Скрытая реальность. Параллельные миры и глубинные законы космоса

Грин Брайан

Глава 9. Чёрные дыры и голограммы

Голографическая мультивселенная

 

 

Платон говорил, что наши взгляды на мир сродни взглядам древних предков, наблюдающих за пляшущими тенями на скудно освещённых стенах пещеры. Он утверждал, что наши ощущения — это не более чем слабое отражение гораздо более богатой реальности, проблёскивающей за пределами досягаемости. Похоже, что два тысячелетия спустя пещера Платона может стать чем-то бо́льшим, чем просто метафорой. Переворачивая с ног на голову его рассуждения, может оказаться, что реальный мир — а не просто его тень — живёт на удалённой граничной поверхности, в то время как всё, что мы видим в трёх привычных пространственных измерениях, это проекция происходящего где-то там далеко. Можно сказать, что реальность похожа на голограмму. Или, на самом деле, на голографическое кино.

Являясь, возможно, наиболее странной реализацией идеи о параллельных мирах, голографический принцип предполагает, что всё, что мы ощущаем, может быть полностью эквивалентным образом описано в виде нечто, происходящего на тонкой и удалённой поверхности. Он утверждает, что если было бы возможно понять законы, управляющие физикой на этой удалённой поверхности, и то, как происходящие там явления связаны с нашим опытом здесь, мы смогли бы полностью разобраться в окружающей действительности. Версия мира теней Платона — параллельное, но совершенно непривычное воплощение повседневных явлений — станет реальностью.

Для анализа этой весьма своеобразной возможности требуются глубокие и обширные знания — из общей теории относительности, теории чёрных дыр, термодинамики, квантовой механики, а также самые современные исследования по теории струн. Нитью, объединяющей эти несхожие области, является природа информации в квантовой вселенной.

 

Информация

Джон Уилер помимо способности находить и взращивать очень талантливых молодых учёных (помимо Хью Эверетта, его студентами были Ричард Фейнман, Кип Торн и, как мы вскоре увидим, Якоб Бекенштейн) обладал необъяснимой способностью ставить вопросы, изучение которых может изменить наши фундаментальные представления об устройстве природы. Однажды во время ланча в Принстоне в 1998 году я спросил его, что по его мнению будет доминантной темой в физике в последующие десятилетия. Он наклонил голову, как уже не раз делал в тот день, будто его стареющий скелет устал поддерживать такой могучий интеллект. Однако, теперь пауза затянулась, что заставило меня сомневаться, хочет ли он отвечать на мой вопрос или вообще забыл о нём. Но затем он медленно поднял свой взгляд на меня и промолвил одно единственное слово: «Информация».

Я не удивился. В течение некоторого времени он придерживался совершенно отличной точки зрения на физические законы по сравнению с тем, чему молодых физиков обучают в стандартных университетских курсах. Традиционно физика рассматривает объекты — планеты, камни, атомы, частицы, поля — и изучает силы, влияющие на их поведение и управляющие их взаимодействиями. Уилер полагал, что объекты — вещество и излучение — следует рассматривать как вторичные, как носителей более абстрактной и более фундаментальной сущности: информации. Уилер не утверждал, что вещество и излучение являются в том или ином смысле эфемерными; он считал, что их следует рассматривать как материальные проявления чего-то более фундаментального. Он считал, что информация — то, где частица находится, каков её спин, положителен её заряд или отрицателен, и так далее — образует цельное ядро в сердце реальности. То, что такая информация реализуется в реальных частицах, занимающих реальные положения, имеющие определённые спины и заряды, чем-то похоже на то, как рисунок архитектора воплощается в построенном небоскрёбе. Фундаментальная информация отражена в рисунке. Небоскрёб — это всего лишь реализация заложенной в проекте архитектора информации.

С этой точки зрения нашу вселенную можно рассматривать как информационный процессор. Он берёт информацию, касающуюся устройства вещей сейчас, и порождает информацию, характеризующую устройство вещей в следующем сейчас, и в последующем сейчас. Наши чувства улавливают этот процесс, замечая изменения окружающей среды во времени. Но окружающая среда сама является производной; она возникает из фундаментального ингредиента, информации, и развивается согласно фундаментальным правилам, законом природы.

Я не знаю, будет ли такая информационно-теоретическая установка доминировать в физике, как считал Уилер. Однако недавно, во многом благодаря работам физиков Герарда т’Хоофта и Леонарда Сасскинда, в сознании учёных произошёл сдвиг, вызванный изучением нетривиальных вопросов, касающихся поведения информации в одном особенном экзотическом контексте: в чёрных дырах.

 

Чёрные дыры

В течение года после публикации общей теории относительности немецкий астроном Карл Шварцшильд нашёл первое точное решение уравнений Эйнштейна, которое определяет форму пространства и времени в окрестности массивного сферического объекта, подобного звезде или планете. Замечательно не только то, что Шварцшильд нашёл своё решение, занимаясь вычислением траекторий артиллерийских снарядов на русском фронте во время Первой мировой войны, но также то, что он обыграл самого мастера игры — к тому моменту Эйнштейн нашёл лишь приближённые решения уравнений общей теории относительности. Эйнштейн был очень впечатлён и огласил достижения Шварцшильда, представив его работу перед Прусской академией наук; но даже он не смог увидеть то, что станет самым важным звеном наследия Шварцшильда.

Решение Шварцшильда показывает, что обычные тела, такие как Солнце и Земля, не сильно искривляют пространство, порождая очень мягкое давление на пространственно-временной батут, который в их отсутствие оставался бы плоским. Это хорошо соответствовало приближённым решениям Эйнштейна, которые ему удалось найти ранее. Но Шварцшильд смог выйти за рамки приближений. Его точное решение обладало поразительным свойством: если достаточное количество массы сжать до объёма небольшого шара, то возникнет гравитационная пропасть. Пространственно-временная кривизна станет настолько экстремальной, что всё, что отважится оказаться слишком близко, будет захвачено в ловушку. Поскольку это «всё» включает свет, такие области потемнеют и станут чёрными, что явилось причиной исходного термина «чёрные звёзды». Экстремальное искривление заставит замереть на краю звезды даже время: отсюда возник другой термин — «замёрзшие звёзды». Спустя полвека Уилер, который столь же хорошо умел рекламировать вещи, как и заниматься физикой, сделал популярными такие звёзды как среди научной общественности, так и у любителей науки, дав им более запоминающееся имя: «чёрные дыры». Название прижилось.

Когда Эйнштейн прочёл статью Шварцшильда, он согласился с математическими выкладками применительно к обычным звёздам и планетам. Однако выкладки насчёт того, что теперь называется чёрными дырами, Эйнштейн воспринял с улыбкой. В те времена даже Эйнштейну было трудно полностью разобраться в сложной математической структуре общей теории относительности. И хотя до появления современного понимания чёрных дыр оставалось несколько десятилетий, интенсивное сворачивание пространства и времени, уже в то время с очевидностью следовавшее из уравнений, было, по мнению Эйнштейна, слишком радикальным, чтобы быть правдой. Так же как спустя несколько лет он будет сопротивляться идее космического расширения, Эйнштейн отказывался верить, что такая экстремальная конфигурация вещества является чем-то бо́льшим, чем вышедшими из-под контроля математическими манипуляциями, хоть и вытекающими из его собственных уравнений.

Когда вы видите числа, которые возникают из уравнений, и вы можете легко прийти к такому же выводу. Чтобы звезда с массой Солнца стала чёрной дырой, она должна сжаться до шара размером приблизительно три километра в поперечнике; тело с массой Земли станет чёрной дырой, только если сожмётся до шарика диаметром в один сантиметр. Идея о существовании таких экстремальных конфигураций вещества кажется просто смехотворной. Всё же за прошедшие десятилетия астрономы собрали многочисленные наблюдательные данные, свидетельства относительно того, что чёрные дыры существуют и их много. Широко признано, что в центре огромного количества галактик может находиться чёрная дыра; считается, что наша собственная галактика Млечный Путь вращается вокруг чёрной дыры, масса которой примерно равняется трём миллионам масс Солнца. Есть даже шанс, как обсуждалось в главе 4, что на Большом адронном коллайдере можно сгенерировать крошечные чёрные дыры посредством «утрамбовывания» массы (и энергии) протонов, сталкивающихся на очень высоких энергиях, в такой крохотный объём, что можно снова применить результаты Шварцшильда, хоть и на микроскопических расстояниях. Являясь выдающейся демонстрацией способности математики высветить самые тёмные уголки нашей Вселенной, чёрные дыры стали центром внимания современной физики.

Помимо того, что чёрные дыры — это находка для наблюдательной астрономии, они также стали богатым источником вдохновения в теоретических исследованиях, создавая математический плацдарм, на котором физики могут апробировать применимость своих идей, изучая с помощью бумаги и ручки одно из самых экстремальных явлений природы. Именно так получилось, когда в начале 1970-х годов Уилер осознал, что если почтенный Второй закон термодинамики — на протяжении примерно столетия являющийся указующим перстом для понимания взаимосвязи между энергией, работой и теплом — рассматривать применительно к окрестности чёрной дыры, то похоже, что он перестаёт работать. Свежий взгляд на этот вопрос Якоба Бекенштейна, студента Уилера, пришёл на выручку, посеяв при этом семена возникшего впоследствии голографического принципа.

 

Второй закон

Афоризм «лучше меньше, да лучше» имеет много форм. «Убрать всё лишнее». «Нужны только факты и ничего кроме фактов». «Меньше знаешь, крепче спишь». «Справок не даём!» Эти крылатые выражения настолько часто встречаются потому, что ежедневно, ежесекундно на нас сваливаются тонны информации. К счастью, в большинстве случаев наше восприятие отбрасывает ненужные подробности, оставляя лишь то, что действительно имеет значение. Если я нахожусь в саванне и вижу льва, меня не волнуют детали движения фотонов, отражающихся от его шкуры. Слишком много информации! Я хочу знать всего лишь некоторые общие свойства, те самые, которые воспринимают наши глаза и передают в мозг для обработки. Движется ли лев на меня? Он припал к земле и крадётся? Дайте мне посекундное описание движения каждого фотона, и, несомненно, я буду знать всё досконально. Но понимания от этого не прибавится. Действительно, меньше значительно лучше.

Аналогичные рассуждения играют центральную роль в теоретической физике. Иногда мы хотим знать каждую микроскопическую деталь системы, которую изучаем. В определённых местах вдоль 27-километрового туннеля Большого адронного коллайдера, в котором сталкиваются частицы, физики поместили громадные детекторы, способные отследить с невероятной точностью траектории порождаемых осколков частиц. Эти данные существенны для понимания фундаментальных законов физики частиц; они настолько подробные, что годичные наблюдения заполнят стопку DVD-дисков, в пятьдесят раз превышающую Эмпайр-стейт-билдинг. Подобно импровизированной встрече со львом, в физике есть другие ситуации, когда такой уровень подробности лишь затуманивает, а не проясняет. В разделе физики девятнадцатого столетия, называемом термодинамикой, или, в более современном варианте, статистической механикой, рассматриваются как раз такие системы. Паровой двигатель, технологическая инновация, положившая начало термодинамике — как и индустриальной революции — является прекрасной иллюстрацией.

Основу парового двигателя составляет бак с водяным паром, который расширяется при нагревании, двигая поршень вперёд, и сжимается при остывании, возвращая поршень в исходное положение, после чего он готов вновь выдвинуться вперёд. В конце девятнадцатого столетия и в начале двадцатого физики разработали молекулярное обоснование устройства материи, которое, помимо всего прочего, привело к микроскопическому описанию работы пара. При нагревании скорость молекул H2O возрастает и убыстряются их удары о дно поршня. Чем более они разогреты, тем быстрее движутся и сильнее ударяют. Простое, но крайне важное для термодинамики наблюдение состоит в том, что для понимания давления пара не требуется знание подробностей того, какие именно молекулы имеют ту или иную скорость и где именно они ударили по дну поршня. Со списком миллиарда миллиардов траекторий молекул я буду выглядеть таким же озадаченным, как со списком отражающихся от львиной шкуры фотонов. Чтобы представить давление на поршень, мне надо знать только среднее количество молекул, которые ударяют о дно поршня за данный временной интервал, и среднюю скорость в момент столкновения. Эти данные достаточно приближённые, но полезна именно такая урезанная информация.

При разработке математических методов систематического пожертвования подробностями в пользу более общего понимания физики изобрели широкий диапазон методов и развили ряд глубоких понятий. Одно из таких понятий, с которым мы кратко познакомились в предыдущих главах — это энтропия. Энтропия изначально была введена в середине девятнадцатого столетия для количественного описания рассеяния энергии в двигателях внутреннего сгорания, но современная точка зрения, введённая Людвигом Больцманом в 1870-х годах, такова, что энтропия является характеристикой того, насколько тонко упорядочена — или нет — данная система, для того чтобы иметь такой вид, какой она имеет.

Чтобы прочувствовать это, представьте сценку, в которой некий парень, Феликс, в ярости кричит, что в их дом проникли воры. «У нас всё переворошили!» — в гневе говорит он своему другу Оскару. Оскар отмахивается — он знает, что у Феликса бывают приступы подозрительности. Чтобы успокоить Феликса, Оскар распахивает дверь в свою комнату, где валяется разбросанная повсюду одежда, остатки пиццы и пустые банки из-под пива. «Выглядит как обычно», — рявкает он. Феликс не обращает на это внимания. «Конечно же, она выглядит как обычно — свинарник и после вторжения остаётся свинарником. Но взгляни на мою комнату!» И он открывает свою дверь. «Всё переворошили…» — хмыкает Оскар. — «Да она чище, чем неразбавленный виски!» «Да, чище. Но вторжение не осталось незамеченным. Смотри, вот баночки с витаминами — теперь они не выстроены в порядке уменьшения размера баночек. А сборник сочинений Шекспира? Не в алфавитном порядке! А ящик для носков? Посмотри на это — чёрные носки вперемешку с синими! Я тебе говорю, у нас всё переворошили. Это совершенно очевидно!»

Если не обращать внимания на истерику Феликса, данная ситуация подчёркивает простой, но существенный момент. Если что-то находится в большом беспорядке, как комната Оскара, то при большом количестве всяких разных перестановок содержащихся в нём составных частей общий вид остаётся прежним. Соберите двадцать шесть мятых рубашек, валяющихся на кровати, на полу, в гардеробе, и снова разбросайте их повсюду, разбросайте заново сорок две пустые банки из-под пива — и квартира всё равно будет выглядеть по-прежнему. Но когда что-то очень сильно упорядочено, как квартира Феликса, даже небольшая перемена становится заметной.

Это различие лежит в основе математического определения энтропии, данного Больцманом. Возьмите любую систему и подсчитайте число способов, которыми её компоненты могут быть переставлены, сохраняя при этом общий макроскопический вид. Если есть большое число таких перестановок, то энтропия высока: система находится в сильном беспорядке. Если число таких перестановок мало, энтропия низкая: система высоко упорядочена (или, эквивалентно, имеет малый беспорядок).

В качестве более привычного примера рассмотрим контейнер с паром и куб изо льда. Будем рассматривать только их совокупные макроскопические свойства, которые можно наблюдать или измерять, не зная при этом детального состояния составляющих их молекул. Если опустить и вынуть руку из пара, то вы перемешаете между собой миллиарды молекул H2O, но при этом пар будет выглядеть столь же однородным, как и ранее. Но измените случайным образом положения и скорости многих молекул в куске льда, и результат вы увидите незамедлительно — кристаллическая структура льда будет разрушена. Появятся трещины и сколы. Пар, со случайно летающими по контейнеру молекулами H2O, обладает высокой степенью беспорядка; лёд, молекулы H2O которого расположены регулярным образом в кристаллической решётке, высоко упорядочен. Энтропия пара высока (много перестановок не приведут к изменению его вида); энтропия льда низкая (только небольшое количество перестановок не приведёт к изменению его вида).

Оценивая чувствительность макроскопического облика системы к её микроскопическому устройству, энтропия является естественным понятием в математическом формализме, который описывает совокупные физические свойства системы. Второй закон термодинамики развивает эту мысль количественным образом. Он устанавливает, что со временем полная энтропия системы будет возрастать. Чтобы понять, почему так происходит, достаточно самых элементарных представлений о вероятности и статистике. По определению, конфигурация с высокой энтропией может реализоваться посредством большего числа микроскопических перестановок, чем конфигурация с меньшей энтропией. По мере эволюции системы она с огромной долей вероятности оказывается в состоянии с высокой энтропией, потому что, попросту говоря, таких состояний больше, чем остальных. Значительно больше. При выпекании хлеба вы чувствуете его запах по всему дому, потому что существует на триллионы больше конфигураций молекул, вылетающих из хлеба, таких, что они заполняют однородно весь дом, распространяя аромат свежевыпеченного хлеба, чем конфигураций, в которых молекулы плотно собираются в углу кухни. Случайные движения разогретых молекул почти наверняка будут направлены так, что молекулы сформируют одну из многочисленных распределённых по всему дому конфигураций, а не образуют одну из немногих скучкованных в углу конфигураций. Таким образом, набор молекул переходит от низкой энтропии к высокой, и в этом состоит действие Второго закона.

Эта идея универсальна. Бьющееся стекло, гаснущая свеча, расплывающиеся чернила, распространяющийся запах духов: это разные процессы, но их статистическое рассмотрение одинаково. В каждом из них порядок переходит в беспорядок, и это происходит потому, что есть масса способов создать беспорядок. Красота такого анализа — понимание этого вызвало моё самое восторженное «Вот это да!» в процессе моего физического образования — состоит в том, что не теряясь в микроскопических деталях, у нас есть ведущий принцип для объяснения, почему огромное количество явлений происходят так, а не иначе.

Следует отметить, что будучи по своей природе статистическим, Второй закон не утверждает, что энтропия не может уменьшиться, однако такое событие крайне маловероятно. Молекулы только что добавленного в чашку кофе молока могут, в результате своих случайных движений, объединиться в плавающую статуэтку Санта Клауса. Но не дождётесь. Плавающий Санта из молока имеет очень низкую энтропию. Если переместить несколько миллиардов молекул, вы увидите, что у Санты пропала голова или рука, или он растёкся в абстрактный белый завиток. По сравнению с этим конфигурация, в которой молекулы молока однородно распределены по чашке, имеет значительно более высокую энтропию: огромное число перегруппировок по-прежнему выглядит как обычный кофе с молоком. Тогда, с огромной долей вероятности добавленное в ваш чёрный кофе молоко придаст ему однородный коричневатый оттенок, в котором трудно будет разглядеть очертания Санты. Аналогичные рассуждения справедливы для огромного количества переходов от высокой к низкой энтропии, так что кажется, что Второй закон несокрушим.

 

Второй закон и чёрные дыры

Вернёмся теперь к взглядам Уилера на чёрные дыры. В начале 1970-х годов Уилер заметил, что когда чёрные дыры выплывают на сцену, Второй закон начинает сдавать свои позиции. По-видимому, наличие близлежащей чёрной дыры даёт готовый и надёжный способ уменьшить общую энтропию. Поместите в чёрную дыру любую изучаемую вами систему — битое стекло, потухшую свечку, расплывшиеся чернила. Так как ничего не может покинуть её пределы, беспорядок в системе окажется, по-видимому, навсегда исчезнувшим. Возможно, что такой подход несовершенен, но кажется, он легко понизит энтропию, окажись у вас под рукой чёрная дыра. Многие посчитали, что Второй закон столкнулся с достойным соперником.

Но студента Бекенштейна это не убедило. Возможно, предложил Бекенштейн, энтропия не пропадает в чёрной дыре, а просто каким-то образом в неё трансформируется. Кроме того, никто не утверждал, что поглощая пыль и звёзды, чёрные дыры приводят к нарушению Первого закона термодинамики, сохранению энергии. Наоборот, уравнения Эйнштейна показывают, что при поглощении вещества чёрная дыра становится больше и тяжелее. Энергия может перераспределиться, часть из неё упадёт в чёрную дыру, а часть останется снаружи, но общее количество сохранится. Может быть, предложил Бекенштейн, эта же идея применима и к энтропии. Часть энтропии остаётся снаружи чёрной дыры, а другая часть падает внутрь, но ничего не исчезает бесследно.

Это звучит разумно, но эксперты идею не одобрили. Найденное Шварцшильдом решение и последующие разработки говорят, по всей видимости, о том, что чёрные дыры — это последнее слово в стане порядка. Каким бы перемешанным и неупорядоченным не было падающее внутрь вещество и излучение, оно сжимается в бесконечно малый объём в центре чёрной дыры: чёрная дыра — это окончательный этап в упорядоченном сжатии мусора. По правде говоря, никто не знает, что происходит во время такого мощного сжатия, потому что экстремальная кривизна и плотность делают уравнения Эйнштейна непригодными; однако совсем не кажется, что в центре чёрной дыры может быть какой-то беспорядок. А за пределами своего центра чёрная дыра — просто пустая область пространства-времени, простирающаяся до границы невозврата — горизонта событий (рис. 9.1): Нет никаких снующих туда-сюда молекул и атомов, поэтому перегруппировываться нечему; кажется, что чёрная дыра вообще лишена энтропии.

Рис. 9.1. Чёрная дыра вмещает область пространства-времени, окружённую поверхностью невозврата — горизонтом событий

В 1970-х годах такая точка зрения была подкреплена так называемыми теоремами об отсутствии волос, которые на математическом языке утверждают, что чёрным дырам (подобно лысым фантомасам) недостаёт отличительных характеристик. Согласно этим теоремам любые две чёрные дыры, обладающие одинаковыми массами, зарядами и угловыми моментами (скоростью вращения), неразличимы. В отсутствие характерных отличительных черт — у фантомасов также нет чёлок, усов или дрэдов — чёрные дыры не имеют различий, в которых могла быть запасена энтропия.

Это был вполне убедительный аргумент сам по себе, но затем появилось ещё более убийственное рассуждение, которое, как казалось, полностью сводило на нет идею Бекенштейна. Согласно основным положениям термодинамики между температурой и энтропией есть тесная связь. Температура — это мера усреднённого движения составных частей данного объекта: компоненты разогретых объектов движутся быстро, компоненты холодных объектов движутся медленно. Энтропия является мерой возможных перегруппировок этих компонентов, которые с макроскопической точки зрения останутся незамеченными. Таким образом, как энтропия, так и температура зависят от совокупных свойств рассматриваемого объекта; они идут рука об руку. Если рассмотреть вопрос математически, то станет ясно, что если Бекенштейн прав и чёрные дыры обладают энтропией, то у них должна быть температура. Именно это и вызвало тревогу. Любой объект с ненулевой температурой должен излучать. Горячий уголь излучает видимый свет; люди, как правило, излучают в инфракрасном диапазоне. Если чёрная дыра обладает ненулевой температурой, то сами законы термодинамики, которые Бекенштейн хотел сохранить, говорят, что она тоже должна излучать. Но это вопиющим образом противоречит принятому пониманию, что ничего не может вырваться из гравитационной хватки чёрной дыры. Почти все решили, что Бекенштейн ошибается. У чёрных дыр нет температуры. У них нет энтропии. Чёрные дыры — это сточная воронка для энтропии. В присутствии чёрных дыр нарушается Второй закон термодинамики.

Несмотря на многочисленные аргументы против, в пользу Бекенштейна говорил один замечательный результат. В 1971 году Стивен Хокинг осознал, что чёрные дыры подчиняются занятному правилу. Если имеется набор чёрных дыр разных размеров и масс, и при этом некоторые размеренно вальсируют по орбитам, другие подкрепляются веществом и излучением, а остальные сталкиваются друг с другом, то полная площадь поверхности всех чёрных дыр со временем возрастает. Под «площадью поверхности» Хокинг подразумевал площадь горизонта событий каждой чёрной дыры. В физике есть много результатов насчёт того, что какие-то величины не изменяются во времени (закон сохранения энергии и импульса, сохранение заряда и так далее), но также имеется небольшое число соотношений, которые диктуют рост величин. Поэтому естественно рассмотреть возможную связь между результатом Хокинга и Вторым законом. Если считать, что каким-то образом площадь поверхности чёрной дыры является мерой её энтропии, то возрастание площади полной поверхности может рассматриваться как рост полной энтропии.

Это была очень привлекательная аналогия, но никто не счёл её убедительной. Почти все считали, что сходство теоремы Хокинга о площади со Вторым законом не более чем случайность. Это положение сохранялось до того момента, пока несколько лет спустя Хокинг не сделал одно из самых важных вычислений в современной теоретической физике.

 

Излучение Хокинга

Поскольку квантовая механика не играет никакой роли в общей теории относительности Эйнштейна, решение Шварцшильда для чёрных дыр основывается исключительно на классической физике. Однако надлежащее рассмотрение вещества и излучения — таких частиц, как фотоны, нейтрино и электроны, которые могут переносить массу, энергию и энтропию из одного места в другое — требует привлечения квантовой механики. Чтобы в полной мере оценить природу чёрных дыр и разобраться, как они взаимодействуют с веществом и излучением, необходимо продлить решение Шварцшильда в квантовую область. Это нелегко. Несмотря на достижения теории струн (а также других подходов, которых мы не коснулись, таких как петлевая квантовая гравитация, твисторы, теория топосов), мы по-прежнему находимся на начальном уровне в наших попытках совместить квантовую физику и теорию гравитации. А в далёких 1970-х было ещё меньше теоретических оснований для понимания того, как квантовая механика может влиять на гравитацию.

Однако были физики, которые работали в этом направлении и которым удалось добиться частичного объединения квантовой механики и общей теории относительности, рассмотрев распространение квантовых полей (квантовая часть) в фиксированной, но искривлённой пространственно-временной среде (гравитационная часть). Как было указано в главе 4, полное объединение должно, как минимум, содержать рассмотрение не только квантовых флуктуаций полей на пространстве-времени, но также квантовых флуктуаций самого пространства-времени. Простоты ради это усложнение не учитывалось в первых работах. Хокинг воспользовался частичным объединением и рассмотрел, как квантовые поля будут вести себя в очень особой области пространства-времени — в окрестности чёрной дыры. То, что он обнаружил, поразило физиков до глубины души.

Хорошо известное свойство квантовых полей в обычном, пустом, неискривлённом пространстве-времени состоит в том, что из-за квантовых флуктуаций парам частиц, например электрону и его античастице, позитрону, позволяется мгновенно возникнуть из ничего, немножко пожить, после чего столкнуться друг с другом, и в результате взаимно аннигилировать. Этот процесс, квантовое рождение пары, интенсивно изучался как теоретически, так и экспериментально, и был разобран со всех сторон.

Новой характеристикой квантового рождения пары является то, что если один партнёр имеет положительную энергию, то из закона сохранения энергии следует, что другой партнёр должен обладать тем же количеством отрицательной энергии — понятие, которое не имеет смысла в классической вселенной. Однако, благодаря принципу неопределённости имеется своеобразная лазейка, позволяющая частицам иметь отрицательную энергию, при условии, что возникнув, они не сильно долго будут злоупотреблять гостеприимством. Если частица существует лишь мимолётно, то квантовая неопределённость говорит, что никакому эксперименту не хватит времени, даже в принципе, определить знак её энергии. Именно такова основная причина, почему пара частиц обречена квантовыми законами на быструю аннигиляцию. Поэтому при квантовых флуктуациях пары частиц беспрестанно рождаются и аннигилируют, рождаются и аннигилируют, на фоне неизбежной непрекращающейся игры квантовой неопределённости в пространстве, которое иначе оставалось бы пустым.

Хокинг заново рассмотрел вездесущие квантовые флуктуации, но не в пустом пространстве, а вблизи горизонта событий чёрной дыры. Он обнаружил, что часто всё выглядит как обычно. Пары частиц образуются случайным образом; быстро находят друг друга; после чего аннигилируют. Но время от времени происходит нечто новое. Если частицы образуются достаточно близко к краю чёрной дыры, то одну из них может затянуть внутрь, а другая улетит в пространство. В отсутствии чёрной дыры такого никогда не происходит, потому что, если частицы не аннигилируют друг с другом, то частица с отрицательной энергией сможет пробиться сквозь защитную рябь квантовой неопределённости. Хокинг осознал, что столь радикальное закручивание пространства и времени чёрной дырой может привести к тому, что частицы, обладающие отрицательной энергией с точки зрения наблюдателя снаружи чёрной дыры, окажутся частицами с положительной энергией для несчастного наблюдателя внутри неё. Таким образом, чёрная дыра предоставляет частицам с отрицательной энергией надёжное убежище, поэтому нужда в квантовой маскировке отпадает. Возникшие частицы могут избежать взаимной аннигиляции и заявить о своей независимой жизни.

Частицы с положительной энергией летят наружу от горизонта событий, поэтому издалека они выглядят как некое излучение, получившее название излучение Хокинга. Частицы с отрицательной энергией поглощаются чёрной дырой, поэтому их нельзя непосредственно наблюдать, однако их можно обнаружить косвенным способом. Подобно тому как масса чёрной дыры растёт при поглощении всего, что обладает положительной энергией, она также уменьшается при поглощении всего, что имеет отрицательную энергию. Эти два процесса в совокупности делают чёрную дыру похожей на кусок горящего угля: чёрная дыра беспрестанно излучает направленный наружу поток излучения по мере того как её масса уменьшается. То есть, если добавить квантовую механику, то чёрные дыры перестают быть абсолютно чёрными. Открытие Хокинга было как гром среди ясного неба.

Однако это вовсе не означает, что типичная чёрная дыра нагрета до красного свечения. По мере того как поток частицы летит от чёрной дыры, он должен преодолевать невероятное сопротивление со стороны её гравитационного притяжения. На это частицы тратят свою энергию и поэтому значительно остывают. Хокинг вычислил, что наблюдатель, находящийся достаточно далеко от чёрной дыры, обнаружит, что температура остаточного «утомлённого» излучения обратно пропорциональна массе чёрной дыры. Огромная чёрная дыра, подобная находящейся в центре нашей Галактики, имеет температуру менее триллионной доли градуса выше абсолютного нуля. Чёрная дыра с массой Солнца будет иметь температуру меньше чем миллионная доля градуса, даже меньше, чем температура в 2,7 градуса реликтового излучения, оставшегося после Большого взрыва. Чтобы температура чёрной дыры была достаточно высока, чтобы приготовить барбекю для всей семьи, её масса должна быть примерно в десять тысяч раз больше массы Земли, а это экстраординарно малая величина в космических масштабах.

Однако само значение температуры чёрной дыры не столь важно. Хотя излучение, идущее от удалённых астрофизических чёрных дыр, не сможет осветить ночное небо, тот факт, что они действительно имеют температуру, что они действительно излучают, означает, что эксперты поспешили отбросить гипотезу Бекенштейна о том, что чёрные дыры действительно обладают энтропией. Хокинг великолепно справился с этой задачей. Его теоретические вычисления, определяющие температуру данной чёрной дыры и испускаемого ею излучения, дали все необходимые данные для определения количества энтропии, которую, согласно стандартным законам термодинамики, должна иметь чёрная дыра. Полученный ответ оказался пропорционален площади поверхности чёрной дыры, как и предполагал Бекенштейн.

Итак, к концу 1974 года Второй закон вновь стал законом. Открытия Бекенштейна и Хокинга выявили, что в любой ситуации полная энтропия возрастает, если при этом учитывать не только энтропию обычного вещества и излучения, но также и находящуюся внутри чёрных дыр и определяемую площадью их полной поверхности. Вместо того чтобы быть стоком для энтропии и приводить к нарушению Второго закона, чёрные дыры играют активную роль в исполнении этого закона во вселенной с постоянно увеличивающимся беспорядком.

Это заключение вызвало долгожданное облегчение. Для многих физиков Второй закон, основанный на казалось бы неоспоримых статистических рассуждениях, стал священным как практически никакой другой в науке. Его воскрешение означало, что с этим миром опять всё в порядке. Но со временем появилась небольшая, но первостепенно важная запись в бухгалтерской книге энтропии, которая показала, что вопрос о справедливости Второго закона не является самым приоритетным. Эта честь досталась задаче о месте хранения энтропии, задаче, важность которой станет очевидной, когда мы выявим глубокую связь между энтропией и центральной темой этой главы — информацией.

 

Энтропия и скрытая информация

До настоящего момента энтропия образно описывалась как мера беспорядка, и более количественно, как число перегруппировок компонент системы, не меняющих её совокупных макроскопических свойств. Выше это прозвучало неявно, но теперь можно сказать определённо, что энтропию можно осмыслить как измерение информационного разрыва между теми данными, которые у нас есть (общими макроскопическими свойствами), и теми данными, которых нет (конкретным устройством системы на микроскопическом уровне). Энтропия является мерой дополнительной информации, скрытой в деталях микроскопического устройства системы, которые, будь к ним доступ, позволили бы выделить эту микроуровневую конфигурацию системы на фоне всех макропроявлений.

В качестве иллюстрации представим, что Оскар навёл порядок в своей комнате, но не хватило времени убрать серебряные доллары, выигранные им в покер на прошлой неделе — тысяча монет так и осталась лежать разбросанной по полу. Даже если Оскар соберёт их потом в кучку, его взгляду предстанет хаотичный набор монет, часть из которых лежит вверх решкой, а часть вверх орлом. Если случайным образом поменять орлы на решки, а решки на орлы, то Оскар ничего не заметит — это свидетельствует о том, что тысяча собранных в кучку серебряных долларов обладает высокой энтропией. Этот пример настолько простой, что энтропию можно явно подсчитать. Для двух монет имеются четыре возможные конфигурации: (орёл, орёл), (орёл, решка), (решка, орёл), и (решка, решка) — две возможности для первого доллара умножаются на две для второго. Для трёх монет есть восемь возможных конфигураций — (орёл, орёл, орёл), (орёл, орёл, решка), (орёл, решка, орёл), (решка, орёл, орёл), (орёл, решка, решка), (решка, орёл, решка), (решка, решка, орёл), (решка, решка, решка) — возникающих из двух возможностей для первой монеты, помноженных на две для второй и помноженных на две для третьей. Для тысячи монет число возможностей вычисляется аналогично: множитель 2 для каждой монеты, и получаем число 21000, равное 10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376. Подавляющее большинство конфигураций орёл-решка не будут обладать особыми свойствами, поэтому они никак не будут выделены среди прочих. Однако некоторые будут выделены, если, скажем, все 1000 монет будут лежать кверху орлом или решкой, или если 999 монет будут лежать кверху орлом, или 999 кверху решкой. Но число таких необычных конфигураций настолько мало по сравнению с гигантским числом всех возможностей, что исключив их из подсчёта, вы вряд ли обнаружите какую-то разницу.

Из нашей предыдущих обсуждений следует, что число 21000 задаёт энтропию монет. Для определённых целей этот вывод вполне достаточен. Однако для установления более глубокой связи между энтропией и информацией необходимо уточнить картину, описанную выше. Энтропия системы связана с числом неразличимых перегруппировок её компонентов, но, строго говоря, не равна ему. Эта взаимосвязь выражается с помощью математической операции, называемой логарифмом; не пугайтесь, если логарифм навевает дурные воспоминания о школьных уроках математики. В нашем примере с монетами это просто означает, что в качестве энтропии надо взять показатель полученного нами числа конфигураций, то есть энтропия определяется как 1000, а не 21000.

Преимущество использования логарифма в том, что он позволяет работать с более обозримыми числами, но есть и более важная причина. Представьте, что я спрашиваю вас, сколько информации вам понадобится для описания одной частной конфигурации орёл-решка в наборе из 1000 монет. Простейший ответ состоит в составлении списка — орёл, орёл, решка, орёл, решка, решка…, который описывает расположение каждой из 1000 монет. Конечно же, отвечу я, это даст мне полную информацию об этой конфигурации, но вопрос состоял не в этом. Я спрашивал, сколько информации содержится в этом списке.

Тут вы начнёте раздумывать. Чем на самом деле является информация и для чего она нужна? Вы даёте прямой и простой ответ. Информация отвечает на вопросы. Годы исследований по физике, математике и компьютерным технологиям сделали этот ответ точным. Эти исследования установили, что наиболее полезная мера содержания информации — это число различных «да или нет» вопросов, на которые у этой информации есть ответ. В примере с монетами есть 1000 таких вопросов: орёл у первого доллара? Да. Орёл для второго доллара? Да. Орёл для третьего доллара? Нет. Орёл для четвёртого доллара? Нет. И так далее. Элемент данных, который может содержать ответ на «да или нет» вопрос, называется битом — привычный для компьютерного века термин, являющийся сокращением от английского выражения binary digit, двоичный символ, означающий 0 или 1, о котором можно думать как о численном представлении ответов да или нет. Таким образом, конфигурации орёл-решка из 1000 монет содержат 1000 бит информации. Эквивалентным образом, если вы встанете на макроскопическую точку зрения Оскара и сосредоточитесь только на случайном расположении всех монет в целом, не обращая внимания на «микроскопические» детали орёл или решка, то информация, «скрытая» в этих монетах, составляет 1000 бит.

Отметим, что значение энтропии и количество скрытой информации равны. И это не случайно. Число возможных выпадений орёл-решка равно числу возможных ответов на 1000 вопросов — (да, да, нет, нет, да…) или (да, нет, да, да, нет…) или (нет, да, нет, нет, нет…) и так далее, а именно 21000. При определении энтропии как логарифма числа таких конфигураций — 1000 в нашем случае — энтропия равна числу «да или нет» вопросов для любой из таких последовательностей ответов.

Мы рассмотрели частный пример с 1000 монетами, но установленная связь между энтропией и информацией имеет совершенно общий характер. Микроскопические детали любой системы содержат информацию, которая скрыта только при рассмотрении макроскопических, совокупных свойств. Например, вы знаете температуру, давление и объём контейнера с паром, но известно ли вам, ударялась ли молекула H2O о верхний правый угол этого контейнера? А может быть другая молекула только что ударилась о нижний левый край? Так же как с разбросанными монетами, энтропия системы равна числу «да или нет» вопросов, ответы на которые содержатся в её микроскопическом состоянии, и поэтому энтропия является мерой, скрытой в системе информации.

 

Энтропия, скрытая информация и чёрные дыры

Каким образом данное выше определение энтропии и его взаимосвязь со скрытой информацией применяется к чёрным дырам? Когда Хокинг разработал детальное квантово-механическое обоснование, связывающее энтропию чёрной дыры с площадью её горизонта событий, он не только дал количественное описание исходного утверждения Бекенштейна, но также создал алгоритм для его вычисления. Возьмите горизонт событий чёрной дыры, говорит Хокинг, и разбейте его на решётку, в которой сторона каждой клетки равна одной планковской длине (10−33 сантиметра). Хокинг математически доказал, что энтропия чёрной дыры равна числу таких клеток, которым покрывается весь горизонт событий — иными словами, это площадь поверхности чёрной дыры, измеренная в планковских единицах (клетки площадью 10−66 квадратного сантиметра). На языке скрытой информации всё выглядит так, как будто каждая клетка тайным образом несёт один бит, 0 или 1, что даёт ответ на один «да или нет» вопрос, описывающий какую-то характеристику чёрной дыры на микроскопическом уровне (рис. 9.2).

Рис. 9.2. Стивен Хокинг математически показал, что энтропия чёрной дыры равна числу клеток планковского размера, необходимых для покрытия её горизонта событий. Как будто каждая клетка несёт один бит, базовую единицу информации

Общая теория относительности Эйнштейна, а также теоремы об отсутствии волос у чёрных дыр, не учитывают квантово-механические эффекты и поэтому полностью теряют эту информацию. Задайте массу чёрной дыры, её заряд и угловой момент, говорит общая теория относительности, и вы однозначным образом определите чёрную дыру. Однако Бекенштейн и Хокинг утверждают, что это не так. Они установили, что должно существовать много разных чёрных дыр с одинаковыми макроскопическими свойствами, которые, тем не менее, отличаются на микроскопическом уровне. Как и в более привычных примерах — про монеты на полу или пар в контейнере — энтропия чёрных дыр отражает информацию, скрытую в более мелких деталях.

Не менее неординарные, чем сами чёрные дыры, эти открытия установили, что в вопросе об энтропии чёрные дыры ничем не отличаются от всего остального. Однако полученные результаты привели к новым вопросам. Хотя Бекенштейн и Хокинг говорят нам, сколько информации скрыто в чёрной дыре, нам ничего не известно о том, что это за информация. Неизвестно, на какие специфические «да или нет» вопросы отвечает эта информация, не установлен состав микроскопических компонент, которые эта информация предназначена описывать. Математический анализ точно определил величину информации данной чёрной дыры, ничего не сообщив о природе этой информации.

Эти вопросы до сих пор ставят в тупик. Но есть и другая загадка, которая видится ещё более важной: почему количество информации определяется площадью поверхности чёрной дыры? Если бы вы спросили меня, сколько информации содержится в библиотеке Конгресса, я стал бы говорить о доступном пространстве внутри здания библиотеки. Потребовалось бы знать вместимость залов библиотеки, необходимых для размещения полок, картотек, микрофишей, фотографий и документов. То же самое справедливо для информации внутри моей головы, объём которой, по-видимому, привязан к объёму головного мозга, доступному пространству для нейронных связей. То же самое имеет место для информации в контейнере с паром, которая содержится в свойствах заполняющих контейнер частиц. Однако удивительно, что применительно к чёрным дырам способность для хранения информации определяется, согласно Бекенштейну и Хокингу, не объёмом, а площадью поверхности.

До появления этих результатов физики считали, что поскольку планковская длина (10−33 сантиметра) является, по-видимому, наименьшей длиной, для которой понятие «расстояния» всё ещё имеет смысл, то наименьшим осмысленным объёмом будет крошечный кубик, грани которого имеют планковскую длину (объём кубика равен 10−99 кубического сантиметра). Разумная гипотеза, которой придерживались многие, была такова, что независимо от будущих технологических прорывов наименьший объём может хранить не более одной наименьшей единицы информации — одного бита. Поэтому ожидалось, что максимальное количество информации, которое может содержаться в данной области пространства, равно числу планковских кубиков, способных поместиться внутри этой области. Поэтому присутствие планковской длины в результате Хокинга не было неожиданным. Удивительно то, что хранилище информации чёрной дыры определяется не заполняющим её объём числом планковских кубиков, а числом покрывающих поверхность чёрной дыры планковских клеток.

Так впервые возникло указание на голографию — вместимость информационного хранилища определяется площадью граничной поверхности, а не объёмом находящегося внутри неё пространства. Через три десятилетия из этого указания прорастёт потрясающе новый взгляд на законы физики.

 

Где находится скрытая информация чёрной дыры

Планковская шахматная доска с нулями и единицами, разбросанными по поверхности горизонта событий (рис. 9.2), является символической иллюстрацией результата Хокинга о количестве информации, хранящейся внутри чёрной дыры. Однако можем ли мы буквально воспринимать этот рисунок? Если математика говорит, что информационный запас чёрной дыры измеряется площадью её поверхности, то является ли это просто средством численного подсчёта, или же это означает, что поверхность чёрной дыры и есть место фактического хранения информации?

Этот глубокий вопрос десятилетиями изучался самыми знаменитыми физиками. Ответ на него в сильной степени зависит от того, смотрите вы на чёрную дыру снаружи или изнутри — если снаружи, то есть веская причина полагать, что информация действительно находится на горизонте.

Любому, кто знаком с подробностями описания чёрных дыр в общей теории относительности, данное замечание покажется весьма странным. Общая теория относительности со всей ясностью говорит, что при падении сквозь горизонт событий чёрной дыры ничего особенного не происходит — нет никакой материальной поверхности, никаких указателей, никаких сигнальных огней — ничего, что каким бы то ни было образом отметило пересечение вами границы невозврата. Это следствие одного из самых простых, но, тем не менее, самых важных достижений Эйнштейна. Эйнштейн осознал, что когда вы (или любой объект) находитесь в состоянии свободного падения, вы становитесь невесомым; спрыгните с высокого трамплина, и весы, привязанные к вашим ногам, будут падать с вами, показывая ноль. По сути, вы избавляетесь от гравитации, позволив ей действовать в полную силу. Из этого Эйнштейн делает немедленный вывод. Основываясь на ваших ощущениях в непосредственно окружающей вас среде, вы не сможете отличить свободного падения на массивный объект от свободного парения в глубинах пустого пространства: в обеих ситуациях вы абсолютно невесомы. Конечно, если вы откроете глаза и увидите, скажем, быстро приближающуюся поверхность земли, лучшим решением будет побыстрее дёрнуть за кольцо парашюта. Но если вы оказались заключённым в маленькую капсулу без окон, вы никак не сможете отличить свободное падение от свободного плавания.

В первые годы двадцатого столетия Эйнштейн ухватился за эту простую, но глубокую взаимосвязь между движением и гравитацией; спустя десять лет работы он оформил её в виде общей теории относительности. Мы используем эту взаимосвязь более скромным образом. Предположим, что вы находитесь в этой капсуле и свободно падаете не на Землю, а в чёрную дыру. Ровно такие же рассуждения говорят, что ваши чувства не смогут отличить падение от плавания в пустом пространстве. Это означает, что не будет происходить ничего особого или необычного, пока вы свободно падаете сквозь горизонт чёрной дыры. В конце концов, вы ударитесь о центр чёрной дыры, свободное падение прекратится и здесь ваши чувства, несомненно, это зафиксируют. Причём мало не покажется. Но до этого момента вам будет казаться, что вы бесцельно блуждаете в мрачных глубинах космоса.

Этот сюжет придаёт энтропии чёрной дыры ещё больше загадочности. Если при пересечении горизонта чёрной дыры вы ничего не обнаруживаете, ничего отличающего горизонт от внешнего пространства, то как он может хранить информацию? Ответ, к которому тяготеют учёные в течение последнего десятилетия, перекликается с темой дуальности, уже встречавшейся нам в предыдущих главах. Напомним, что дуальность возникает в ситуациях, где есть взаимодополнительные точки зрения, кажущиеся совершенно разными, но при этом внутреннее скованные единой физической цепью. Изображение Альберта и Мэрилин на рис. 5.2, является хорошей наглядной аналогией; математические примеры возникают из зеркальных форм дополнительных измерений в теории струн (глава 4) и на первый взгляд различных, но дуальных теорий струн (глава 5). В последние годы, следуя Сасскинду, исследователи осознали, что чёрные дыры являются другим примером того, когда дополнительные и при этом совершенно разные точки зрения приводят к фундаментальным открытиям.

Одна существенная точка зрения принадлежит вам, свободно падающему в чёрную дыру. Другая принадлежит удалённому наблюдателю, следящему за вашим путешествием в телескоп. Замечательно то, что по мере того как вы, как ни в чём не бывало, пересекаете горизонт чёрной дыры, удалённый наблюдатель видит совершенно иную последовательность событий. Всё дело в излучении Хокинга. Когда удалённый наблюдатель измеряет температуру излучения Хокинга, он обнаруживает, что она очень мала, пусть 10−13 K, и это говорит о том, что чёрная дыра по размеру примерно равна чёрной дыре в центре нашей Галактики. Однако удалённый наблюдатель знает, что излучение холодное лишь потому, что идущие к нему от горизонта фотоны истратили много своей энергии, отчаянно преодолевая гравитационное притяжение чёрной дыры; как мы говорили ранее, фотоны устали. Наблюдатель приходит к выводу, что при вашем приближении к горизонту чёрной дыры вы будете встречать всё более свежие фотоны, которые только начали своё путешествие и пока остаются более энергичными и горячими. Действительно, наблюдатель видит, как вы, подойдя на волосок от горизонту, облучаетесь всё более и более интенсивным излучением Хокинга, до тех пор пока от вас не останутся лишь обугленные останки.

К счастью, ваши ощущения гораздо более приятные. Вы не видите, не ощущаете и вообще никак не знаете о существовании этого горячего излучения. Опять же, поскольку состояние свободного падения нейтрализует действие гравитации, ваши ощущения неотличимы от плавания в пустом пространстве. Мы знаем наверняка, что перемещаясь в пустом пространстве, нельзя вот так вдруг вспыхнуть. Поэтому с вашей точки зрения вы удачно проходите сквозь горизонт и (менее удачно) сваливаетесь в сингулярность чёрной дыры, а с точки зрения удалённого наблюдателя вы сгораете в пылающей короне, окружающей горизонт.

Какая из этих двух точек зрения правильная? Сасскинд и другие утверждают, что обе. Безо всяких сомнений, это трудно совместить с обычной логикой — логикой, согласно который вы либо живой, либо нет. Но это не обычная ситуация. Даже больше, эти две столь разные точки зрения никогда нельзя будет сопоставить. Вы не сможете выбраться из чёрной дыры и доказать удалённому наблюдателю, что живы. И, как оказывается, удалённый наблюдатель не может прыгнуть в чёрную дыру и озадачить вас утверждением, что вас больше нет. Когда я сказал, что удалённый наблюдатель «видит», как вы сгораете под воздействием излучения Хокинга, это было упрощением. Удалённый наблюдатель, внимательно изучая дошедшее до него уставшее излучение, может восстановить историю вашей гибели в огне. Но требуется время, чтобы эта информация достигла его. Математические расчёты показывают, что к тому моменту, когда он сможет сделать вывод, что вы сгорели, у него не останется достаточно времени прыгнуть в чёрную дыру и поймать вас прежде, чем вас поглотит сингулярность. Точки зрения могут быть разными, но у физики есть встроенный предохранитель против парадоксов.

Что насчёт информации? С вашей точки зрения вся информация, хранящаяся в вашем теле и голове, и в вашем ноутбуке, проходит вместе с вами сквозь горизонт чёрной дыры. С точки зрения удалённого наблюдателя вся переносимая вами информация поглощается слоем излучения, непрерывно клубящимся вблизи горизонта. Биты, содержащиеся в вашем теле, голове и ноутбуке, могут сохраниться, но при этом совершенно перемешаются после отчаянного столкновения и смешения с обжигающе горячим горизонтом. Поэтому для удалённого наблюдателя горизонт событий является реальным местом, населённым реальными вещами, физическими носителями информации, схематично изображённой в виде шахматной доски (рис. 9.2).

Вывод такой, что удалённый наблюдатель — мы — заключает, что энтропия чёрной дыры определяется площадью её горизонта, потому что горизонт является местом её хранения. Такое утверждение видится совершенно разумным. Однако не забывайте, насколько неожиданным является то, что объём чёрной дыры не является хранилищем информации. Мы сейчас увидим, что полученный результат не просто отражает одно из особых свойств чёрных дыр. Чёрные дыры говорят нам не просто о том, как чёрные дыры хранят информацию. Они информируют нас о хранении информации в произвольном контексте. Отсюда начинается прямая дорога к голографическому принципу.

 

За пределами чёрных дыр

Рассмотрим произвольный объект или набор объектов — набор библиотек Конгресса, все компьютеры корпорации Google, архивы ЦРУ, — расположенных в некоторой области пространства. Представим для простоты, что эта область окружена воображаемой сферой (рис. 9.3а). Теперь допустим, что полная масса объектов по сравнению с заполняемым ими объёмом настолько заурядна, что её даже близко не хватит для образования чёрной дыры. Такова постановка задачи. А теперь важный вопрос: какое максимальное количество информации может храниться в этой области пространства?

Рис. 9.3. а ) Набор объектов, хранящих информацию и расположенных внутри чётко очерченной области пространства; б ) Расширение информационной ёмкости данной области; в ) Когда количество вещества превосходит некоторую пороговую величину (её можно вычислить, исходя из общей теории относительности) {111} , данная область становится чёрной дырой

Ответ дают Второй закон и чёрные дыры, ставшие неожиданными партнёрами в этом вопросе. Представьте, что в область пространства добавляют вещество с целью увеличения её информационной ёмкости. Например, вы можете принести в корпорацию Google чипы с большим объёмом памяти или увесистые жёсткие диски; а в библиотеку Конгресса можно принести книги или электронные читалки. Поскольку даже сырое вещество несёт информацию — молекулы пара находятся здесь или там, они движутся со скоростью такой или сякой, — вы забиваете каждый уголок данной области пространства любой материей, какая только попадётся под руку. Пока не будет достигнута критическая отметка. В какой-то момент данная область станет настолько плотно набитой всякой всячиной, что если добавить ещё одно маленькое зёрнышко, то пространство внутри начнёт темнеть и превращаться в чёрную дыру. Когда такое случится, игра закончится. Размер чёрной дыры определяется её массой, поэтому при попытке увеличить её информационную ёмкость путём добавления большего количества вещества чёрная дыра начнёт увеличиваться в размере. Поскольку мы хотим рассмотреть информацию, которая может содержаться в данном фиксированном объёме пространства, такая ситуация выйдет за рамки поставленной задачи. Нельзя увеличить информационную ёмкость чёрной дыры, не заставив её при этом расти.

Следующие два наблюдения выводят нас на финишную прямую. Второй закон гарантирует, что энтропия возрастает в течение всего процесса, поэтому информация, скрытая внутри жёстких дисков, электронных читалок, старомодных бумажных книг и во всём остальном, что вы поместили в данную область пространства, меньше, чем информация, скрытая в чёрной дыре. Результаты Бекенштейна и Хокинга гласят, что скрытая информация чёрной дыры задаётся площадью её горизонта событий. Более того, поскольку вы работали очень аккуратно, так чтобы не выйти за исходную область пространства, то горизонт событий чёрной дыры совпадает с границей данной области и энтропия чёрной дыры равна площади окружающей эту область поверхности. Таким образом, мы получаем важный результат: количество информации внутри некоторой области пространства, хранящейся в любых объектах любой формы, всегда меньше площади окружающей эту область поверхности (измеренной в планковских единицах).

Вот к такому выводу мы пришли. Отметим, что хотя чёрные дыры играют главную роль в этих рассуждениях, весь анализ применим к любой области пространства, независимо от того, есть там чёрная дыра или нет. Если максимизировать информационную ёмкость данной области, то возникнет чёрная дыра, но если не превышать лимит добавляемого вещества, чёрная дыра не сформируется.

Поспешу добавить, что предел информационной ёмкости не должен нас заботить с практической точки зрения. Если сравнивать с современными рудиментарными накопителями, то потенциальная информационная ёмкость поверхности пространственной области просто чудовищна. Стопка из пяти стандартных терабайтных жёстких дисков легко умещается внутри сферы радиуса 50 сантиметров, поверхность которой покрывается 1070 планковскими клетками. Таким образом, информационная ёмкость этой поверхности составляет примерно 1070 бит, что равно миллиарду триллионов триллионов триллионов триллионов терабайтов, и поэтому несоизмеримо превышает всё, что вы можете купить. В Силиконовой долине подобные теоретические ограничения никого особо сильно не беспокоят.

Всё же, если задумываться об устройстве Вселенной, ограничения информационной ёмкости говорят о многом. Представьте любую область пространства, например, комнату, в которой я пишу эту книгу, или комнату, в который вы читаете её. Примите точку зрения Уилера и представьте, что всё происходящее в этой области сводится к некоторым информационным процессам — информация об устройстве окружающей среды в данный момент трансформируется посредством физических законов в информацию об устройстве окружающей среды через секунду, минуту или через час. Поскольку наблюдаемые нами физические процессы, а также процессы, которые нами управляют, по всей видимости, происходят внутри данной области, то естественно ожидать, что переносимая этими процессами информация также находится внутри этой области. Но только что полученные результаты предлагают альтернативный взгляд. Обнаруженная связь между информацией и площадью поверхности чёрной дыры выходит далеко за рамки простого численного расчёта; есть конкретный смысл, в котором информация хранится на поверхности чёрной дыры. Сасскинд и т’Хоофт указали, что данное рассуждение имеет совершенно общий характер: поскольку информация, необходимая для описания физических явлений внутри любой заданной области пространства, может быть полностью представлена данными на окружающей её поверхности, то существует причина думать, что эта поверхность и является тем местом, где происходят фундаментальные физические процессы. Как предлагают эти смелые учёные, привычная нам трёхмерная реальность связана голографической проекцией с удалёнными двумерными физическими процессами.

Если эти рассуждения верны, тогда существуют физические процессы, происходящие на некоторой удалённой поверхности, которые, подобно тянущему за ниточки кукловоду, управляют процессами, происходящими в моей голове и моих руках, в тот самый момент, когда я печатаю эти слова на моём компьютере. Наш опыт здесь и удалённая реальность там образуют крепкую связку параллельных миров. Явления в этих двух мирах — я буду называть их голографическими параллельными вселенными — настолько полно связаны друг с другом, что происходящие в каждом из них эволюции будут так же крепко связаны, как я и моя тень.

 

Мелким шрифтом

То, что привычная нам реальность может быть отражением, а может быть даже порождением явлений, происходящих на далёкой поверхности меньшей размерности, является одним из самых неожиданных открытий во всей теоретической физике. Как можно быть уверенным в справедливости голографического принципа? Мы оказались на территории, лежащей в самой глубине теоретической физики, и опираемся почти целиком на разработки, которые не были проверены экспериментально, поэтому конечно же есть основания для скептицизма. Есть много причин сбиться с курса. Действительно ли чёрные дыры обладают ненулевой температурой и энтропией, и если так, согласуются ли эти значения с теоретическими предсказаниями? Действительно ли информационная ёмкость некоторой области пространства определяется количеством информации, которая может быть размещена на окружающей её поверхности? И для такой поверхности является ли один бит на одну планковскую клетку пределом на самом деле? Мы думаем, что ответ на каждый из этих вопросов положительный, потому что есть непротиворечивая, совместимая и аккуратно выстроенная теоретическая система, с которой такие выводы прекрасно согласуются. Но поскольку ни одна из этих идей не ложилась под экспериментальный скальпель, вполне возможно (хотя, на мой взгляд, совершенно невероятно), что будущие открытия убедят нас, что один или более из этих существенных промежуточных шагов являются неверными. Тогда, возможно, придётся отказаться от голографической идеи.

Другой важный момент состоит в том, что в наших рассуждениях речь шла об области пространства, об окружающей её поверхности, и о заполняющей их информации. Однако, поскольку акцент был сделан на энтропию и Второй закон — каждый из которых касается в первую очередь величины информации в данном контексте — мы пропустили детали того, как эта информация хранится или физически реализуется. Когда мы говорим об информации, которая находится на сфере, окружающей некоторую область пространства, то что это на самом деле означает? Как информация проявляет себя? Какую форму она приобретает? До какой степени мы можем развить подробный словарь по переводу явлений, происходящих на границе, в явления, происходящие в объёме?

Физикам ещё предстоит создать общую схему рассмотрения этих вопросов. Считая, что как гравитация, так и квантовая механика играют центральную роль в подобных рассуждениях, можно было бы ожидать, что возможная модель для теоретических исследований данных вопросов появится в теории струн. Однако, когда т’Хоофт сформулировал голографический принцип, он стал сомневаться, что теория струн поможет в развитии этой области, заметив, что «на планковских расстояниях природа гораздо более безумна, чем могут себе представить струнные теоретики». Менее чем десятилетие спустя струнная теория доказала, что т’Хоофт ошибался, но его идеи верны. В эпохальной статье одного молодого теоретика было показано, что теория струн приводит к подробной реализации голографического принципа.

 

Теория струн и голография

Когда в 1998 году на ежегодной международной конференции по теории струн в университете Калифорнии в Санта-Барбаре объявили мой доклад, я, выходя к доске, сделал нечто, чего никогда ранее не делал, и подозреваю, больше никогда не сделаю. Я повернулся к аудитории, положил правую руку на левое плечо, затем левую руку на правое плечо, после чего опустил по очереди обе руки на задние карманы брюк, подпрыгнул, развернулся к доске и под сопровождающий меня смех зала сделал три оставшихся шага до трибуны, где и начал свой доклад. Аудитория поняла шутку. Накануне вечером на банкете участники конференции праздновали с песнями и танцами — только так, как могут физики, — выдающийся результат аргентинского струнного теоретика Хуана Малдасены. Мы придумали слова что-то типа:

Чёрные дыры были большой мистикой, а теперь мы с помощью D-бран считаем D-энтропию,

и распевали их на мотив «Макарены», известного танцевального хита начала 1990-х годов. Мы выражали восторг сильнее, чем участники национального съезда демократов приветствовали Эла Гора, и наша песня ничем не уступала оригинальному исполнению «Лос дель Рио» по накалу страстей. На конференции я был один из немногих, доклад которых не был посвящён открытию Малдасены, поэтому, выйдя к доске на следующий день, я решил предварить свой доклад персональным танцем одобрения.

Сейчас, спустя десять лет, многие согласятся, что ни одно достижение в теории струн не было настолько существенным и важным. Одним из следствий результата Малдасены, имеющим прямое отношение к нашим рассуждениям, было то, что в некотором модельном варианте результат Малдасены явно выражал голографический принцип, давая первый математический пример голографических параллельных вселенных. Для этого Малдасена рассмотрел теорию струн во вселенной, которая отличается по форме от нашей Вселенной, но которую было легче анализировать для поставленных целей. Математически отличие состояло в том, что у вселенной была граница — непроницаемая поверхность, полностью охватывающая внутренность пространства. Сосредоточившись на граничной поверхности, Малдасена убедительно доказал, что всё, происходящее внутри этой особой вселенной, является отражением действующих на границе законов и процессов.

И хотя метод Малдасены не применим, скорее всего, напрямую ко вселенной с нашей формой, этот результат имел решающее значение, потому что благодаря этому появился прямой математический способ количественного анализа идей, касающихся голографических вселенных. Результаты таких исследований привлекли внимание большого количества физиков, которые раньше относились к голографическому принципу с подозрением, и таким образом вызвали шквал исследований, которые привели к тысячам статей и значительно углубили наше понимание. Самое захватывающее, что теперь есть основание думать, что связь между этими теоретическими открытиями и физикой в нашей Вселенной может быть установлена. Через несколько лет эта связь вполне может привести к экспериментальной проверке голографических идей.

Оставшаяся часть этого и следующего раздела будет посвящена объяснению того, как Малдасена пришёл к этому открытию; эта часть изложения самая трудная. Я начну с краткого резюме в виде шпаргалки, но если вы почувствуете, что уже насытились деталями, можете без зазрения совести перейти к последнему разделу.

Идея Малдасены состояла в использовании новой версии дуальности, которую мы обсуждали в главе 5. Напомним, что там мы рассматривали вселенные на бране, представимые в виде нарезанных ломтей хлеба. Малдасена рассмотрел с двух дополнительных точек зрения свойства плотной стопки трёхмерных бран (рис. 9.4). С одной, «внутренней» точки зрения, рассматриваются струны, которые движутся, вибрируют и извиваются вдоль этих бран. С другой, «внешней», точки зрения рассматривается, какое гравитационное воздействие браны оказывают на своё непосредственное окружение, подобно тому как Солнце и Земля влияют на своё окружение. Малдасена показал, что обе точки зрения описывают одну и ту же физическую ситуацию, но с разных сторон. Внутренняя точка зрения рассматривает движение струн на стопке бран, а внешняя точка зрения рассматривает движение струн в области искривлённого пространства, ограниченного стопкой бран. Приравнивая обе точки зрения, Малдасена обнаружил явную связь между физикой внутри области с физикой на границе области — была найдена подробная реализация голографии. В этом состоит основная идея.

Рис. 9.4. Набор близко расположенных три-бран, к которым прикреплены концы открытых струн, а замкнутые струны двигаются внутри «балка»

А если добавить красок, то ситуация описывается следующим образом.

Рассмотрим, говорит Малдасена, стопку из три-бран, настолько близко расположенных друг к другу, что они выглядят как монолитная плита (рис. 9.4), и изучим поведение движущихся в этой среде струн. Вспомним, что есть два типа струн — открытые, как кусочки ниточек, и замкнутые, как колечки. Вспомним также, что концы открытых струн могут скользить по бранам, но не могут отрываться от них, а замкнутые струны не имеют концов и поэтому могут свободно перемещаться по всему пространству. На теоретико-струнном жаргоне мы говорим, что открытые струны прикреплены к бранами, а замкнутые струны могут двигаться по всему объёму пространства (или в «балке»).

Сначала Малдасена математически проанализировал струны с низкой энергией — то есть струны, вибрирующие относительно медленно. И вот почему: сила гравитации между двумя любыми объектами пропорциональна массе каждого объекта; это же справедливо для гравитационного притяжения между любыми двумя струнами. Струны с низкой энергией обладают малой массой и поэтому практически не реагируют на гравитационное притяжение. Таким образом, сфокусировавшись на низкоэнергетических струнах, Малдасена пренебрёг влиянием гравитации. Это стало существенным упрощением. В главе 5 мы видели, что в теории струн гравитационное взаимодействие переносится замкнутыми струнами. Поэтому пренебречь силой гравитации эквивалентно пренебречь влиянием замкнутых струн на всё, с чем они могут встретиться, — в особенности, с живущими на стопке из бран ниточками открытых струн. Таким образом, добившись, что два типа струн, открытые и замкнутые, не оказывают влияния друг на друга, Малдасена добился того, что их можно анализировать по отдельности.

Затем Малдасена изменил точку зрения и стал анализировать ту же самую ситуацию под другим углом. Вместо того чтобы считать три-браны вместилищем для движения открытых струн, он рассмотрел три-брану как самостоятельный объект, у которого есть присущая ему масса и который, таким образом, искривляет вокруг себя пространство и время. Малдасене повезло, потому что к тому времени другими физиками были уже получены результаты, где были заложены основы для такого альтернативного рассмотрения. В этих работах было установлено, что при увеличении числа бран в стопке их коллективное гравитационное поле возрастает. В конце концов плита из бран ведёт себя подобно чёрной дыре, но не обычной, а бранообразной, поэтому такая стопка была названа чёрной браной. Как и в случае чёрных дыр, если приблизиться слишком близко к чёрной бране, то вырваться оттуда не получится. И так же как в случае чёрных дыр, если наблюдать издалека за приближением какого-нибудь объекта к чёрной бране, то дошедший до вас свет будет точно так же измотан борьбой с гравитационным притяжением чёрной браны. Это приведёт к тому, что объект будет выглядеть замедляющимся и теряющим энергию.

В этом контексте Малдасена вновь сосредоточился на низкоэнергетических свойствах вселенной, в которой содержится такая чёрная плита. Во многом аналогично тому, как он действовал в первом подходе, он осознал, что в низкоэнергетической физике присутствуют две составляющие, которые можно анализировать независимо друг от друга. Первая — это медленно вибрирующие замкнутые струны, движущиеся в балке пространства, которые являются очевидными переносчиками низкой энергии. Вторая составляющая возникает благодаря присутствию чёрной браны. Представьте теперь, что вы находитесь далеко от чёрной браны и в вашем распоряжении имеется вибрирующая замкнутая струна, энергия которой может быть произвольно большой. Затем представьте, что струна опускается на горизонт событий, а вы наблюдаете за ней с безопасного расстояния. Как говорилось ранее, чёрная брана будет понижать энергию струны; свет, доходящий до вас, будет изображать струну как в замедленном кино. Таким образом, вторыми низкоэнергетическими переносчиками являются любые вибрирующие струны, которые находятся достаточно близко к горизонту событий чёрной браны.

Наконец, Малдасена сравнил оба подхода. Он заметил, что, поскольку они описывают одну и ту же стопку бран, только с разных точек зрения, они обязаны совпадать. Каждое описание вовлекает низкоэнергетические замкнутые струны, движущиеся в балке пространства, поэтому в этой части совпадение очевидно. Однако согласованность должна быть и в остальных частях каждого описания.

Удивительно, но именно так и происходит!

Оставшийся кусок первого описания состоит из низкоэнергетических открытых струн, движущихся на три-бранах. Вспомним из главы 4, что низкоэнергетические струны хорошо описываются квантовой теорией поля точечных частиц, именно то, что нам здесь требуется. Этот тип квантовой теории поля привлекает ряд хитроумных математических построений (чего стоит только одно название — конформно-инвариантная суперсимметричная квантовая калибровочная теория поля), но нам важны две её характеристики, которые можно достаточно легко понять. Во-первых, отсутствие замкнутых струн гарантирует отсутствие гравитационного поля. Во-вторых, поскольку струны движутся только на плотно упакованных в стопку бранах, квантовая теория поля живёт в трёх пространственных измерениях (что в совокупности с одним временным измерением даёт четыре пространственно-временных измерения).

Что касается второго описания, то оставшийся кусок состоит из произвольно вибрирующих замкнутых струн, которые, однако, оказались достаточно близко к горизонту событий чёрной браны, а потому кажутся вялыми — то есть как будто они обладают низкой энергией. Такие струны, хотя и ограниченные близостью к чёрной бране, по-прежнему вибрируют и движутся сквозь девять пространственных измерений (что в совокупности с одним временным измерением даёт десять пространственно-временных измерений). Поскольку этот сектор построен из замкнутых струн, в нём присутствует гравитационное взаимодействие.

Однако сколь бы разными не казались два подхода, они описывают одну физическую ситуацию и поэтому должны быть согласованы. Это приводит к совершенно невероятному заключению. Квантовая теория поля (определённого вида) точечных частиц без гравитации в четырёх пространственно-временных измерениях (первая точка зрения) описывает такую же физику, что и теория струн с гравитацией, где струны движутся внутри определённой области десятимерного пространства-времени. Звучит так же странно, как… даже не знаю что — сколько я не пытался, я не смог найти две менее похожие вещи в реальном мире, чем эти две теории. Однако Малдасена доверился математике в обсуждавшемся выше смысле и, сделав такой вывод, попал в самую точку.

Исключительная неожиданность этого результата — и смелость утверждения — не умаляется тем фактом, что он моментально находит своё место в цепочке рассуждений, приведённых выше в этой главе. Как схематично показано на рис. 9.5, гравитация чёрной плиты из бран искривляет окрестность рассматриваемой области в форму десятимерного пространства-времени (детали вторичны, но искривлённое пространство-время называется пятимерным анти-де ситтеровское пространством на пятимерную сферу); причём плита из чёрных бран является границей этого пространства. Поэтому результат Малдасены состоит в том, что теория струн в балке этого пространства-времени идентична квантовой теории поля, живущей на его границе.

Рис. 9.5. Схематическая иллюстрация дуальности между теорией струн внутри некоторого пространства-времени и квантовой теорией поля на его границе

Так возникает голография.

Малдасена построил самосогласованную математическую лабораторию, в которой, помимо всего прочего, физики могли исследовать конкретные детали голографической реализации физических законов. В течение нескольких месяцев появились две статьи, одна из них принадлежала Эдварду Виттену, а вторая была написана совместно Стивеном Габсером, Игорем Клебановым и Александром Поляковым, которые вывели результат Малдасены на новый уровень понимания. В них был создан точный математический словарь для перевода с одной теории на другую: если задан физический процесс на границе браны, то словарь говорит, как он будет выглядеть в балке внутри объёма и наоборот. С помощью этого словаря в умозрительной вселенной голографический принцип становится точным и определённым. На границе вселенной информация закодирована в квантовых полях. После математического перевода она предстаёт как струнный сюжет, разворачивающийся внутри объёма.

Математический словарь сам по себе подчёркивает голографическую аналогию. Обычная голограмма не похожа на трёхмерный объект, который она порождает. На её поверхности видны лишь линии, дуги, завитки, вытравленные на пластиковой пластинке. Однако сложное преобразование, выполняемое при прохождении лазерного луча сквозь пластинку, переводит эти отметины в узнаваемое трёхмерное изображение. Это означает, что пластиковая голограмма и трёхмерное изображение содержат одинаковые данные, даже если информация в одной из них нераспознаваема с точки зрения другой. Аналогичным образом, при анализе квантовой теории поля на границе вселенной Малдасены не видно, что у неё есть явные сходства с теорией струн, живущей в балке. Если физику показать две теории и умолчать о связи, которую мы только что выяснили, то скорее всего он сделает вывод, что они независимы. Тем не менее математический словарь, связывающий обе теории — и работающий как лазер в обычных голограммах, — со всей определённостью говорит, что всё, происходящее в одной теории, имеет своё воплощение в другой. А само изучение этого словаря выявляет, что подобно обычным голограммам, информация в каждой из этих теорий оказывается зашифрованной при переводе на другой язык.

В качестве особенно впечатляющего примера рассмотрим задачу, которую исследовал Виттен: как будет выглядеть обычная чёрная дыра, находящаяся внутри вселенной Малдасены, с точки зрения теории на границе. Напомним, что теория на границе не содержит гравитации, и потому чёрная дыра трансформируется в нечто совсем не похожее. Виттен показал, что подобно тому как за устрашающим видом волшебника Изумрудного города скрывался обыкновенный человек, так и ненасытная чёрная дыра является голографической проекцией чего-то совершенно обычного — разгорячённого газа частиц в теории на границе (рис. 9.6). Подобно настоящей голограмме и порождаемому ею изображению, две теории — чёрная дыра внутри и разогретая квантовая теория поля на границе — ничем друг на друга не похожи, но при этом они несут одинаковую информацию.

Рис. 9.6. Голографическая эквивалентность применительно к чёрной дыре в «балке» пространства-времени приводит к разогретому газу частиц и излучения на границе рассматриваемой области

В притче Платона о пещере наши чувства воспринимают лишь плоскую, усечённую версию истинной, более богатой реальности. Плоский мир Малдасены совсем другой. Далёкий от какого-либо усечения, он представляет события во всей полноте. Это совершенно другая история, отличная от того, к чему мы привыкли. Но этот плоский мир может вполне оказаться первичным.

 

Параллельные вселенные или параллельная математика?

Результат Малдасены и многие другие достижения, сделанные за прошедшие годы, воспринимаются как гипотезы. Поскольку математическая структура теории невероятно сложна, нахождение окончательных и безупречных аргументов является трудной задачей. Однако голографические идеи с успехом прошли строгие математические проверки, попав в мейнстрим физических исследований, направленных на поиск глубинных основ законов природы.

Один из факторов, вносящий свою лепту в сложность доказательства того, что граничный и объёмный миры — это разные замаскированные версии одной и той же физики, подчёркивает значительность этого результата, если он, конечно, справедлив. В главе 5 я говорил, что в большинстве случаев физики используют приближённые методы, и описал методы теории возмущений (вспомните пример с лотереей Ральфа и Элис). Я также подчеркнул, что такие методы приводят к правильным результатам только в случае, когда константа связи мала. При сравнении квантовой теории поля на границе и теории струн в балке Малдасена осознал, что когда константа связи одной теории мала, константа связи другой теории велика, и наоборот. Естественная проверка и возможный способ доказательства того, что две теории скрыто идентичны друг другу, сводится к проведению независимых вычислений в каждой теории и последующему сравнению. Однако это трудно сделать, потому что когда приближённые методы работают в одной теории, то они становятся неприменимыми в другой.

Но если вы принимаете более абстрактные доводы Малдасены из предыдущего раздела, то, что было пертурбативным злом, становится вычислительной добродетелью. По аналогии со струнными дуальностями из главы 5, словарь, устанавливающий соответствия между границей и балком, переводит устрашающие вычисления, отягощённые большой константой связи в одном подходе, в простые вычисления с малой константой связи в другом подходе. В последние годы этот эффект был умело использован для получения результатов, которые могут быть экспериментально проверены.

На релятивистском коллайдере тяжёлых ионов (RHIC) в Брукхэйвене, Нью-Йорк, ядра золота сталкиваются друг с другом на почти околосветовых скоростях. Поскольку ядра содержат много протонов и нейтронов, в столкновениях рождаются многочисленные частицы, температура которых может в 200 000 раз превышать температуру поверхности Солнца. Это достаточно горячо для того, чтобы из протонов и нейтронов образовалась жидкость из кварков и связывающих их глюонов. Физики потратили много усилий, чтобы понять, как устроена эта жидкая фаза, получившая название кварк-глюонная плазма, потому что считается, что именно в этом состоянии находилось вещество вскоре после Большого взрыва.

Сложность в том, что константа связи в этой квантовой теории поля (квантовой хромодинамике), описывающей горячий суп из кварков и глюонов, имеет большое значение, что ставит под сомнение применимость методов теории возмущения. Для преодоления этого препятствия были развиты многие изощрённые методы, но некоторые теоретические результаты по-прежнему не согласуются с экспериментальными данными. Например, при течении любой жидкости — будь то вода, патока или кварк-глюонная плазма — каждый слой жидкости оказывает тормозящее воздействие на слои сверху и снизу. Такое тормозящее воздействие известно как сдвиговая вязкость. В экспериментах на RHIC были проведены измерения сдвиговой вязкости кварк-глюонной плазмы, и полученные результаты оказались гораздо меньше, чем аналитические предсказания, сделанные с помощью пертурбативных методов квантовой теории поля.

Возможный способ преодолеть эту трудность заключается в следующем. Когда я вводил голографический принцип, я принял ту точку зрения, что всё, происходящее с нами внутри пространства-времени, является с помощью какого-то неожиданного трюка отражением процессов, которые происходят на удалённой граничной поверхности. Давайте обратим эту точку зрения. Представим, что наша Вселенная, или, более точно, кварки и глюоны в нашей Вселенной живут на границе, и потому эксперименты RHIC ставятся именно там. Теперь привлечём гипотезу Малдасены. Его результат показывает, что RHIC-эксперименты (описываемые квантовой теорией поля) имеют альтернативное математическое описание в терминах движущихся в объёме (или балке) струн. Детали происходящего сложны, но следствия такой перефразировки не заставляют себя долго ждать: трудные вычисления на границе (с большой константой связи) превращаются в более лёгкие вычисления в объёме (с малой константой связи).

Павел Ковтун, Андрей Старинец и Дам Сон провели такие вычисления и получили результат, который оказался впечатляюще близок к экспериментальным данным. Эта пионерская работа вдохновила целую армию теоретиков провести множество струнных расчётов в попытке установить связь с наблюдениями на RHIC, что оживило взаимодействие между теорией и экспериментом — к чему долго стремились струнные теоретики.

Следует заметить, что граничная теория не может полностью воспроизводить нашу Вселенную, поскольку, например, она не содержит гравитации. Но это не препятствует установлению связи с данными на RHIC, потому что в проводимых экспериментах массы частиц настолько малы (даже при движении на околосветовых скоростях), что гравитационное притяжение не играет никакой практической роли. Однако это подчёркивает, что в таких приложениях теория струн не выступает как «теория всего»; наоборот, теория струн предоставляет новые вычислительные инструменты для преодоления препятствий, затрудняющих применение более традиционных методов. С консервативной точки зрения, рассмотрение кварков и глюонов с помощью многомерной теории струн может рассматриваться как некий мощный математический трюк. При менее консервативном подходе можно считать, что высокоразмерное струнное описание является, в некотором смысле, физически реальным, но этот смысл ещё предстоит установить.

Независимо от того, консервативна точка зрения или нет, возникающее слияние математических результатов и экспериментальных наблюдений в высшей степени впечатляет. Я не сторонник преувеличивать, но считаю эти достижения самыми выдающимися за последние десятилетия. Математические выкладки, описывающие движение струн внутри десятимерного пространства-времени, дают нам информацию о кварках и глюонах, живущих в четырёхмерном пространстве-времени, — и эта информация, рождённая на кончике пера, подкрепляется, как нам видится, экспериментами.

 

Кода: будущее теории струн

Научные достижения, рассмотренные нами в этой главе, далеко выходят за рамки теории струн. Мы начали с идеи Уилера, что нашу Вселенную следует анализировать в терминах информации, потом мы увидели, что энтропия есть мера скрытой информации, затем мы поняли, что второй закон термодинамики мирно уживается с чёрными дырами, после чего осознали, что чёрные дыры хранят энтропию на поверхности горизонта, а также максимизируют количество информации, способной находиться в заданной области пространства-времени, — мы прошли извилистый путь сквозь многие десятилетия и познакомились с набором нетривиальных результатов. Этот процесс был наполнен замечательными открытиями и привёл нас к новой объединяющей идее — голографическому принципу. Этот принцип, как мы видели, предполагает, что наблюдаемые нами явления являются отражением происходящего на тонкой удалённой ограничивающей поверхности. Заглядывая в будущее, я ожидаю, что голографический принцип останется путеводной звездой для физиков в XXI столетии.

То что теория струн охватывает голографический принцип и даёт конкретные примеры голографических параллельных миров, демонстрирует, как сочетание передовых идей приводит к получению новых ярких результатов. То что эти примеры задали основу для явных вычислений, часть из которых могут быть сопоставлены с экспериментальными данными, является важным шагом на пути установления связи с окружающей нас реальностью. Однако внутри самой теории струн имеется более общий контекст, в рамках которого следует рассматривать эти результаты.

На протяжении почти тридцати лет после открытия теории струн физикам не хватало полного математического определения теории. В самом начале струнные теоретики выдвинули важные идеи о вибрирующих струнах и дополнительных измерениях, но даже спустя десятилетия активных разработок математические основания теории остаются приближёнными и, следовательно, неполными. Открытие Малдасены является выдающимся достижением на этом пути. Модели квантовой теории поля, которые, согласно Малдасене, живут на границе, активно изучались физиками с середины XX века и относятся к категории теорий элементарных частиц, хорошо понятых с математической точки зрения. Туда не входит гравитация и это большой плюс, поскольку мы видели, что непосредственная попытка совместить общую теорию относительности и квантовую теорию поля подобна разведению костра на пороховой фабрике. Теперь мы понимаем, что эта математически дружелюбная, негравитационная теория поля голографически порождает теорию струн — теорию с гравитацией. Живя по своим законам на границе вселенной специальной формы (рис. 9.5), эта квантовая теория поля охватывает все физические свойства, процессы и взаимодействия движущихся в объёме струн, и эта связь явно устанавливается с помощью словаря, переводящего явления из одной теории на язык другой. Поскольку у нас есть твёрдое математическое определение граничной квантовой теории, то его можно использовать как математическое определение теории струн, по крайней мере для струн, движущихся внутри этого пространства-времени. Таким образом, голографические параллельные вселенные могут стать чем-то бо́льшим, нежели просто следствием фундаментальных законов; они могут стать частью самого определения фундаментальных законов.

Когда я знакомил вас с теорией струн в главе 4, я отметил, что она является достойным претендентом на роль новой теории, которая объясняет фундаментальные законы природы, но при этом не отрицает предыдущие теории. Результаты, которые мы только что видели, поднимают это замечание на совершенно другой уровень. Теория струн не просто сводится к квантовой теории поля при определённых обстоятельствах. Гипотеза Малдасены говорит, что теория струн и квантовая теория поля являются эквивалентными подходами, но выраженными на разных языках. Переход между ними достаточно сложен и именно поэтому прошло более сорока лет, прежде чем эта взаимосвязь была обнаружена. Но если результаты Малдасены полностью верны, как на то указывают доступные нам данные, то теория струн и квантовая теория поля вполне могут оказаться двумя сторонами одной медали.

Физики упорно трудятся над обобщением этих идей, с тем чтобы их можно было применить к вселенным любой формы; если теория струн верна, то в них будет содержаться и наша Вселенная. Но даже при настоящих ограничениях, тот факт, что появилась надёжная формулировка теории, над которой мы работали много лет, является существенной основой для будущего прогресса. Этого вполне достаточно, чтобы вдохновить многих физиков петь и танцевать.