
Определение D 2 в соответствии с выражением (3.3) предполагает, что нарушителю известны точные вероятностные характеристики контейнеров. Как будет показано далее, это обстоятельство существенно усложняет задачу обеспечения защищенности скрываемой информации, поэтому в стойких стегосистемах используются различные методы скрытия от нарушителя характеристик используемых контейнеров. Например, такие методы включают использование для встраивания подмножества контейнеров с вероятностными характеристиками, отличающимися от характеристик всего известного нарушителю множества контейнеров или рандомизированное сжатие контейнерного сигнала при встраивании в него скрываемого сообщения [17]. Поэтому вычисление искажения D 2 в соответствии с определением 3.2 является более универсальным, так как нарушитель всегда имеет возможность изучать вероятностные характеристики наблюдаемых стего.
Имея описание стегосистемы и атакующего воздействия можно описать состязание (игру) между скрывающим информацию и атакующим.
Определение 3.3: Информационно-скрывающее противоборство, приводящее к искажениям (D 1 ,D 2 ), описывается взаимодействием используемой стегосистемы, приводящей к искажению кодирования D 1 , и атакующего воздействия, приводящего к искажению D 2 .
Скорость передачи скрываемых сообщений по стегоканалу определим в виде R=1/N log#i_200.png . Скорость передачи R выражается в среднем числе бит скрываемых сообщений, безошибочно передаваемых (переносимых) одним символом (отсчетом) стегопоследовательности x N . Это определение созвучно «классическому» определению скорости передачи обычных сообщений по каналу передачи, выражаемой в среднем числе безошибочно передаваемых бит за одно использование канала [1].
Вероятность разрушения скрываемого сообщения в стегопоследовательности длины N определим как
, (3.4)
где скрываемые сообщения М равновероятно выбираются среди множества M. Вероятность есть средняя вероятность того, что атакующий успешно исказит скрытно передаваемое сообщение, усредненная над множеством всех сообщений. Атакующий добивается успеха в информационном противоборстве, если декодированное на приеме сообщение не совпадет с встроенным в контейнер скрываемым сообщением, или декодер не способен принять однозначного решения.
Теоретически достижимую скорость безошибочной передачи скрываемых сообщений и скрытую пропускную способность при искажениях не более величин (D 1 , D 2 ) определим следующим образом.
Определение 3.4: Скорость R безошибочной передачи скрываемых сообщений достижима для искажений не более (D 1 , D 2 ), если существует стегосистема с длиной блока N, приводящая к искажению кодирования не более D 1 на скорости R N > R , такая что Р e,N → 0 при N → ∞ при любых атаках нарушителя, приводящих к искажению не более D 2 .
Определение 3.5: Скрытая пропускная способность С(D 1 , D 2 ) есть супремум (верхняя грань) всех достижимых скоростей безошибочной передачи скрываемых сообщений при искажениях не более (D 1 , D 2 ).
Отметим, что введенные определения средних искажений контейнеров при встраивании скрываемых сообщений и при атакующем воздействии нарушителя, скорости передачи скрываемых сообщений и пропускной способности канала скрытой передачи соответствуют теоретико-информационному подходу К. Шеннона.
Таким образом, скрытая ПС есть верхний предел скорости безошибочной передачи скрываемых сообщений, при которой искажения контейнера, вызванные вложением в него данных сообщений и действиями нарушителя по разрушению этих сообщений, не превышают заданных величин. Как и ПС каналов передачи открытых сообщений, ПС каналов передачи скрываемых сообщений определяется в идеализированных условиях, в которых задержка кодирования/декодирования бесконечна (N → ∞), статистика контейнеров, скрываемых сообщений, стего и ключей точно известна, сложность построения стегосистемы неограничена. Очевидно, что такая скрытая ПС имеет смысл теоретического предела, указывающего области, в которых существуют и, соответственно, не существуют стегосистемы при заданных величинах искажений. Известно, что скорости реальных систем передачи открытых сообщений могут только приближаться к величине ПС открытых каналов, причем по мере приближения к ней вычислительная сложность реализации систем передачи растет сначала приблизительно по линейной, затем по квадратической и далее по экспоненциальной зависимости от длины блока кодирования N [1]. По всей вероятности, аналогичные зависимости роста сложности справедливы и для стегосистем по мере приближения скорости передачи скрываемых сообщений к величине скрытой ПС. Это предположение подтверждается имеющимся опытом построения стегосистем. Известно, что попытки увеличить скорость передачи скрываемых сообщений влекут за собой существенное усложнение методов скрытия информации [6,8].
Подчеркнем абсолютный характер величины скрытой ПС для произвольного передачи скрываемой информации. Если требуемая скорость передачи скрываемых сообщений меньше величины скрытой ПС, то обеспечение безошибочной передачи в принципе возможно, и имеет смысл разрабатывать принципы построения реализующей эту скрытую ПС стегосистему. Если это соотношение не выполняется, то безошибочная передача невозможна при любых принципах построения стегосистем.
3.2.2. Скрывающее преобразование
Для полного представления стегосистемы и условий ее функционирования формально опишем скрывающее преобразование, выполняемое при встраивании информации в контейнер, и атакующее воздействие, осуществляемое нарушителем для противодействия скрытой передаче. Для этого рассмотрим вспомогательную случайную последовательность U, определенную над множеством U. Физически последовательность U описывает результат преобразования скрываемого сообщения М с целью его адаптации к встраиванию в заданный контейнер. Заметим, что в то время как в стегосистеме контейнеры, ключи и стего представляют из себя последовательности одинаковой длины N, длина скрываемых сообщений, их алфавит и вероятностное распределение не совпадают с соответствующими характеристиками перечисленных последовательностей. Например, пусть лицензионную музыкальную запись на DVD-диске производитель для защиты своих прав на товарный продукт заверяет своим фирменным знаком (логотипом) или текстом, в котором указываются реквизиты производителя, и перечисляются его права на защищаемый товар. Очевидно, что рисунок фирменного знака или указанный текст целесообразно сначала привести к виду удобному для встраивания в музыкальный контейнер, причем встраивание должно быть таким, чтобы все части контейнера были бы защищены от «пиратского» копирования. Иначе у нарушителя появится возможность отрезать часть стего, в котором содержится заверяющая информация, и присвоить себе оставшееся. Поэтому логично предположить, что последовательность U должна иметь длину не меньшую длины заверяемого контейнера.
В общем виде определим скрывающее преобразование, используемое отправителем сообщений для встраивания скрываемого сообщения в контейнер.
Определение 3.6: Скрывающее преобразование, вызывающее искажение кодирования D 1 , описывается условной функцией распределения отображения из множества во множество такой, что выполняется условие
. (3.5)
Расширение скрывающего преобразования без памяти длины N описывается условной функцией вида #i_209.png .
Для успешного скрытия информации от квалифицированного нарушителя целесообразно пользоваться не одним, а множеством скрывающих преобразований, выбираемых отправителем сообщений.
Определение 3.7: Обобщенное скрывающее преобразование, приводящее к искажению кодирования не более величины D 1 , состоит из множества всех скрывающих преобразований, удовлетворяющих условию (3.5).
Обобщенное скрывающее преобразование описывает все возможные варианты действий скрывающего информацию при встраивании сообщений М в контейнер так, чтобы величина искажения кодирования не превышала допустимую. Подчеркнем, что в стеганографии важно, чтобы у скрывающего информацию было множество возможных вариантов, среди которых он равновероятно и непредсказуемо для нарушителя выбирает конкретный вариант скрытия защищаемого сообщения.
Для анализа стегосистемы удобно записать функцию в форме произведения функций распределения вида
(3.6)
где отнесем к «основному» скрывающему преобразованию и к «вспомогательному» скрывающему преобразованию.
3.2.3. Атакующее воздействие
Формально опишем действия нарушителя по преобразованию перехваченного стего X в искаженное стего Y с целью разрушения содержащейся в нем скрываемой информации.
Определение 3.8: Атакующее воздействие, приводящее к искажению D 2 , описывается условной функцией распределения отображения из множества X во множество Y такой, что выполняется условие
(3.7)
Расширение атакующего воздействия без памяти длины N описывается условной функцией вида .
Определение 3.9: Обобщенное атакующее воздействие, приводящее к искажению не более величины D 2 , состоит из множества всех атакующих воздействий удовлетворяющих условию (3.7).
Аналогично набору вариантов действий скрывающего информацию, у атакующего также есть свой набор атакующих воздействий (множество ). Нарушитель, перехватив стего, стремится выбрать такое атакующее воздействие из множества , которое максимизирует вероятность разрушения скрытой в нем информации.
3.3. Скрытая пропускная способность противника при активном противодействии нарушителя
3.3.1. Основная теорема информационного скрытия при активном противодействии нарушителя
Исследуем скрытую ПС при активном противодействии нарушителя, стремящегося разрушить скрытно передаваемую информацию. Информационно-скрывающее противоборство между отправителем сообщений и атакующим удобно описать методами теории игр. Цена игры равна величине скрытой ПС. Для максимизации скрытой ПС (максимизации платежа) скрывающий информацию оптимально строит скрывающее преобразование. Для минимизации скрытой ПС (минимизации платежа) атакующий синтезирует оптимальное атакующее воздействие. Величина скрытой ПС может быть получена последовательным соединением скрывающего преобразования и атакующего воздействия. Оценим величину скрытой ПС для стегосистемы с двоичным алфавитом. Исследуем теоретико-игровые аспекты проблемы скрытия информации стегосистемами.
Рассмотрим теорему, которая названа в [2] основной теоремой информационного скрытия при активном противодействии нарушителя. Для любых произвольно сложных стегосистем и любых атак без памяти эта теорема ограничивает сверху скорость безошибочной передачи для скрывающего информацию при условии, что атакующий знает описание скрывающего преобразования, а декодер знает описание и скрывающего преобразования и атакующего воздействия. Данное условие на самом деле не является трудновыполнимым, как это кажется на первый взгляд. Даже если стратегии действий скрывающего информацию и атакующего неизвестны, но стационарны, то можно утверждать, что и атакующий и декодер потенциально способны определить их, обработав достаточно большой объем статистического материала. Это допущение вполне реалистично, хотя и не всегда может быть достигнуто на практике из-за высокой вычислительной сложности.
Предварительно рассмотрим два утверждения, устанавливающие области существования стегосистем, потенциально способных безошибочно передавать скрываемую информацию при заданном атакующем воздействии.
Утверждение 3.1: Зафиксируем атакующее воздействия и выберем скрывающее преобразование , которое максимизирует количество информации вида
(3.8)
над . Для любого сколь угодно малого значения ε > 0 и достаточно большого значения N существует стегосистема с длиной блока N, обеспечивающая вероятность разрушения скрываемых сообщений для множества скрываемых сообщений мощностью .
Утверждение 3.2: Пусть стегосистема с длиной блока N способна безошибочно передавать скрываемые сообщения со скоростью при атакующем воздействии Q(y/x). Если для любого ε > 0 стегосистема обеспечивает вероятность при , то существует конечный алфавит и такое скрывающее преобразование , что выполняется .
Эти утверждения очень напоминают известные теоремы теории передачи сообщений в каналах связи с помехами [1].
Теорема 3.3: Пусть атакующий знает описание обобщенного скрывающего преобразования , а декодер знает описание обобщенного скрывающего преобразования и обобщенного атакующего воздействия . Для любого информационно-скрывающего противоборства, приводящего к искажениям не более (D 1 , D 2 ), скорость передачи R скрываемых сообщений достижима, если и только если R < #i_231.png , величина определяется как
, (3.9)
где U есть случайная переменная над произвольным конечным алфавитом U, переменные образуют марковскую цепь, и количество информации определяется выражением (3.8).
Таким образом, теорема 3.3 определяет величину нижней грани скрытой ПС в условиях, когда все участники информационного противоборства знают стратегии действий друг друга. Заметим, что в этой теореме определяется величина скрытой ПС стегоканала, существование которого атакующему известно. Данная скрытая ПС равна среднему количеству информации на один элемент контейнера, которое нарушитель не может разрушить, выбирая любую стратегию противодействия из множества при искажении контейнера не более величины D 2 .
Доказательство этой теоремы сводится к следующему: зафиксируем атакующее воздействие . В утверждении 3.1 доказывается, что все скорости безошибочной передачи скрываемых сообщений менее достижимы. Утверждение 3.2 включает обратный результат, то есть достоверная передача невозможна выше этой скорости. Так как атакующий знает распределение , он способен выбрать такое распределение Q, которое минимизирует скорость передачи.
Следствие 3.4 далее показывает, что в важном специальном случае (секретным ключом стегосистемы является описание используемого контейнера и сам контейнер известен декодеру), нет потери в оптимальности при ограничении кодера стегосистемы видом, представленным на рис. 3.2.
Следствие 3.4: В случае , выбор значения переменной U оптимален, если и только если стего X может быть записано в форме , где отображение обратимо для всех значений . В частности, выбор U = X оптимален. Скрытая ПС в этом случае определяется в виде
. (3.10)
Это следует из того, что когда , выражение (3.8) может быть записано в виде
. (3.11)
Представляется вполне логичным, что величина скрытой ПС равна взаимной информации между стего X и искаженным стего Y при условии, что отправителю и получателю скрываемой информации известен пустой контейнер .
Для практических систем защиты информации, если секретным ключом стегосистемы является описание используемого контейнера, возникают две проблемы. Во-первых, получатель должен знать исходный контейнер, что ограничивает возможную область применения таких стегосистем. Во-вторых, отправитель и получатель скрываемых сообщений должны использовать секретную ключевую информацию очень большого объема, что неудобно на практике.
3.3.2. Свойства скрытой пропускной способности стегоканала
Скрытая ПС является функцией аргументов и , что удобно выразить в виде . Скрытая ПС удовлетворяет следующим свойствам:
1. Величина монотонно увеличивается при увеличении искажения кодирования и монотонно уменьшается с ростом искажения .
2. Функция выпукла по аргументу .
3. Величина ограничена сверху энтропией искаженной стегограммы Y и энтропией контейнера :
4. .
Это свойство очевидно, так как скрытая пропускная способность не может быть больше энтропии искаженного стего Y. В свою очередь, в силу возможной потери информации из-за атакующего воздействия величина не может быть больше энтропии стего X, а из-за возможной потери информации при встраивании скрываемых сообщений равно или меньше энтропии пустого контейнера. Из теории информации известно, что энтропия источника контейнеров меньше или равна логарифму от мощности его алфавита [18]. Так как наиболее часто используются контейнеры в виде существенно избыточных изображений или речевых сигналов, то для таких контейнеров выполняется неравенство , что существенно уменьшает возможное значение скрытой ПС. Таким образом, в стегосистеме чем ближе характеристики дискретных контейнеров к бернуллиевскому распределению или непрерывных контейнеров к гауссовскому распределению, тем больше может быть величина скрытой ПС.
5. Величина для любых значений искажения , так как означает, что , то есть контейнер полностью совпадает со стего и никакой скрываемой информации не передается.
6. Если допустимо достаточно большое искажение , то для любого значения искажения может быть построена атака нарушителя, в которой формируется независимо от . Следовательно, в таком устранены все следы скрываемого сообщения и скрытая пропускная способность равна нулю для любых значений искажения кодирования . Таким образом, если атакующий имеет возможность подавлять канал передачи скрываемых сообщений неограниченно мощной помехой, то он гарантированно разрушит передаваемые сообщения. К счастью, во многих практических случаях информационного скрытия у нарушителя нет такого энергетического потенциала радиоэлектронного подавления или при его наличии им невозможно воспользоваться.
Сформулируем выводы из теоремы 3.3 и прокомментируем свойства скрытой ПС.
1. Теорема 3.3 определяет, что установление теоретической возможности скрытой безошибочной передачи информации и теоретической возможности противодействия этому сводится к вычислению величины скрытой ПС при известных стратегиях сторон и сравнению ее с требуемой скоростью передачи скрываемой информации. Если скрытая ПС меньше требуемой скорости, то даже теоретически не существует способа передачи скрываемых сообщений без искажений и задача атакующего по подавлению произвольных стегосистем гарантированно решается.
Оптимальная атака нарушителя заключается во внесении такого искажения , при котором величина скрытой ПС меньше требуемой скорости передачи скрываемых сообщений. Оптимальная стратегия скрывающего информацию заключается в выборе такого кодирования и такой величины искажения , при которых с учетом искажения требуемая скорость безошибочной передачи не превышает скрытой ПС. Это означает, что теоретически существует такой способ безошибочной передачи. Однако теоретическая возможность еще не означает, что скрывающий информацию способен реализовать ее на практике. Например, разработчик стегосистемы может не знать оптимальных принципов ее построения (они еще не открыты), из-за ограниченности в вычислительных ресурсах он не может себе позволить оптимальную обработку или требования к своевременности доставки скрываемых сообщений ограничивают длину N блока кодирования и так далее.
Таким образом, успех скрывающего информацию или атакующего определяется в конечном счете соотношением между скоростью передачи R и величинами искажения и контейнера, в котором скрывается информация. Рассмотренная теорема информационного скрытия при активном противодействии нарушителя очень напоминает фундаментальную теорему К. Шеннона, в которой определяется, что существует способ безошибочной передачи сообщений по каналу с помехами, если скорость передачи меньше пропускной способности канала, и невозможна достоверная передача со скоростью, большей пропускной способности. К. Шеннон также показал, что существуют зависимости между отношением мощности полезного сигнала к мощности помех в канале связи и величиной скорости безошибочной передачи сообщений по этому каналу. Аналогично этому, в информационно-скрывающем противоборстве существуют подобные зависимости между отношением величины искажения кодирования к величине искажения атакующего воздействия и величиной скорости безошибочной передачи скрываемых сообщений по стегоканалу.
Однако при внешнем сходстве у задач открытой и скрытой передачи есть существенные различия. Открытая связь осуществляется в условиях воздействия случайных помех канала связи, а передача скрываемой информации должна быть обеспечена при оптимизированном преднамеренном противодействии организованного нарушителя.
2. Рассмотрим связь задачи информационного скрытия с задачей защиты информации от перехватчика в подслушивающем канале. В 1975 году американский ученый А.Вайнер предложил метод защиты информации от чтения нарушителем, заложивший основу теории кодового зашумления [19,20]. Отправитель дискретных сообщений осуществляет их случайное избыточное кодирование на передаче и передает преобразованные сообщения получателя по основному каналу связи. Нарушитель наблюдает их в подслушивающем канале, который является отводом от основного канала. Случайное кодирование на передаче построено таким образом, что если в подслушивающем канале есть ошибки, то при декодировании они размножаются и надежно искажают защищаемую информацию. Метод кодового зашумления предназначен для систем передачи, в которых основной канал безошибочный. Например, основной канал образован на основе волоконно-оптической линии, а нарушитель пытается вести разведку по каналам побочного электромагнитного излучения и наводок, в которых в силу их природы имеется большое число ошибок. Отметим, что нарушитель знает описание системы кодового зашумления, которая не использует секретной ключевой информации (способ защиты некриптографический). Подслушивающий канал характеризуется секретной ПС, которая есть максимальная скорость безошибочной передачи по основному каналу при условии, что неопределенность для перехватчика максимальна (неопределенность защищаемых сообщений равна энтропии этих сообщений). Однако если подслушивающий канал менее шумный, чем основной канал, то секретная ПС равна нулю.
В задаче информационного скрытия атакующий способен на большее, чем обычный перехватчик в подслушивающем канале, так как он после перехвата защищаемого сообщения преднамеренно искажает основной канал. Поэтому основной канал передачи не менее шумный, чем подслушивающий канал. Следовательно, в задаче информационного скрытия с активным нарушителем секретная ПС равна нулю.
3. Выбор переменной U независимо от контейнера , как это делается в системе водяного знака согласно рис. 3.2, является в общем случае не оптимальным. Анализ выражения (3.8) показывает, что скорости безошибочной передачи в этом случае ограничены сверху величиной .
4. Пусть выполняется условие ≥ . Если атакующему известно описание контейнера , то оптимальная атака состоит просто в формировании искаженного стего в виде . В этом случае выходной сигнал после атакующего не содержит никаких следов сообщения и скрытая ПС равна нулю. На практике это означает следующее. Если нарушителю известен оригинал защищаемой от пиратского копирования мультимедийной информации, то никакие стегосистемы не защитят авторские и имущественные права производителей мультимедийной продукции.
Рассмотрим потенциально сильную атаку, в которой атакующий стремится сконструировать достаточно близкую к оригиналу оценку контейнера . Если атакующий способен синтезировать искаженное стего Y такое, что , то платеж ограничен сверху величиной
(3.12)
для всех U. Следовательно, величина скрытой ПС стегоканала < .
Таким образом, если нарушитель способен сформировать достаточно точную оценку контейнера (иными словами, выполняется неравенство , где величина ε достаточно мала), то величина скрытой ПС ограничена этой малой величиной. А на практике это означает, что располагая подписанным водяным знаком стего, нарушитель может попытаться воспроизвести из него с некоторой допустимой погрешностью пустой контейнер, из которого удалено скрываемое сообщение. Такие примеры известны еще с доэлектронных времен стеганографии. Например, если перерисовать картину, заверенную художником малозаметными для визуального восприятия авторскими знаками, то хорошая копия может быть практически неотличима от оригинала (по крайней мере, для обычных зрителей), а авторские знаки, скорее всего, будут разрушены.
3.4. Двоичная стегосистема передачи скрываемых сообщений
Определим величину скрытой ПС стегосистемы, в которой алфавит скрываемых сообщений, контейнеров, ключей и стего является двоичным алфавитом . Пусть контейнер формируется источником Бернулли, то есть символы последовательности контейнера являются независимыми друг от друга и равновероятными. Функция искажения описывается расстоянием Хэмминга: , если и в ином случае. Описание контейнера является секретным ключом стегосистемы ( ) и известно декодеру. Пусть двоичная последовательность формируется независимо и равновероятно. Стегограммы формируются в виде , где операция есть суммирование по модулю 2. Переменная Z имеет бернуллиевское распределение и отображает скрываемое сообщение M с искажением . Искажение означает, что каждый символ двоичной последовательности Z отличается от соответствующего символа двоичной последовательности M с вероятностью . Преобразование сообщения M в последовательность Z выполняется скрывающим информацию с использованием кодера с искажением . Нарушитель обрабатывает стего наложением на него двоичной шумовой последовательности , в которой единичный символ порождается с вероятностью . Получатель суммирует искаженное стего с двоичной последовательностью по модулю 2, и из полученной таким образом двоичной последовательности декодирует принятое скрываемое сообщение . Особенностью этой стегосистемы является то, что в ней скрываемое сообщение при встраивании искажается с вероятностью искажения и это искажение равно искажению кодирования стего. Такая стегосистема показана на рис. 3.3.
Рис. 3.3. Структурная схема двоичной стегосистемы
Утверждение 3.5: Для двоичной стегосистемы при величинах искажений скрытая ПС определяется в виде
, (3.13)
где, по определению, , и .
Оптимальная атака нарушителя определяется в виде , где есть случайная двоичная последовательность, распределенная по бернуллиевскому закону с вероятностью появления единичного символа . Для и скрытая ПС равна . Для и , скрытая ПС равна .
Опишем распределения переменных стегосистемы, при которых достигается такая величина скрытой пропускной способности. Для данной стегосистемы переменную U можно формировать как U = X или U = Z, причем оба варианта выбора могут быть оптимальны, так как в качестве операции встраивания используется операция суммирования по модулю 2.
Для и скрытая ПС равна . Заметим, что на первый взгляд удивительно, что при скрытая ПС не равна нулю независимо от значения . Это объясняется тем, что при преобразовании скрываемого сообщения M в последовательность искажение не является равновероятным: скрывающий информацию может выбрать такое распределение ошибок , при котором минимизируется изменение сообщения M. Для скрытая ПС равна нулю при любых значениях . Нетрудно заметить, что при выход канала связи не зависит от его входа X, что означает обрыв канала связи. И если при обрыве канала связи не передается никакой информации по открытому каналу связи, то тем более не передается по скрытому каналу, образованному на основе открытого канала.
Применим следствие 3.4 для анализа двоичной стегосистемы. Мы должны проверить, что распределения для и имеют седловую точку платежа . Сначала зафиксируем . Полагая , получим
где равенство (а) справедливо в соответствии с определением условной взаимной информации, (b) выполняется благодаря тому, что есть марковская цепь, неравенство (с) справедливо, так как условие уменьшает энтропию. Равенство достигается в (с) если и только если , следовательно, независима от . Неравенство (d) справедливо, так как Z и W независимы в силу того, что формируют марковскую цепь и . Равенство достигается, если переменная Z имеет бернуллиевское распределение с дисперсией . Распределение удовлетворяет обоим неравенствам с равенством и поэтому максимизирует значение
Второй шаг заключается в фиксации и минимизации над . При определенном ранее распределении , и независимы. Так как формирует марковскую цепь, и также независимы.
Мы имеем
,
где неравенство (а) справедливо, так как условие уменьшает энтропию, и неравенство (b) справедливо потому, что Z и W независимы и , которое становится равенством, если W — переменная с бернуллиевским распределением с вероятностью единичного символа .
Рассмотренная двоичная стегосистема похожа на систему шифрования однократной подстановки (шифр гаммирования с бесконечной равновероятной независимой шифрующей гаммой). При независимой и равновероятной последовательности выполняется равенство , что означает, что эта система удовлетворяет требованию к совершенным криптосистемам [1], следовательно, перехват и анализ криптограммы Х не дает атакующему никакой информации о защищаемом сообщении Z. Однако эта двоичная система удовлетворяет также требованию к совершенным стеганографическим системам: распределения и идентичны, поэтому для нарушителя невозможно определить, принадлежат ли перехваченные данные к распределению пустых контейнеров или к распределению стего со встроенным сообщением [17]. Подробно совершенные стегосистемы будут описаны в следующем разделе. Однако заметим, что в рассматриваемой стегосистеме предполагается, что контейнеры и, соответственно, стегограммы описываются бернуллиевским распределением, что обычно не характерно для реальных систем скрытия информации.
Рассмотрим пример двоичной стегосистемы с выбором U = Z. Пусть требуется скрытно передать сообщение M, которое является цифровым представлением речевого сигнала. Первые несколько отсчетов речевого сигнала в моменты времени дискретизации t1, t2, t3, t4 принимают десятичные значения M1 = 0, M2 = 17, M3 = 35, M4 = 67 (рис. 3.4а). В общем виде скрываемое сообщение может быть представлено в виде M = (M1, M2, M3, M4,). В двоичной форме скрываемое сообщение запишем как
M1 = 0000 0000, M2 = 0001 0001, M3 = 0010 0011, M4 = 0100 0011,
В данной записи младшие двоичные разряды расположены справа. Преобразуем двоичную последовательность M в двоичную последовательность Z с погрешностью . В двоичной стегосистеме погрешность кодирования вычисляется по метрике Хэмминга. Пусть искажение = 1/8. Следовательно, для формирования последовательности = ( , , , ,…) скрывающий информацию искажает восьмую часть битов последовательности M. Для уменьшения погрешности скрываемого сообщения ему целесообразно искажать только младшие биты двоичной последовательности M. Поэтому скрывающий информацию выберет последовательность Z, например, такого вида: = 0000 0001, = 0001 0010, = 0010 0011, = 0100 0010,…
#i_319.png
Рис. 3.4. Пример двоичной стегосистемы с искажениями D1 = 1/8 и D2 = 1/16
В десятичном виде последовательность Z показана на рис. 3.4б. C помощью генератора случайных чисел сформируем секретный ключ K = (K1, K2, K3, K4, …).
K1 = 1001 0101, K2 = 0010 1110, K3 = 1101 1001, K4 = 0110 1001, …
Сформируем стегограмму по правилу , где X = ( , , , ,).
= 1001 0100, = 0011 1100, = 1111 1010, = 0010 1011,
Пусть искажение = 1/16. Нарушитель случайным образом формирует двоичную последовательность W, в которой вероятность появления единичных символов равна . Например, W = ( , , , ,) имеет вид
= 0000 0100, = 0000 0000, = 0000 0010, = 0000 0000,
Атакующее воздействие представляет собой сложение по модулю 2 стегограммы X и шумовой последовательности W. Образованное искаженное стего Y = ( , , , ,) имеет вид
= 1001 0000, = 0011 1100, = 1111 1000, = 0010 1011,
Получатель складывает последовательность Y с последовательностью ключа K для формирования принятой .
= 0000 0101, = 0001 0010, = 0010 0001, = 0100 0010,
В декодере получатель восстанавливает сообщение M из последовательности . В самом простом случае = . Вид последовательности показан на рис. 3.4 в. Если скрываемое сообщение представляет собой речевой сигнал, то при указанных величинах искажений и степень близости M и , то есть качество обеспечиваемой скрытой телефонной связи, для ряда телекоммуникационных задач может быть оценено удовлетворительной.
3.5. Теоретико-игровая формулировка информационно-скрывающего противоборства
Скрывающий информацию выбирает алфавит и скрывающее преобразование из множества . Атакующий выбирает атакующее воздействие из множества . В теореме 3.3 предполагается, что атакующий знает распределение , а декодер знает распределения Q и . Это вполне разумное предположение, хотя оно может в некоторых случаях и не выполняться на практике. Рассмотрим теоретико-игровую постановку противоборства между скрывающим информацию и атакующим.
Скрывающий информацию. Он желает обеспечить гарантированную скорость безошибочной передачи при любой атаке, при которой атакующее воздействие приводит к величине искажения не более согласно выражения (3.7). Пусть он синтезирует стегосистему при предположении, что атакующий знает описание используемого скрывающего преобразования. При этом предположении скрывающий информацию может гарантировать, что минимальная скорость безошибочной передачи скрытой информации определяется выражением (3.9), которое для удобства повторяем:
.
Такой метод часто рассматривается как безопасная стратегия в теории игр [21]. Для максимизации скорости согласно выражения (3.9), декодер получателя должен знать описание используемого атакующего воздействия.
Атакующий: Он стремится минимизировать скорость безошибочной передачи при любой стратегии скрытия информации, которая удовлетворяет искажению кодирования не более согласно выражения (3.5). Соответственно, нарушитель должен знать описание используемого скрывающего преобразования. Он может строить атакующее воздействие при прежнем предположении, что скрывающий информацию и декодер знают вероятностные характеристики используемого воздействия. При этом предположении, зная описание используемого скрывающего преобразования, атакующий может гарантировать, что скрываемая информация не способна надежно передаваться на скорости большей, чем
. (3.14)
Седловая точка. В соответствии с терминологией теории игр, величины пропускной способности согласно выражений (3.9) и (3.14) являются, соответственно, нижней и верхней ценой игры [21]. Если они равны, их значение определяет седловую точку игры. Скрывающий информацию и атакующий выбирают, соответственно, распределения и , которые удовлетворяют условию седловой точки.
Если какая-либо из противоборствующих сторон выбирает стратегию, отличающуюся от условия седловой точки, а вторая сторона придерживается условия седловой точки, то первая сторона уменьшает свои шансы на успех
, . (3.15)
Из выражения (3.15) видно, что если нарушитель использует неоптимальную стратегию , то величина скрытой ПС может быть увеличена по сравнению со случаем равновесия игры ( ). Соответственно, если скрывающий информацию отклоняется от своей оптимальной стратегии , то величина скрытой ПС может быть уменьшена.
Таким образом, если действия противоборствующих сторон заранее известны (случай чистых стратегий обоих игроков), то обоим целесообразно придерживаться условия седловой точки игры. Этот случай удобен для расчета величины скрытой ПС стегоканала. Однако в реальных информационно-скрывающих системах противоборствующие стороны стремятся скрыть стратегию своих действий. Атакующий может попытаться достоверно определить используемое скрывающее преобразование, анализируя перехваченные стего. Соответственно, декодер может пытаться вычислить вероятностные характеристики атакующего воздействия, анализируя искаженные стего. Для достоверной оценки и необходимо иметь универсальный декодер на множестве и , соответственно. Существует развитая теория универсального декодирования для составных каналов [18], но расширение этой теории и построение практически реализуемых алгоритмов универсального декодирования для информационно-скрывающих систем пока является нерешенной проблемой. Поэтому для реальных стегосистем характерны ситуации, когда точные описания стратегий действий игроков неизвестны.
Смешанные стратегии: Рассмотрим случай, когда игроки не знают стратегию оппонента. Это означает использование смешанной стратегии в теоретико-игровой терминологии. В этом случае скрывающий информацию и атакующий неизвестным для противостоящей стороны образом выбирают используемые стратегии и Q в соответствии с вероятностными распределениями и .
Таким образом, скрывающее преобразование и атакующее воздействие могут быть неэргодичны на длительных промежутках. Например, множество возможных стратегий для атакующего может включать недетерминированно выбираемые атаки из программы Stirmark [22]. Эта программа широко используется для тестирования практических систем водяного знака, использующих в качестве контейнера изображение. Множество возможных стратегий для скрывающего информацию может включать стратегию рандомизированного кодирования с расширением спектра [4], или недетерминированное квантование контейнера [23], или недетерминированные встраивание с одновременным изменением скрываемого речевого сигнала и контейнерного речевого сигнала [24]. При использовании смешанных стратегий скрывающий информацию на распределении , максимизирует платеж, равный , а атакующий минимизирует этот платеж на распределении . Для неэргодических скрывающих преобразований и атакующих воздействий определим средние искажения в виде
, (3.16)
, (3.17)
на распределениях и . Преимущество определения искажений в виде (3.16) и (3.17) заключается в том, что требуется учитывать только два искажения вместо значений искажений для каждой возможной пары распределений в выражениях (3.5) и (3.7).
Однако точное описание информационно-скрывающего противоборства при смешанных стратегиях противостоящих сторон затруднительно, так как возможное множество зависит от множества при распределении . В соответствии с теоретико-игровой терминологией, эти множества являются связанными [21]. К счастью, в некоторых случаях связь между этими множествами может быть несущественной. Например, это выполняется при малых величинах искажений и по сравнению с энергией контейнера, независимых от информационно-скрывающей стратегии, когда распределение стегограмм асимптотически приближается к распределению контейнеров. Этот случай будет далее рассмотрен в пункте 3.8. Если зависимость между множествами и является незначительной, то теоретико-игровой анализ дает следующие результаты. Сначала заметим, что функция непрерывна и ограничена сверху и снизу, и ее аргументы принадлежат компактному подмножеству. В общем случае функция выпукла в Q, но не вогнута в . Следовательно, оптимальной стратегией атакующего является чистая стратегия, в то время как оптимальной стратегией для скрывающего информацию есть смешанная стратегия.
Отметим, что использование смешанной стратегии защиты информации характерно для многих задач передачи информации в условиях преднамеренных помех. Примером является работа радиолинии в режиме псевдослучайной перестройки рабочей частоты (ППРЧ). Перескоки по частоте непредсказуемы для атакующего, осуществляющего радиоэлектронное подавление радиолинии. Атакующий, зная, что вероятность использования каждого значения частоты примерно равновероятна, максимизирует свои шансы на подавление радиолинии формированием заградительной помехи с равновероятным распределением в полосе рабочих частот. Известно, что выбор рандомизированной стратегии отправителем (работа в режиме ППРЧ) существенно повышает его шансы на доставку сообщений в условиях радиоэлектронного подавления, а выбор атакующим чистой стратегии максимизирует вероятность успешного подавления [25]. Возвращаясь к стегосистемам, отметим, что скрывающий информацию существенно повышает свои шансы на безошибочную доставку скрываемых сообщений в условиях активного противодействия, если стратегия скрытия неизвестна оппоненту. Поэтому целесообразно держать в секрете от атакующего выбранное распределение , а чтобы атакующий не смог определить его в процессе наблюдения за каналом, оно должно изменяться во времени непредсказуемым для оппонента образом.
Приведем простой пример смешанной стратегии скрывающего информацию и чистой стратегии атакующего. Пусть отправитель и получатель скрываемых сообщений для их встраивания и извлечения используют синхронно работающие криптографически стойкие генераторы псевдослучайных последовательностей. Напомним, что криптографически стойким генератором называется такой генератор, для которого нарушитель с полиномиально ограниченными вычислительными ресурсами, наблюдая за его выходной последовательностью произвольной длины, не в состоянии предсказать очередной генерируемый символ с вероятностью выше вероятности случайного угадывания [26]. В качестве начального заполнения в такие генераторы отправителем и получателем скрываемых сообщений записывается секретный ключ, и генераторы одновременно запускаются. Выходная последовательность генератора определяет те элементы контейнера, в которые встраиваются скрываемые сообщения, а оставшиеся элементы контейнера передаются без изменения. Если нарушитель не в состоянии различить между собой элементы стего и пустого контейнера, то для него оптимальное подавление стегоканала заключается в наложении на перехватываемую последовательность равновероятных ошибок. В описанной стегосистеме чем больше элементов пустого контейнера передается по сравнению с числом элементов стего, тем меньше вероятность разрушения скрываемых сообщений при фиксированной величине .
Далее в главе 4 будет показано, что рандомизированная стратегия полезна и для скрытия в тайне факта передачи сообщений при пассивном нарушителе.
Рис. 3.5. Информационно-скрывающее противоборство при чистой стратегии атакующего и смешанной стратегии скрывающего информацию
На рис. 3.5 проиллюстрирована игра между скрывающим информацию и атакующим. Атакующий придерживается чистой стратегии в вероятностном распределении , что на рисунке соответствует горизонтальной прямой, а скрывающий информацию — вероятностного распределения , что на рисунке обозначено вертикальной кривой справа. Кривая в центре рисунка определяет возможные значения цены игры при данном атакующем воздействии. Выбором своей смешанной стратегии скрывающий информацию может повысить свой выигрыш. Для максимизации величины скрытой ПС он выбирает выгодную для себя точку на кривой в центре рисунка.
3.6. Стегосистемы с бесконечными алфавитами
Результаты, приведенные выше, могут быть расширены на случай стегосистем с бесконечными алфавитами контейнеров и стего X и ключей K. Заметим, что стегосистемы с непрерывными сообщениями и ключами существенно отличаются от известных криптографических систем. Для бесконечномерных сигналов существуют криптосистемы, например, использующие частотные или временные преобразования речи или изображений. Системы шифрования, в которых криптографические преобразования осуществляются над непрерывными в пространстве или времени сигналами, называются маскираторами и, как правило, не обеспечивают высокой криптографической стойкости [27]. Забегая вперед, скажем, что в отличие от криптосистем, для стегосистем с бесконечными алфавитами известны доказуемые оценки их устойчивости к атакам нарушителя. К тому же маскираторы используют ключ конечной длины, элементы которого принадлежат дискретному алфавиту. И, вообще, представить себе произвольную криптосистему с ключом, элементы которого принадлежат бесконечному алфавиту, довольно затруднительно.
Расширим определение взаимной информации для переменных и K стегосистемы, принадлежащих бесконечным алфавитам в виде [25]:
где дискретные переменные и , принадлежащие конечным алфавитам, аппроксимируют с некоторой допустимой погрешностью соответствующие непрерывные переменные. Если все функции плотности вероятности являются абсолютно непрерывными, то результаты из пункта 3.3 справедливы при замене соответствующих сумм интегралами.
Особый интерес имеет случай контейнеров , распределенных по нормальному закону и оцениваемых среднеквадратической погрешностью вида . Назовем этот случай гауссовским контейнером. Он позволяет точно оценит величину скрытой ПС. Пусть множество X совпадает с множеством действительных значений, математическое ожидание значений отсчетов контейнера равно нулю и их дисперсия равна . В дальнейшем будем использовать условное обозначение нормального распределения с математическим ожиданием и дисперсией в виде .
Рассмотрим два случая. В первом случае секретным ключом К стегосистемы является контейнер . Во втором случае контейнер получателю не известен (слепая система скрытия информации).
Случай негауссовского распределения контейнера намного сложнее, но полезные результаты также могут быть получены. В частности, нижняя граница скрытой ПС может быть получена оценкой оптимальной атаки при конкретной, в общем случае подоптимальной, информационно-скрывающей стратегии . Нижние и верхние границы скрытой ПС могут быть вычислены оценкой оптимальной информационно-скрывающей стратегии при конкретной, в общем случае подоптимальной, атаке :
. (3.18)
Эти границы полезны для негауссовских контейнеров, полагая что распределения и выбраны соответствующим образом (см. пункт 3.8). Разумеется, если нижняя и верхняя границы в выражении (3.18) равны, пара распределений дает седловую точку платежа в формуле (3.8).
3.6.1. Использование контейнера как ключа стегосистемы
Рассмотрим случай, когда в качестве секретного ключа стегосистемы используется описание контейнера. Соответственно, ключ-контейнер должен быть известен получателю скрываемого сообщения. Для этого случая теорема 3.6 определяет величину скрытой ПС стегоканала с бесконечным алфавитом контейнеров.
Назовем гауссовским атакующим воздействием воздействие нарушителя, при котором искаженное стего имеет нормальное распределение с математическим ожиданием, величина которого пропорциональна среднему значению стего, и дисперсией, величина которой пропорциональна искажению .
Теорема 3.6: Пусть в стегосистеме с бесконечным алфавитом используется среднеквадратическая мера погрешности вида . При использовании контейнера в качестве секретного ключа K:
1) если контейнер имеет нормальное распределение с нулевым средним и дисперсией , то при использовании оптимального скрывающего преобразования величина скрытой ПС равна
(3.19)
где . Оптимальное скрывающее преобразование задается в виде , где переменная Z имеет нормальное распределение с нулевым средним и дисперсией и независима от контейнера . Оптимальная атака нарушителя есть гауссовское атакующее воздействие с функцией распределения вида
(3.20)
2) если контейнер является негауссовским с нулевым средним и дисперсией , то выражение (3.19) определяет верхнюю оценку скрытой ПС.
На рис. 3.6 представлена стегосистема с гауссовским контейнером и гауссовским атакующим воздействием. Скрываемое сообщение М преобразуется в последовательность Z с искажением кодирования не более . По условию последовательность Z описывается нормальным законом распределения с нулевым средним и дисперсией и независима от гауссовского контейнера . Нарушитель искажает стего X с помощью гауссовского атакующего воздействия. Для этого согласно рис. 3.6 на стего сначала накладывается шум W, описываемый нормальным законом распределения с нулевым средним и дисперсией , тем самым формируя промежуточную последовательность . Искаженное стего Y получается умножением последовательности V на коэффициент . На приемной стороне получатель восстанавливает суммированием последовательностей и .
Рис. 3.6. Стегосистема с гауссовским контейнером и гауссовским атакующим воздействием
Из формулы (3.19) видно, что величина скрытой ПС растет при увеличении отношения / и при уменьшении коэффициента . Коэффициент принимает минимальное значение, равное 1, при . Очевидно, что в реальных стегосистемах обычно > , следовательно, увеличение скрытой ПС может быть достигнуто за счет увеличения дисперсии . Скрытая ПС равна нулю, если , что соответствует случаю использования контейнера, энергия которого меньше величины искажения при атакующем воздействии.
Отметим, что в соответствии с выражением (3.19) для обеспечения ненулевой скрытой ПС при выполнении неравенства вклад обоих слагаемых суммы равноценен. Это потенциально обеспечивает возможность маневра при синтезе стегосистем: увеличивать или искажение кодирования при встраивании скрываемого сообщения или энергию контейнера, или сочетать оба подхода.
Для случая гауссовских контейнеров с распределением оптимальное атакующее воздействие легко синтезируется нарушителем. Атакующий просто заменяет стего шумовым сигналом, имеющим нормальное распределение с математическим ожиданием и дисперсией при . Если допустимое для нарушителя искажение достаточно велико, чтобы выполнилось неравенство , то согласно выражения (3.20) оптимальной стратегией нарушителя является, перехватив стего , замена его на сигнал , независимый от . Такая атака достаточно просто реализуется на практике. Таким образом, чтобы гарантированно подавить канал скрытой связи, нарушителю надо внести в стего искажение величиной порядка энергии контейнера.
В целом недопустимо малая величина скорости передачи скрываемой информации при активном противодействии нарушителя является основным недостатком многих ранее предложенных системах водяного знака, в которых водяной знак прячется в наименее значимых битах контейнера, что является уязвимым даже к небольшим по величине искажениям . Такие водяные знаки легко удаляются атакующим простой рандомизацией наименее значимых битов, при этом в контейнер вносятся минимальные искажения. Следовательно, в более совершенных системах водяные знаки должны скрытно внедряться в существенно значащие компоненты контейнера. Однако при этом увеличивается величина искажения кодирования и поэтому ухудшается качество контейнера (что актуально для систем ЦВЗ) или ухудшается незаметность стегоканала (что актуально для систем скрытия от нарушителя факта передачи информации).
Таким образом, задача синтеза стегосистемы может быть сформулирована как задача поиска компромисса между ее характеристиками, так как улучшение одного ее параметра, например, величины скрытой ПС, приходится обеспечивать за счет других параметров, таких как скрытность передачи информации или устойчивость к разрушающему воздействию.
3.6.2. Слепая стегосистема с бесконечным алфавитом
Рассмотрим стегосистему с бесконечным алфавитом, в которой декодеру получателя неизвестно описание использованного отправителем контейнера. Очевидно, что скорость достоверной передачи скрываемой информации в слепых системах не может быть выше, чем скорость передачи в случае, когда декодер имеет доступ к дополнительной информации, такой как использованный контейнер. Поэтому в слепых стеганографических системах величина скрытой ПС ограничена сверху выражением (3.19) для произвольных распределений контейнерных сигналов.
Рассматриваемая далее теорема 3.7 для слепых стегосистем определяет оптимальную стратегию скрывающего информацию и оптимальное атакующее воздействие для гауссовских контейнеров. Эта пара оптимальных стратегий противоборствующих сторон формирует решение седловой точки. Оптимальная атака нарушителя описывается гауссовским атакующим воздействием с распределением согласно выражения (3.20). Теорема 3.7 также определяет величину скрытой ПС для слепых информационно-скрывающих систем.
Теорема 3.7. Пусть в слепой стегосистеме с бесконечным алфавитом используется среднеквадратическая мера искажения вида . Контейнер описывается нормальным распределением с нулевым математическим ожиданием и дисперсией . Тогда следующее построение стегосистемы дает седловую точку платежа в выражении (3.8):
где коэффициенты принимают значения , переменная описывается нормальным распределением с нулевым математическим ожиданием и дисперсией и независима от контейнера , а распределение описывает гауссовское атакующее воздействие вида (3.20). Величина скрытой ПС слепой стегосистемы определяется выражением (3.19).
Таким образом, в общем случае максимальная скорость безошибочной передачи скрытой информации не зависит от того, знает или нет декодер описание контейнера.
Прокомментируем суть теоремы 3.7.
1. Рассмотрим построение скрывающего преобразования в виде , где значение отличается от оптимальной величины . Скорость безошибочной передачи скрываемых сообщений определяется в виде:
(3.21)
Рассмотрим частный случай построения скрывающего преобразования, при котором коэффициент . Это означает, что встраивание скрываемого сообщения совершенно не зависит от используемого контейнера . В явном виде этот вариант построения стегосистемы показан на рис. 3.2.
Из выражения (3.21) определим скорость безошибочной передачи для такого класса кодеров стегосистемы для случая малых искажений контейнера в виде
. (3.22)
Игнорирование характеристик контейнера существенно уменьшает скорость надежной передачи скрываемой информации. Уменьшение величины скрытой ПС при отклонении от оптимального построения скрывающего преобразования наглядно показано на рис. 3.7. Из графика видно, насколько величина скрытой ПС при оптимальном построении (сплошная линия) превышает величину скрытой ПС при неиспользовании характеристик контейнера выбором (штрих-пунктирная линия). При заданных величине искажения = 1 и дисперсии контейнера игнорирование характеристик контейнера приводит к снижению величины скрытой ПС в десятки раз.
Рис. 3.7. Зависимость скрытой ПС стегоканала с гауссовским контейнером при и ,
оптимальное скрывающее преобразование,
скрывающее преобразование при ,
скрывающее преобразование при .
Для оптимального построения скрывающего преобразования, если искажение кодирования существенно больше энергии контейнера , величина скрытой ПС очень мала. По мере увеличения величины искажения кодирования скрытая ПС быстро увеличивается, достигая максимума при .
2. Рассмотрим построение стегосистемы при выборе (соответственно, ). Практическая схема такой стегосистемы, в которой кодер построен по принципу кодовой книги, описана в [23]. Из выражения (3.21) следует, что максимальная скорость такой системы равна . Можно показать, что скорость передачи скрываемых сообщений равна нулю для . Следовательно, при выполнении неравенства такие стегосистемы нереализуемы. Зависимость скрытой ПС для случая вида показана на рис. 3.7 пунктирной линией при параметрах и . Из представленных графиков видно, что из-за неоптимальности построения стегосистемы для случая вида максимальный проигрыш в величине скрытой ПС составляет порядка 0,15 бит на отсчет гауссовского контейнера.
Из двух рассмотренных случаев очевидно, что стегосистему целесообразно строить для выбора , где .
3. Рассмотрим возможные атаки нарушителя на слепую стегосистему с бесконечным алфавитом. Атака с аддитивным белым гауссовским шумом со средним значением и мощностью является в общем случае подоптимальной, но она становится асимптотически оптимальной при так как в этом случае . Напротив, атака, в которой делается попытка разрушить скрытое сообщение путем восстановления пустого контейнера из перехваченного стего с использованием правила максимальной апостериорной вероятности (МАВ) вида , является совершенно неэффективной. В такой атаке , поэтому значения X и Y совпадают при . В этом случае условие выполняется с равенством и данная атака не способна удалить скрываемую информацию. Однако на практике такая стратегия действий нарушителя может быть достаточно эффективной, если законным получателем используется неоптимальный декодер, например, восстанавливающий водяные знаки при простом масштабировании яркости пикселов изображений, что приводит к невозможности обнаружения водяных знаков в таких декодерах.
4. На рис. 3.7 представлены зависимости достижимой скорости безошибочной передачи для гауссовских контейнеров при различных информационно-скрывающих стратегиях. Скорость является функцией от величины искажения при искажении с дисперсией контейнера . Показано, что при использовании оптимальной стратегии в каждом отсчете гауссовского контейнерного сигнала можно надежно передавать до 0,5 бит скрываемой информации (сплошная линия). В ряде работ приведены оценки достигнутых в реально построенных стегосистемах скоростей передачи скрываемой информации [4,5]. Достигнутые скорости во много раз меньше величины скрытой ПС, что должно стимулировать поиск более совершенных принципов построения стегосистем.
5. Вернемся к случаю малых искажений при . Из теории связи известно, что для достижения скорости безошибочной открытой передачи информации очень близкой к величине пропускной способности канала связи, требуется построить блочный код достаточно большой длины N, для которого количество кодовых комбинаций равно [25]. Соответственно, сложность реализации декодера системы открытой передачи пропорциональна числу вычислительных операций . В работе [2] показано, что для достижения скрытой ПС необходим блочный код с числом кодовых комбинаций не , а . Соответственно, сложность реализации стегосистемы пропорциональна числу операций . Величина обычно является существенно больше по сравнению со скоростью . Следовательно, построить стегосистему со скоростью передачи скрываемой информации, приближающейся к величине скрытой ПС, значительно сложнее, чем построить систему передачи открытой информации со скоростью, приближающейся к величине ПС открытого канала связи.
Таким образом, если мы желаем передавать информацию по каналу связи не только безошибочно, но и скрытно, то мы должны за это дополнительно платить. Эта плата заключается как в меньшей скрытой ПС по сравнению с пропускной способностью каналов открытой связи, так и в большей сложности стегосистемы по сравнению со сложностью системы открытой связи. Этот вывод подтверждается накопленным к настоящему времени опытом построения стегосистем. Известно, как сложно построить практическую стегосистему, способную безошибочно передавать скрываемую информацию в условиях целенаправленного активного противодействия нарушителя. Например, до сих пор известные системы ЦВЗ не обеспечивают требуемую защищенность авторских и имущественных прав производителей информационной продукции при всевозможных практически реализуемых атаках злоумышленников [22].
3.7. Построение декодера стегосистемы
Рассмотрим возможные методы извлечения получателем скрываемой информации из искаженной нарушителем стегограммы. Оптимальные характеристики декодирования достигаются использованием правилом МАВ декодирования вида , где В есть кодовая книга для последовательностей . Оптимальность декодера обеспечивается исчерпывающим перебором по кодовой книге. Для оптимальных информационно-скрывающей и атакующей стратегий
, (3.23)
где коэффициент определяется через математическое ожидание значений и в виде
,
где , если . Декодер просто масштабирует принятое значение с коэффициентом и находит кодовое слово, ближайшее по евклидовой метрике к значению . Практическая система водяного знака, основанная на этом принципе, описана в работе [16]. Для построения стегосистемы при выборе , описанного в главе 3.6.2, величины приблизительно одинаковы для всех последовательностей , и правило МАВ декодирования согласно (3.23) приблизительно эквивалентно правилу максимума корреляции вида
. (3.24)
Если сигналы и не являются гауссовскими, или если величины не одинаковы для всех , то правило максимума корреляции (3.24) подоптимально. В известных стегосистемах метод максимума корреляции, подобный (3.24), часто используется для оценки характеристик алгоритмов обнаружения водяных знаков. В декодере проверяется гипотеза и ее альтернатива для конкретного фиксированного значения [14]. Детектирование искомого водяного знака заключается в сравнении величины корреляции с некоторым пороговым значением, значение которого выбирается из условия, чтобы вероятность ошибочного решения декодера была бы достаточно мала. Другими часто используемыми в декодере стегосистемы статистиками являются нормализованный коэффициент корреляции между и [15,28].
3.8. Анализ случая малых искажений стего
Случай малых величин искажений и типичен для многих информационно-скрывающих задач. Этот случай для стегосистем аналогичен случаю малых искажений в теории зависимости скорости передачи открытых сообщений от величины их искажения [1]. Малыми искажениями в стегосистемах считаются те искажения контейнера, при которых величины и во много раз меньше дисперсии . В большинстве реальных стегосистемах величины искажений и являются малыми. В стегосистемах, ориентированных на необнаруживаемость факта наличия скрытой связи это обусловлено требованиями скрытности связи, в системах ЦВЗ формирователь водяного знака и атакующий вынуждены ограничивать искажения и , сохраняя потребительское и иные качества контейнера.
В случае малых искажений, при использовании оптимальных скрывающих преобразований величина скрытой ПС согласно выражения (3.19) близка к величине ½ бита на отсчет контейнера при = .
На рис. 3.8 показана зависимость скрытой ПС в битах на отсчет гауссовского контейнера от величины искажения при фиксированном искажении кодирования и дисперсии контейнера = 10. Из графика видно, что с ростом величины искажения значение скрытой ПС экспоненциально быстро уменьшается как для оптимального скрывающего преобразования, так и при выборе при построении стегосистемы случая . При малых величины скрытая ПС незначительно проигрывает оптимальному случаю, но и при = для таких систем скрытно передавать информацию нельзя (обрыв стегоканала). Для большинства применений стегосистем в условиях активного противодействия нарушитель может искажать контейнер на величину сопоставимую с величиной искажения кодирования. Например, такая ситуация характерна для атак на систему ЦВЗ, при условии сохранения требуемого качества контейнера. Или когда нарушитель подавляет заградительной помехой предполагаемый канал передачи скрываемых сообщений. Во втором случае нарушитель не ограничен необходимостью сохранения контейнера и может применить помеху с мощностью численно больше помехи вносимой при кодировании отправителем сообщений. Отметим, что в обоих случаях стегосистема, построенная по принципу , непригодна для практического использования.
Рис 3.8. Зависимость скрытой ПС в битах на отсчет гауссовского контейнера при и ,
оптимальное скрывающее преобразование,
при выборе ,
при выборе .
На рис. 3.8 также показана зависимость скрытой ПС для выбора при встраивании скрываемого сообщения. Видно, что такой принцип построения стегосистемы даже при по сравнению с другими вариантами построения обеспечивает существенно меньшую величину скрытой ПС. Когда величина искажения приближается к величине энергии контейнера, значения скрытой ПС при оптимальном скрывающем преобразовании и при выборе становятся сопоставимыми. Однако столь большие величины искажения не характерны для стегосистем. При использовании в качестве контейнеров звуковые (речевые) сигналы или изображения допустимая степень искажения таких контейнеров практически ограничивается. Например, если заверять речевые или музыкальные файлы водяными знаками, то для сохранения минимально приемлемого их качества требуется обеспечить отношение мощности заверяемого сигнала к мощности помехи не хуже 10–20 дБ. Для заверяемых изображений отношение сигнал/помеха должно быть не хуже 30 дБ. Если к стегосистеме предъявляются требования необнаруживаемости факта существования стегоканала, то требуемое отношение сигнал/помеха должно быть существенно выше. Следовательно, для наиболее употребительных в стеганографии контейнеров требуется обеспечить отношение . Заметим, что аналогичным образом на практике приходится уменьшать и отношение . Таким образом, для стегосистем практически интересен случай, когда величины искажения и существенно меньше энергии контейнера.
Особый интерес вызывает вопрос, как соотносятся между собой величины скрытой ПС стегоканала передачи скрываемых сообщений и обычной пропускной способности открытого канала передачи. Пусть по открытому каналу передается сигнал с нормальным распределением. На передаваемый сигнал воздействует гауссовский шум с мощностью . Из теории связи известно, что максимальная скорость передачи по открытому каналу равна
Пусть в стегосистеме в качестве контейнера используется рассмотренный сигнал с нормальным распределением. В него встраивается скрываемое сообщение, при этом в контейнер вносится искажение кодирования величиной . На стего накладывается такой же шум с мощностью , как и в открытом канале. Таким образом, для стегосистемы рассматривается случай гауссовского скрывающего преобразования и гауссовского атакующего воздействия. Таким образом, стегосистема и система открытой передачи поставлены в одинаковые условия (за исключением искажения кодирования, отсутствующего для системы открытой передачи). Для стегосистемы рассматривается случай гауссовского скрывающего преобразования и гауссовского атакующего воздействия.
На рис. 3.9 показаны зависимости величин ПС открытого канала передачи гауссовского сигнала и скрытой ПС стегоканала при оптимальном скрывающем преобразовании этого же гауссовского контейнера с дисперсией = 10. Пропускная способность выражена в битах на отсчет гауссовского сигнала (контейнера). Для стегосистемы рассмотрен случай фиксированной величины искажении кодирования (сплошная линия) и случай (штрих-пунктирная линия). Из рис. 3.9 видно, что ПС открытого канала передачи существенно превышает скрытую ПС стегоканала, причем при уменьшении искажения кодирования величина скрытой ПС составляет все меньшую часть величины ПС открытого канала. Следовательно, для случая малых искажений и , составляющего наиболее практически важный случай применения стегосистем, за скрытность передачи информации приходится платить уменьшением скорости защищенной передачи по сравнению со скоростью открытой передачи в десятки раз. Можно сделать вывод, что при образовании стегоканала внутри открытого канала передачи основной ресурс этого открытого канала расходуется не на передачу скрываемого сообщения, а на передачу контейнера, выступающего в роли сигнала прикрытия скрываемого сообщения.
Рис. 3.9. Зависимость ПС открытого канала передачи гауссовского сигнала от искажения (пунктирная линия) и скрытой ПС стегоканала с оптимальным скрывающим преобразованием гауссовского контейнера при и (сплошная линия), при и (штрих-пунктирная линия)
Используя среднеквадратическую метрику покажем, что величина скрытой ПС независима от статистики контейнера при асимптотическом уменьшении величин искажений и . Это дополняет полученные в главе 3.6.2 результаты для гауссовского распределения, которые справедливы для всех уровней искажения. Скрытая ПС существенно зависит от геометрии областей малых искажений, увеличиваясь при таких малых областях, в которых распределение равномерно.
Теорема 3.8: Пусть в стегосистеме с непрерывным алфавитом используется среднеквадратическая мера искажений вида . В стегосистеме распределение контейнеров имеет нулевое среднее значение и дисперсию , оно ограничено и непрерывно. Тогда при величина стремится к значению скрытой ПС при гауссовском контейнере, равной . Построение стегосистемы, при котором асимптотически достигается максимальное значение скрытой ПС, совпадает с гауссовским случаем: , , где , последовательность имеет нулевое математическое ожидание, дисперсию и является независимой от контейнера , а распределение описывает гауссовское атакующее воздействие вида (4.3) при .
Рассматриваемые результаты имеют очень важное практическое значение. Они определяют, что при использовании таких контейнеров как видео или речевые, характеристики которых не распределены по нормальному закону, при малых величинах и величина скрытой ПС практически не уменьшается по сравнению со случаем гауссовских контейнеров. Для этого встраиваемая информация должна внедряться в такие малые участки контейнера, для которых распределение приближается к равномерному.
3.9. Атакующее воздействие со знанием сообщения
В рассмотренных ранее стегосистемах предполагалось, что нарушитель не знает правила преобразования скрываемого сообщения M в последовательность которая встраивается в контейнер. Следовательно, даже если нарушитель знает вероятностные характеристики множества скрываемых сообщений, то ему неизвестны характеристики множества . Теперь рассмотрим случай, когда нарушитель знает распределение последовательностей и пытается использовать это знание для разрушения сообщения M. Назовем такие действия нарушителя атакующим воздействием со знанием преобразованного в последовательность скрываемого сообщения. Как это ни удивительно, обладание этой информацией автоматически не означает, что нарушитель всегда способен удалить скрываемое сообщение из стего X.
Ясно, что в такой стегосистеме скрытая ПС ограничена сверху значением скрытой пропускной способности, вычисленной согласно теоремы 3.3, так как атакующий использует больше информации, чем оговорено в этой теореме. Но может ли скрытая ПС при данной атаке нарушителя быть строго больше нуля? Рассмотрим подробнее эту задачу. Опишем атакующее воздействие условной функцией распределения и пусть есть множество таких воздействий, удовлетворяющих неравенству
. (3.25)
Приведем теорему, похожую на теорему 3.3, но отличающуюся тем, что нарушитель дополнительно знает использованные скрывающим информацию кодовые слова , а также тем, что рассматриваемое в ней множество больше.
Теорема 3.9: Пусть атакующий знает описание стегосистемы и распределение используемых кодовых слов а декодер знает описание атакующего воздействия. Для любой атаки, приводящей к искажению , скорость достижима, если и только если , где
. (3.26)
Доказательство этой теоремы аналогично доказательству теоремы 3.3.
Следствие 3.10: Если в качестве секретного ключа стегосистемы использовать контейнер то при выборе величина скрытой ПС в выражении (3.26) одинакова с величиной скрытой ПС в выражении (3.9).
Схема доказательства этого следствия состоит из следующих шагов. Если декодер знает , то из следствия 3.4 выбор является оптимальным построением для скрывающего преобразования. С другой стороны, если , то величина дополнительной информации для атакующего равна нулю.
Для данной теоремы и следствия из него просматриваются некоторые аналогии из области криптографии. Если нарушитель знает шифруемое сообщение, но не знает секретного ключа, то при использовании стойкой криптосистемы он все равно не в состоянии определить, какая шифрограмма будет сформирована. Соответственно, для стегосистемы, если нарушитель знает внедряемое в контейнер сообщение, но не знает секретного ключа, то для него знание скрываемой информации не должно увеличивать его возможности по разрушению этого сообщения.
Очевидно, что условие накладывает определенные ограничения на стегосистему. Ключ стегосистемы должен выбираться из множества естественных контейнеров с вероятностными распределениями, весьма отличающимися от привычных для криптографии распределений ключевой информации. Этот ключ, элементы которого в общем случае принадлежат непрерывному множеству, должен быть точно известен отправителю и получателю скрываемых сообщений. Для таких стегосистем возникает проблема рассылки ключа очень большого объема. И, очевидно, такой ключ стегосистемы может быть использован только один раз.
3.10. Скрывающие преобразования и атакующие воздействия с памятью
Расширим основные результаты пункта 3.3 на простой класс атакующих воздействий и скрывающих преобразований с памятью. Реальные скрывающие преобразования во многом определяются корреляционными зависимостями между элементами используемых контейнеров. Практически используемые методы скрытия в контейнерах, представляющие собой изображения и речевые сигналы, во многом базируются на хорошо разработанных методах блочного преобразования, таких как дискретное косинусное преобразование, вейвлет-преобразование, векторное квантование и других, в которых на длине блока преобразования имеется существенная зависимость от других элементов блока. И так как скрывающее преобразование синтезируется с учетом той памяти, то нарушитель также использует атакующее воздействие с соответствующей памятью. Например, при скрытии информации в изображении с использованием алгоритма сжатия JPEG целесообразно строить атакующее воздействие, искажающее соответствующим образом весь блок пикселов (обычно матрицу 8 8 пикселов). Например, такие атакующие воздействия с памятью на блок реализованы в программе тестирования практических систем водяного знака Stirmark [22]. В этой программе комплексно используется ряд атакующих воздействий, таких как сжатие изображений по алгоритму JPEG, модификация и фильтрация значений яркости блоков пикселов, удаление и перестановка в изображении строк и столбцов пикселов, сдвиг и обрезание краев изображения и т. д.
Дадим формальное описание скрывающего преобразования атакующего воздействия с памятью. Пусть скрывающее преобразование и атакующее воздействие учитывают зависимости между элементами контейнера, отстоящими друг от друга не более чем на L позиций. Назовем L глубиной памяти скрывающего преобразования и атакующего воздействия. Из последовательности контейнера , в которой N > L, скрывающий информацию и атакующий формирует блоки с памятью вида и , соответственно. Пусть есть условная функция распределения из множества во множество , для которой выполняется ограничение вида (3.2). Рассмотрим блочное атакующее воздействие без памяти, описываемое расширением :
где есть i-ый блок вида и . Заметим, что длина блока N стегосистемы выбрана кратной глубине памяти L.
Функцию совместного распределения контейнера и ключа аналогичным образом представим в виде
Коль в стегосистемах используются зависимости между ключами и контейнерами, то из наличия памяти в контейнере должно следовать наличие аналогичной памяти в ключе стегосистемы. И если между элементами контейнера наблюдаются существенные корреляционные зависимости, что справедливо для большинства реальных контейнеров практически используемых стегосистем, то между элементами ключа стегосистемы также должны быть существенные корреляционные зависимости. Такие свойства ключа стегосистем существенно отличают их от криптосистем. В криптосистемах наличие каких-либо зависимостей между элементами ключа является признаком низкой криптографической стойкости.
Определение 3.10: Блочное скрывающее преобразование без памяти, приводящее к искажению не более , описывается произведением условных функций распределения вида
из множества во множество таких, что
. (3.27)
Определение 3.11: Обобщенное блочное скрывающее преобразование без памяти, приводящих к искажению не более , описывается множеством всех блочных скрывающих преобразований без памяти, удовлетворяющих условию (3.27).
Структурная схема стегосистемы при скрывающих преобразованиях и атакующих воздействиях с памятью показана на рис. 3.10.
Рис. 3.10. Структурная схема стегосистемы при скрывающих преобразованиях и атакующих воздействиях с памятью
Рассмотрим следующий результат, который является следствием теоремы 3.3 при использовании алфавитов и вместо алфавитов и . Алфавит может быть представлен в форме произведения без потери общности.
Теорема 3.11: Пусть атакующему известно описание скрывающего преобразования, а декодер знает описание и скрывающего преобразования и атакующего воздействия с глубиной памяти не более L. При любой атаке, приводящей к искажению не более , скорость R достижима, если и только если , где
(3.28)
,
и цепочка переходов есть марковская цепь.
Таким образом, если скрывающее преобразование имеет память ограниченной длины, то используя стандартный в теории связи прием укрупнения алфавитов, можно привести его к преобразованию без памяти. Такой же подход годится для атакующего воздействия с памятью, и в целом потенциальные возможности по достоверной передаче скрываемой информации и возможности по ее подавлению помехой не изменяются. Однако здесь надо учитывать, что для построения оптимальной стегосистемы и для оптимального ее подавления необходимо существенно увеличить размерность решаемых вычислительных задач, а сложность их решения, как правило, экспоненциально зависит от их размерности.
3.11. Стегосистемы идентификационных номеров
С позиций теории информации рассмотрим особенности построения и обеспечения устойчивости к атакам нарушителя одного практически очень важного класса информационно-скрывающих систем, называемых стегосистемами идентификационных номеров (ИН). В стегосистемах ИН, как описано в главе 1, в каждый экземпляр контейнера , предоставляемый определенному пользователю, встраивается ее индивидуальный номер. Таким образом, в качестве скрываемого сообщения передается уникальный номер, который может быть использован для отслеживания любого неавторизованного использования данного контейнера конкретным пользователем. Актуальным практическим примером рассматриваемой задачи информационного скрытия является защита авторских и имущественных прав при выпуске и продаже CD-дисков (DVD-дисков, видео или аудиокассет) с уникальными номерами, наличие которых позволяет отследить, с какого экземпляра были сделаны нелегальные («пиратские») копии. Стегосистемы ИН также востребованы в области служебного делопроизводства различных организаций, в которых разграничивается доступ к информационным ресурсам разных пользователей и требуется контролировать копирование электронных документов. В таких стегосистемах законный пользователь электронного документа или лицензионного информационного товара, или не имеющий законных прав доступа злоумышленник, не должны иметь возможности удалить из заверенного контейнера идентификационный номер или подменить его на другой номер таким образом, чтобы нельзя было бы обнаружить факт этих противоправных действий. При этом при встраивании идентификационной информации искажение кодирования должно быть достаточно малым, чтобы не ухудшить потребительские и иные качества заверяемого контейнера [29].
Известно, что трудно построить стегосистемы идентификационных номеров, устойчивые к атакующему воздействию на них. Дополнительно к атакам на обычные системы ЦВЗ для них существует очень опасная атака сговора между многими пользователями [28,30].
Опишем атаку сговора против стегосистемы идентификационных номеров. Пусть отправителем формируется L* разных экземпляров заверенного контейнера и из них некоторое число L #i_497.png L* экземпляров попало в руки злоумышленных пользователей. Сформируем модель нарушителя, который представляет собой коалицию из L злоумышленных пользователей, каждый из которых получил свой экземпляр одного и того же контейнера, заверенного уникальным идентификационным номером. Согласованно действуя, коалиция злоумышленников пытается построить достаточно близкую к оригиналу оценку контейнера, из которой удалена идентификационная информация. Под достаточно близкой оценкой контейнера неформально будем понимать представление контейнера с такой погрешностью, при которой практически не снижаются его потребительские и иные качества как записи изобразительного, музыкального или иного произведения либо служебного электронного документа.
Покажем, что совместные действия позволяют злоумышленникам вычислить достаточно близкую к оригиналу оценку контейнера, что позволяет удалить индивидуальные отпечатки из защищаемых контейнеров и тем самым исключить возможность отслеживания неавторизованных действий пользователей. На рис. 3.11 представлена структурная схема стегосистемы идентификационных номеров при сговоре L пользователей. Рассмотрим следующую формулировку данной задачи информационного противоборства. Для каждого пользователя из контейнера индивидуально формируется стего где есть идентификационный номер для пользователя l и отображение описывает скрывающее преобразование в стегокодере. Таким образом, один и тот же контейнер и один и тот же ключ используется для встраивания всех L скрываемых сообщений. Будем полагать, что эти сообщения независимо и равновероятно распределены на множестве . Идентификационные номера декодируется по правилу , где есть функция декодирования стегосистемы. В декодере для всех экземпляров стего его идентификационный номер вычисляется по одной и той же функции с использованием неизменного ключа .
Рис. 3.11. Структурная схема стегосистемы идентификационных номеров при сговоре L пользователей
Пусть есть i-ый элемент стего, , предоставленный l-ому пользователю, . Согласованно действующие мошенники из всех i-ых элементов стего формируют последовательности вида и из каждой такой последовательности вычисляют оценку соответствующего элемента контейнера. Если злоумышленники сумели последовательно сформировать достаточно близкие оценки контейнера для всех , то они удалили из стего (или исказили) информацию идентификации. Атакующее воздействие опишем условной функцией распределения из множества во множество . Скрывающие преобразования и атакующие воздействия обозначим и , соответственно. Определим среднюю вероятность ошибочного декодирования идентификационного номера в виде
.
Если в результате действий нарушителя в произвольном экземпляре стего за номером l, где , детектор обнаруживает идентификационный номер, не принадлежащий множеству , то это значит, что нарушитель способен переложить ответственность за несанкционированное копирование на невиновного пользователя. Нарушитель также добился успеха, если детектор не обнаруживает никакого идентификационного номера. Любой из этих фактов классифицируется как взлом стегосистемы идентификационных номеров. Назовем совершенной стегосистемой идентификационных номеров систему, обеспечивающую нулевую вероятность ошибочного декодирования при ограничении искажений контейнера, вносимых атакующим, величиной при условии, что число доступных атакующему экземпляров бесконечно велико.
Также введем определение стойкой стегосистемы идентификационных номеров, для которой неравенство , где есть допустимое ненулевое значение, выполняется при ограничении искажений, вносимых атакующим, величиной при условии, что атакующему доступно конечное число L заверенных экземпляров. Определим такую стегосистему идентификационных номеров стойкой. Например, для практически востребованных стегосистем вероятность ошибочного декодирования идентификационных номеров, то есть вероятность успеха нарушителя, может быть задана величиной порядка … , для заверяемых изображений допустимая величина искажения может быть получена из величины отношения средней мощности сигнала контейнера к величине не хуже 40–45 дБ, а число доступных злоумышленникам экземпляров L не более десятков-сотен. Предположим, что этот пример описывает задачу защиты имущественных прав фирмы-производителя, продающей лицензионные записи видеофильма на DVD-дисках. Величина L в этом случае ограничивается бюджетом коалиции злоумышленников, пытающихся стереть аутентифицирующую информацию с видеозаписи и тиражировать для продажи «пиратские» копии. Им невыгодно покупать слишком много экземпляров, так как доходы от нелегального бизнеса могут не покрыть расходы на приобретение дорогостоящих DVD-дисков. Злоумышленники вынуждены сами ограничивать величину искажений , так как иначе низкокачественные контрафактные видеозаписи никто не купит. И если вероятность успеха злоумышленников не превышает значения порядка , то этот вид преступного бизнеса оказывается бессмысленным.
Скорость передачи R идентификационных номеров и скрытая ПС стегоканала передачи идентификационных номеров определяется так же, как и для ранее описанных систем ЦВЗ.
Рассмотрим известные результаты для систем идентификационных номеров.
Теорема 3.12: При любой атаке нарушителя, приводящей к искажению , скорость передачи R идентификационных номеров достижима, если и только если , где величина скрытой ПС стегоканала передачи идентификационных номеров определяется в соответствии с выражением (3.28). Пусть используется симметричная функция искажений , величина искажения превышает величину искажения кодирования , для некоторого значения , где есть расстояние Чернова между распределениями и . Тогда скрытая ПС экспоненциально быстро стремится к нулю со скоростью, ограниченной снизу величиной при .
В работе [2] указывается, что оптимальное атакующее воздействие не имеет памяти, и что экспоненциальное уменьшение скрытой ПС с ростом L справедливо для любого распределения контейнеров . Быстрое уменьшение величины скрытой ПС при увеличении числа доступных нарушителю экземпляров свидетельствует о том, что трудности построения стойких систем идентификационных номеров существенно превышают трудности построения стойких систем ЦВЗ. Можно сказать, что для обычной системы ЦВЗ значение равно единице. В работах [28,30] приводятся примеры реальных систем идентификационных номеров, оказавшихся слабыми против сговора большого числа пользователей. В соответствии с теоремой 3.12, эти результаты справедливы для большого класса алгоритмов идентификационных номеров.
В атаке сговора злоумышленник для каждого элемента контейнера вычисляет его оценку по правилу максимальной апостериорной вероятности вида . Заметим, что атака на основе максимальной апостериорной вероятности, неэффективная для восстановления хорошей оценки контейнера с гауссовским распределением в обычной системе ЦВЗ (см. пункт 3.4.2), оказалась так эффективна против систем с ИН. Очевидно, это объясняется тем, что атака на систему ИН построена как детерминированная, используя множество заверенных контейнеров для получения одного решения.
В атаке сговора средняя вероятность ошибочного декодирования идентификационного номера уменьшается при увеличении размерности алфавита |X|. Это означает, что шансы сохранить неразрушенным идентификационный номер контейнера существенно возрастают при увеличении размерности алфавита символов контейнера. Этот результат интуитивно понятен, так как чем больше экземпляры стего отличаются друг от друга, тем сложнее нарушителю точно восстановить пустой контейнер. А при малой размерности алфавита |X| больших отличий разных экземпляров стего физически нельзя обеспечить.
Существуют также стегосистемы, в которых одновременно встраивается общая для всех экземпляров аутентифицирующая информация и идентификационный номер экземпляра. В таких системах внедряемое в контейнер сообщение содержит две части: сообщение , общее для всех пользователей (например, водяной знак для защиты авторских прав) и зависимые от номера конкретного пользователя сообщения (ИН). Тогда метод кодирования должен состоять из двух этапов: на первом этапе общее для всех сообщение внедряется в контейнер для формирования L* одинаковых экземпляров промежуточных стегограмм, и затем в каждый экземпляр встраивается свой идентификационный номер , формируя L* уникальных экземпляров стего. Очевидно, что этапов декодирования таких стего также будет два. В рассматриваемых стегосистемах задача защиты может ставиться в следующем виде: даже если и не удастся определить конкретный канал утечки защищаемой информации (нарушитель сумел стереть идентификационный номер), должны быть защищены авторские и имущественные права на заверенный контейнер.
В целом, несмотря на теоретическую невозможность построения стойкой стегосистемы ИН при в рамках условий теоремы 3.12, задача защиты реально используемых контейнеров (видео и музыкальных записей) от нелегального копирования не является безнадежной. Во-первых, теоретическая возможность построения оптимальной атаки на систему защиты информации, как известно из истории развития различных направлений информационной безопасности, отнюдь не означает возможность практической реализации такой сильной атаки. Во-вторых, если в рассматриваемой теореме для встраивания ИН использовать индивидуальные независимые друг от друга секретные ключи, то сговор произвольного числа злоумышленных пользователей может оказаться бесполезным. При этом, пользуясь похожими постановками в задачах защиты подлинности сообщений криптографическими методами, можно построить детектор с одним ключом для обнаружения множества идентификационных номеров. Например, в ряде известных систем цифровой подписи сообщений используется один и тот же ключ для проверки авторства отправителей сообщений, когда каждый отправитель имеет свой уникальный ключ [31]. И, в-третьих, рассматриваемую атаку сговора можно расстроить индивидуальной модификацией каждого экземпляра контейнера до встраивания ИН (видео и аудиофайлы это вполне допускают).
Авторы книги выражают уверенность в том, что в ближайшем будущем появятся практические стойкие стегосистемы идентификационных номеров, рационально учитывающие особенности построения для них скрывающих преобразований и атакующих воздействий и условия их функционирования.
3.12. Скрытая пропускная способность стегоканала при пассивном нарушителе
В ранее рассмотренном подходе к определению скрытой ПС не рассматривается зависимость между ее величиной и характеристиками скрытности вложенных в контейнер сообщений. Это, в частности, объясняется тем, что в ряде стегосистем, таких как системы ЦВЗ или системы с идентификационными номерами, факт наличия аутентифицирующей информации в контейнере может и не скрываться от нарушителя. Соответственно, необнаруживаемость водяного знака нужна только с целью минимизации искажений контейнера с целью сохранения высокого качества заверяемых музыкальных, изобразительных или иных контейнеров, а также с целью затруднения оценки нарушителем эффективности действий по удалению (разрушению) водяного знака. Иная ситуация в стегосистемах, в которых способность нарушителя выявлять факт передачи скрываемых сообщений классифицируется как взлом системы.
Исследуем величину скрытой ПС стегоканалов, предназначенных для скрытой передачи информации. Противоборствующая сторона представлена пассивным нарушителем, пытающимся установить факт применения стегосистемы. В этой задаче информационного скрытия нарушитель не оказывает на стего мешающего воздействия, следовательно, к рассматриваемой стегосистеме не предъявляются требования по обеспечению устойчивости к преднамеренному разрушению скрываемых сообщений. Также будем считать, что в процессе передачи стего на него не воздействуют непреднамеренные помехи, следовательно, .
Под скрытой ПС в рассматриваемых стегосистемах понимается максимальное количество информации, которое необнаруживаемым для нарушителя способом потенциально можно встроить в один элемент контейнера и затем извлечь без ошибок. В качестве элементов контейнера могут рассматриваться отсчеты звукового или речевого сигнала, дискретизированные в соответствии с теоремой Котельникова, или пикселы подвижного или неподвижного изображения.
Очевидно, что требования по повышению скрытой ПС, необнаруживаемости и устойчивости к удалению и разрушению являются взаимно противоречивыми, улучшить одну характеристику можно только за счет ухудшения других. Поэтому для систем ЦВЗ максимизируется устойчивость к удалению и разрушению водяного знака (максимизируется допустимое искажение D2) при обеспечении сравнительно небольшой пропускной способности и достаточной незаметности, характеризуемой максимально допустимой величиной искажения кодирования D1. В рассматриваемом классе информационно-скрывающих систем максимизируется скрытая пропускная способность при обеспечении требуемой необнаруживаемости стегоканала, а к помехоустойчивости предъявляются минимальные требования. Под необнаруживаемостью понимается способность стегосистемы скрывать факт передачи защищаемой информации от нарушителя.
В ряде работ [3, 4] величина скрытой ПС стегоканала определяется двумя факторами. Во-первых, аналогично тому, как в теории связи рассматривается передача сигналов по каналу связи, скрытая связь рассматривается как передача скрываемых сообщений по каналу с помехами. В качестве помехи рассматривается контейнерный сигнал. Это позволяет свести задачу передачи скрываемых сообщений к хорошо исследованной задаче передачи открытых сообщений по обычному каналу с помехами. В этой задаче отношение мощности скрываемого сигнала к мощности шума характеризует максимально достижимую скорость передачи скрываемой информации. В теории открытой связи целесообразно неограниченно увеличивать отношение сигнал/шум, чтобы максимизировать величину пропускной способности канала. В стеганографии, напротив, это отношение необходимо существенно ограничивать из-за действия второго фактора, заключающегося в необходимости обеспечения необнаруживаемости факта скрытой связи. При сопоставимых мощностях скрываемого сигнала и шума квалифицированным нарушителем легко выявляется факт наличия стегоканала. Следовательно, в стегосистемах приходится прятать скрываемый сигнал под значительно большим по величине шумом прикрытия. Поэтому, с одной стороны, для повышения скрытой ПС стегоканала необходимо увеличивать отношение сигнал/шум, а с другой стороны, для повышения защищенности стегоканала от его обнаружения необходимо это отношение существенно уменьшать. Следовательно, требуемый баланс может быть достигнут, если скрываемые сообщения безошибочно декодируются их законным получателем, но остаются необнаруживаемыми для нарушителя.
Заметим, что в соответствии с теорией оптимального приема если нарушитель и законный получатель скрываемых сигналов обладают одинаковой способностью по их обнаружению на фоне шумов контейнера, то величина скрытой ПС стегоканала равна нулю. Следовательно, для существования необнаруживаемого стегоканала нарушитель и получатель скрываемых сигналов должны находиться в неравных условиях. Канал передачи стегограмм для них равнодоступен, следовательно, получатель должен иметь преимущество в знании секретной информации, позволяющей ему выделить из смеси скрываемый сигнал+контейнер предназначенное для него сообщение, а нарушитель без знания этой информацию не должен быть способен отличить стего от пустого контейнера. Более подробно защищенность стегоканала от его обнаружения будет исследована в следующей главе.
В работе [4] для оценки скрытой пропускной способности аддитивного стегоканала используются оценки пропускной способности канала с аддитивным гауссовским шумом, описанным К. Шенноном в классической работе [1].
Пусть по каналу передается полезный сигнал с мощностью S, а в канале на него воздействует гауссовский шум Z с мощностью N. Выход аддитивного канала можно представить как . Упрощенная схема такой системы передачи представлена на рис. 3.12.
Рис. 3.12. Упрощенная схема стегоканала
Для оценки величины скрытой пропускной способности аддитивного стеганографического канала сопоставим ее с величиной пропускной способности канала с аддитивным белым гауссовским шумом. Если входной сигнал М и шум Z независимы, то условная энтропия выходного сигнала Х при заданном М равна энтропии шумового сигнала. Используем этот результат для определения пропускной способности аддитивного канала с шумом
.
Пусть шум Z имеет нормальное распределение со средним значением 0 и дисперсией N. Тогда энтропия Z равна
.
Чтобы достичь максимума величины ПС по всем возможным распределениям входа, будем считать, что входной сигнал M имеет также нормальное распределение с дисперсией S. Следовательно, X есть сумма двух гауссовских сигналов и имеет дисперсию S + N. Тогда пропускная способность Сg гауссовского канала выражается, как
. (3.29)
Из теории связи известно [25], что величина ПС канала минимальна, когда шум в канале гауссовский со средним значением 0. Следовательно, пропускная способность других аддитивных негауссовских каналов ограничивается снизу величиной Сg (3.29). Уравнения (3.30) — (3.32) определяют пропускные способности трех таких каналов с различными распределениями шума.
, (3.30)
, (3.31)
. (3.32)
Рассмотрим стеганографическую систему, в которой скрываемая информация добавлена некоторым образом к контейнерным данным. Например, скрываемое сообщение записывается на место наименее значащих бит (НЗБ) яркости пикселов контейнерного изображения. Во многих практических стегосистемах скрываемое сообщение до встраивания шифруется или сжимается каким-либо архиватором данных. Это повышает скрытность связи и позволяет описать зашифрованное (сжатое) сообщение в виде последовательности с независимо и равновероятно распределенными битами.
Величину скрытой пропускной способности стегоканала оценим путем сравнения с пропускной способностью канала с белым гауссовским шумом. Однако в действительности сигналы реальных источников информации, таких как речь и видео, нельзя описать гауссовскими сигналами, потому что в их структуре высока зависимость между соседними отсчетами. Как и в других случаях негауссовских каналов, скрытая пропускная способность стегоканала, в котором скрываемые сообщения внедряются в негауссовские сигналы, ограничена снизу пропускной способностью канала с белым гауссовским шумом.
Неопределенность шума с произвольным распределением может быть сравнена с белым гауссовским шумом, используя измерение энтропийной мощности Ne. Если произвольный шум Z имеет энтропию Н(Z), то его средняя шумовая мощность равна мощности гауссовского шума, имеющего такую же энтропию и определяется как
. (3.33)
Объединяя (3.33) с оценкой пропускной способности канала с аддитивным шумом получим, что скрытая пропускная способность С стегоканала ограничена
.
где Ne — энтропийная мощность контейнера. Так как величина Ne строго меньше, чем N для всех негауссовских сигналов, то величина Сg является нижней границей для скрытой ПС стегоканалов, использующих произвольные контейнеры.
Верхняя граница скрытой ПС определяется максимумом взаимной информацией между скрываемым сообщением и стего, полагая, что стего имеет нормальное распределение с дисперсией S + N и шум в канале является гауссовским с мощностью Ne. Следовательно
. (3.34)
Очевидно, что если контейнер можно представить в виде белого гауссовского шума, то его энтропийная мощность уменьшается до величины N и скрытая ПС принимает минимальное значение, равное Сg.
Для аналитической оценки количества скрываемой информации в избыточных контейнерах, таких как изображения или речевые сигналы, необходимо знать их распределения вероятностей. Однако точные вероятностные характеристики таких контейнеров неизвестны и вряд ли когда-либо станут известными в силу нестационарности естественных источников контейнеров. Несмотря на это, можно воспользоваться известными результатами сжатия избыточных сигналов, чтобы оценить верхнюю границу энтропии источника сигналов. В ряде работ разрабатывались достаточно сложные алгоритмы сжатия, предназначенные для максимального удаления избыточности из сжимаемых сигналов [4,32]. Достигнутое в ходе работы таких алгоритмов среднее число бит на один символ сжимаемых сигналов может быть использовано как практическая верхняя граница энтропии исследуемого источника. Например, для изображений лучшим на сегодня алгоритмом сжатия без потерь CALIC [4] достигнута скорость 2,99 бит на пиксел. Эта оценка получена на 18 полутоновых тестовых изображениях, выбранных ISO (Международной организацией по стандартизации), яркость пикселов которых представлена 8 битами. Используя величину достигнутой алгоритмом CALIC скорости как оценку энтропии изображений, мы можем вычислить как верхнюю, так и нижнюю границы скрытой пропускной способности стегоканала, в котором скрываемая информация встраивается в изображение-контейнер. Из полученной оценки энтропии изображений по формуле (3.33) легко определить величину энтропийной мощности контейнеров.
В итоге средняя мощность среди тестовых изображений ISO и средняя скорость алгоритма CALIC были использованы для вычисления границ скрытой пропускной способности для широкого диапазона значений отношения мощности скрываемого сигнала к мощности контейнерного шумового сигнала. На рис. 3.13 пунктирной линией показана величина пропускной способности Сg канала с белым гауссовским шумом. Средняя скорость CALIC по всем изображениям равна 4,9588 бит на пиксел, а средняя мощность сигналов изображения — 2284,7. Сплошная линия на рисунке показывает верхнюю границу скрытой пропускной способности, прерывистая — нижнюю. При уменьшении отношения мощности скрываемого сигнала к мощности контейнерного шумового сигнала нижняя граница скрытой пропускной способности снижается до 0. Реальное значение скрытой пропускной способности стегоканала находится между верхней и нижней границами и отражает то количество скрываемой информации, которое можно внедрить в один пиксел усредненного контейнерного изображения.
Рис. 3.13. Оценки скорости передачи скрываемых сообщений в зависимости от отношения сигнал/шум
Рис. 3.14. Оценки скорости передачи скрываемых сообщений в зависимости от отношения сигнал/шум для низкочастотного изображения «Lena» и высокочастотного изображения «Eiger»
Верхние и нижние границы скрытой ПС в работе [4] были вычислены для двух типовых полутоновых изображений. На левом графике рис. 3.14 показаны верхняя и нижняя границы величины скрытой пропускной способности стеганографического канала для тестового портретного изображения «Lena». В качестве оценки энтропии этого изображения была использована достигнутая алгоритмом CALIC скорость 4,6321 бит на пиксел. Правый график показывает верхнюю и нижнюю границы величины скрытой ПС для тестового пейзажного изображения «Eiger» (скорость CALIC 5,2366 бит на пиксел). На этих же графиках точками указаны достигнутые скорости передачи скрываемого сообщения в предложенной в работе [4] системе скрытия данных в изображении с расширением спектра (SSIS). Отметим, что достигнутые в стегосистеме SSIS скорости передачи скрываемых сообщений лежат между верхней и нижней границами скрытой пропускной способности, вычисленных для использованных контейнерных изображений.
Из рис. 3.13 и рис. 3.14 видно, что величина скрытой ПС приблизительно линейно зависит от отношения сигнал/шум при малых величинах ОСШ. Отношение сигнал/шум может быть использовано в качестве объективной оценки степени необнаруживаемости скрываемого сообщения. Для различных видов скрываемых сообщений допустимая величина ОСШ разная. Пусть в аддитивной стегосистеме речевое сообщение скрытно передается в составе контейнера с гауссовским распределением. Признаки наличия речи не выявляются на слух и с использование инструментальных методов при ОСШ не превышающем -16…-20 дБ [33]. Если прятать речь в изображении, характеристики которого существенно отличаются от статистики гауссовского сигнала, то можно надеяться, что допустимая с точки зрения необнаруживаемости величина ОСШ может быть уменьшена. Это важно с точки зрения увеличения скрытой ПС. Например, при ОСШ равном -18 дБ, согласно описанным границам в низкочастотном изображении «Lena» можно скрыть не менее 0,05…0,95 бит речевой информации на пиксел изображения.
Пусть в аддитивной стегосистеме в изображение-контейнер внедряется скрываемое изображение. Различные изображения характеризуются большим разбросом корреляционных зависимостей между пикселами. Для скрытой передачи низкочастотных изображений, у которых корреляционные зависимости являются значительными (например, к этому классу относится портретное изображение «Lena»), требуемое отношение мощности скрываемого изображения к мощности гауссовского контейнера должно быть не более -20…-25 дБ. Для высокочастотных изображений типа пейзаж, надежное скрытие может быть обеспечено при большем значении ОСШ, порядка -10…-15 дБ. Таким образом, проще прятать изображения с большим количеством мелких деталей в гауссовском контейнере. Заметим, что эти цифры являются ориентировочными и справедливы для контейнеров с нормальным распределением. При скрытии изображения в изображении, допустимая величина ОСШ может быть уменьшена. Таким образом, в зависимости от характера скрываемого и контейнерного изображения в каждом пикселе контейнерного изображения потенциально можно надежно прятать от 0,01 до 1 бита графической информации.
Однако следует учитывать, что приведенные оценки скрытой ПС указывают на потенциальную возможность скрытия такого количества информации в усредненном элементе контейнера, но не гарантируют, что в реальных стегосистемах скорости передачи скрываемой информации будут близки к этим теоретическим оценкам и при этом будет обеспечиваться стойкость к произвольным методам стегоанализа. От излишнего оптимизма предостерегает крах многих предложенных к настоящему времени стегосистем, для которых очень быстро были разработаны эффективные методы стегоанализа. В частности, в следующей главе будет показано, как на основе визуальной и статистических атак уверенно обнаруживаются следы скрываемой информации при ее встраивании в наименее значащие биты элементов изображений и аудиосигналов. Необходимо отметить, что отношение сигнал-шум является характеристикой скрытия не более чем первого порядка при использовании методов стегоанализа, и потому для уверенности в надежном скрытии информации требуется использовать и другие оценки необнаруживаемости.
В работе [5] с позиций теории информации исследована скрытая пропускная способность стегоканала при следующей постановке. При передаче изображений широко используются алгоритмы сжатия типа JPEG, JPEG2000, MPEG, вносящие в изображение некоторую допустимую для получателя погрешность. Пусть есть контейнерное изображение, М — встраиваемое сообщение. После вложения сообщение М в контейнер сформированное стего подвергается сжатию с погрешностью. Будем полагать, что встраивание сообщения в контейнер, а также сжатие стего описываются отображениями при которых на скрываемое сообщение аддитивно воздействуют шум встраивания и, соответственно, шум сжатия. Это позволяет представить анализируемую стегосистему в виде, показанном на рис. 3.15.
Рис. 3.15. Упрощенная схема аддитивной стегосистемы со сжатием стего
Обозначим мощность встраиваемого сигнала в виде , мощность контейнера — , а мощность шума, добавляемого при сжатии через . Предположим, что контейнер и шум сжатия имеют нормальное распределение. Тогда оба источника шума можно объединить в один источник Z с дисперсией = + . В соответствии с теорией связи, пропускная способность канала передачи сообщения М при воздействии независимого от него шума Z равна . При фиксированных вероятностных характеристиках шума пропускная способность увеличивается максимизацией значения энтропии выбором соответствующего распределения скрываемого сообщения. Известно [25], что величина максимальна при нормальном распределении :
, где есть дисперсия стего.
Соответственно, энтропия источника Z равна
.
Тогда скрытая пропускной способность рассматриваемого стегоканала равна
. (3.35)
Отметим, что данная оценка величины скрытой ПС справедлива при условии, что распределения скрываемых сообщений, контейнера и шума сжатия описываются нормальным законом. Это условие не выполняется строго для реальных изображений и реальных алгоритмов их сжатия. Поэтому в работе [5] для вычисления величины скрытой ПС мощность изображений приводится к энтропийной мощности гауссовского сигнала, оказывающего на скрываемое сообщение такое же мешающее воздействие, что и реальное изображение.
Рассмотрим гауссовский контейнер, амплитуды отсчетов которого равномерно распределены в диапазоне значений от 0 до 255 с дисперсией . Энтропия равномерно распределенной величины определяется выражением бит. Отсюда . Однако, как исследовано в работе [5], для реальных изображений , так как они обладают некоторой избыточностью.
Так как распределение шума сжатия в практически используемых алгоритмах обработки точно неизвестно, то на наихудший случай предположим, что шум сжатия гауссовский. Пусть при осуществлении вложения скрываемой информации в контейнер допускается искажение исходного изображения до величины пикового отношения сигнал/шум (ПОСШ) порядка 40 дБ. Такое искажение практически незаметно на глаз. Тогда допустимая мощность скрытого сообщения равна . В работе [5] производилась оценка шума, возникающего при сжатии изображений алгоритмом JPEG с показателем качества 50 %. Из результатов экспериментов следует, что . Тогда легко подсчитать, что величина скрытой пропускной способности составляет C = 0,0022 бит/пиксел, или 140 бит для изображения размером 256 × 256 пикселов. Пиковое отношение сигнал/шум изображения при этом обеспечивается не менее 37 дБ. При сжатии изображений с более высоким коэффициентом сжатия мощность шума сжатия существенно возрастает. При величина C уменьшается до 0,0019 бит/пиксел, или 124 бита для того же изображения. При этом ПОСШ снижается и составляет не менее 34 дБ, что еще допустимо для большинства изображений. Заметим, что при увеличении шума сжатия задача нарушителя по обнаружению стегоканала существенно усложняется, так как задачу обнаружения скрываемых сообщений приходится решать при большем уровне маскирующего шума. Таким образом, при увеличении шума обработки при сжатии изображений величина скрытой пропускной способности уменьшается достаточно плавно, а защищенность, напротив, существенно повышается. Следовательно, вполне может быть использована обработка изображений по алгоритму JPEG с умеренным коэффициентом сжатия после встраивания в них скрываемых сообщений.