На Тушинском аэродроме

Каждый год в День Воздушного Флота СССР, установленный решением правительства в 1933 году, советская общественность чествует деятелей авиации и знакомится с новыми и новыми достижениями советской авиационной науки, техники и лётного мастерства. Этот день — один из любимейших праздников советских людей, демонстрирующий неразрывную связь авиации с народом, постоянную заботу Коммунистической партии и правительства, всех трудящихся о своем любимом детище — авиации.

В День Воздушного Флота москвичи рано утром устремляются за город, в Тушино. Идут переполненные трамваи, автобусы; с вокзалов столицы уходят специальные поезда. Автомобили бесконечным потоком заполняют шоссе, ведущие к аэродрому. Сотни тысяч зрителей располагаются на зеленом поле аэродрома и на окрестных возвышенностях.

Центральное здание аэроклуба украшено зеленью и живыми цветами. Реют по ветру государственные и авиационные флаги. Лозунги славят великую Коммунистическую партию, детище народа — Воздушный Флот нашей страны.

Гигантский аэродром выглядит празднично. В воздухе — неумолчный говор, оживленные восклицания, праздничный гул.

Буря аплодисментов разносится по полю, когда в правительственной ложе появляются руководители Партии и Правительства.

Звучат фанфары. Гремят залпы артиллерийского салюта. Над полем торжественно звучит Государственный гимн. Летчики горячо приветствуют собравшихся, поздравляют с праздником, провозглашают здравицу героическому советскому народу, Коммунистической партии, Советскому правительству.

Парад открывает группа самолетов-знаменосцев. Самолеты, не нарушая строя, пролетают над аэродромом, вызывая общее восхищение искусством и слетанностью летчиков — воспитанников московских аэроклубов.

Сложнейший рисунок вычерчивает в поднебесье группа летчиц. Их самолеты становятся в кильватер, совершают фигуры высшего пилотажа — петлю, переворот, спираль, замкнутый круг со снижением. Машины врезаются в облака, стремительно падают вниз, чертят линию параллельно горизонту. Вслед за тем появляются в небе двадцать четыре аэроплана «УТ-2». Их пилотируют спортсмены, совершенствующие свое лётное мастерство без отрыва от основной работы. Возникает грандиозная спираль; она то расширяется, то суживается, подчиняясь воле пилотов.

Новая группа спортсменов показывает достижения советских планеристов.

Самолетами «По-2» буксируются планеры. Освободившись от тросов, планеристы заставляют свои машины свободно парить над полем, делают петли, снова поднимаются в небо.

Быстро и энергично планерист выполняет фигуры, которые авиаторы называют «переворотом», «петлей», «бочкой». Положив свой планер на «спину», пилот летит вниз головой. У самой земли он переходит в нормальный полет и плавно приземляется, вызывая дружные рукоплескания.

Воздушным спортсменам-планеристам принадлежит первое место в таблице международных авиационных рекордов. Послевоенное развитие советского Воздушного Флота проходит под знаком нарастания скоростей. В этих условиях беспрестанно совершенствуют свою авиационную культуру и наши спортсмены.

Но вот общее внимание зрителей привлекают полеты геликоптеров. Эти машины поднимаются вертикально вверх, опускаются отвесно, летят вбок, застывают в воздухе. Они не нуждаются в аэродромах: могут подниматься с любой полянки, плоской крыши дома, с палубы небольшого корабля и иных малых площадок.

В Советском Союзе авиация играет большую роль в развитии важнейших отраслей народного хозяйства. В службе связи, при перевозках почты, для опыления полей и садов можно широко использовать вспомогательные самолеты. Надежные в управлении, они удобны и для тренировки молодых пилотов. Первое отделение праздника заканчивается показом этих самолетов.

День авиации.

Второе отделение посвящается военной авиации. На огромной скорости летчик демонстрирует фигуры высшего пилотажа на реактивном истребителе. В совершенстве владея скоростью и маневренностью — прекрасными качествами отличной советской машины, — летчик свечой вонзается в небо, делает крутой разворот, чертит петлю. Аплодисменты, возгласы восторга сменяются напряженным вниманием зрителей.

Индивидуальный пилотаж сменяется групповым. Военные летчики показывают высокий класс мастерства, взлетают вверх и стремительно падают вниз.

Всеобщий восторг вызывает реактивный самолет, проделывающий петли, иммельман, переворот, горку — весь комплекс фигур высшего пилотажа.

Молнией проносится реактивный самолет Яковлева. Летчик поднимает этот самолет с небольшой высоты до заоблачных просторов, вращает его вокруг оси и так ведет вниз.

Каскад сменяющихся фигур высшего пилотажа исполняет еще один реактивный самолет. В доли секунды самолет, послушный воле летчика, взлетает в поднебесье, снова кружит над аэродромом и вдруг исчезает.

Кажется, что даны уже все мыслимые примеры мастерства советских летчиков. Но вот со стороны Москвы в небе появляется пятерка реактивных истребителей. Подобно урагану, она мчится низко над аэродромом, взмывает вверх и демонстрирует перед затихшими от удивления и восхищения зрителями фигуры высшего пилотажа. Это поистине небывалое зрелище. В предвоенные годы москвичи наблюдали на праздниках виртуозную слетанность пятерок истребителей Героя Советского Союза Владимира Коккинаки, потом Анатолия Серова. После войны над Тушинским аэродромом не раз появлялось звено Героя Советского Союза полковника Ткаченко, самолеты которого во время выполнения различных фигур казались единой конструкцией.

Но то были групповые полеты винто-моторных самолетов.

В 1946 году летчик-испытатель, Герой Советского Союза генерал-майор авиации П. А. Стефановский первым в мире освоил высший пилотаж на реактивном самолете Яковлева. А в 1947 году полковник Полунин демонстрировал публично в Тушине впервые весь комплекс фигур высшего пилотажа на реактивных самолетах Яковлева.

В 1947 году это казалось вершиной лётного искусства. А в 1948 году над аэродромом в вихре труднейших фигур носилось пять реактивных самолетов, проделывавших то, чего никто никогда еще не выполнял нигде в мире. Они исполняли петлю, переворот на горке, иммельман с петлей, поворот на пикировании, опять переворот на горке, опять петли, бочки. Этим групповым пилотажем руководил летчик Савицкий.

День авиации. Парашютный десант.

Третье отделение великолепного праздника представляет собой инсценировку воздушного боя. В воздухе кружат реактивные истребители обороны. Появляются бомбардировщики «противника» в сопровождении группы истребителей. Истребители обороны идут в атаку. Начинается «воздушный бой». Треск авиационных пушек и пулеметов сливается в общий гул воздушного сражения. «Вражеские» бомбардировщики пытаются прорваться к цели. Бой принимает все более ожесточенный характер. Объятый черным дымом, падает бомбардировщик. За ним — второй. Боевой порядок «врага» нарушен. Истребители обороны развивают успех, преследуя разрозненные машины «врага».

Летчик-испытатель П. А. Стефановский.

Парадная колонна заключает авиационный праздник, демонстрируя достижения советской авиационной индустрии, отечественной конструкторской мысли, мощь Военно-воздушных сил нашей Родины.

Во главе колонны идут многомоторные бомбардировщики дальнего действия Туполева. Зрители чувствуют в спокойном полете проносящихся кораблей могучую грузоподъемность и совершенство аэродинамических форм.

Следующую группу составляют знаменитые штурмовики Ильюшина. Летит колонна реактивных истребителей Яковлева, за ней Лавочкина и, наконец, Микояна и Гуревича.

Зрители едва успевают проводить глазами одно звено, как налетает второе, третье, четвертое…

А затем, после небольшой паузы, над полем мчится и мгновенно исчезает в небе новый реактивный самолет. За ним второй растворяется так же молниеносно в поднебесье. Еще один несется и вертикально вонзается в небо.

Это новые реактивные самолеты Туполева, Ильюшина, Микояна и Гуревича, Яковлева, Лавочкина.

Каждый новый парад показывает, что советские ученые и деятели авиации не успокаиваются на достигнутом. Выполняя задания Партии и Правительства, они успешно решают самые сложные задачи современной науки и техники. Зрители наблюдают над полем самолеты, не сравнимые с теми, которые они видели в предыдущий год.

Последнее отделение авиационного праздника — воздушно-десантный парад.

К аэродрому подходит транспортный самолет. С его борта прыгают парашютисты, образуя в сверкающем синем небе маленькие точки. Над ними распускаются шелковые куполы парашютов. Производится проверка предварительных расчетов, необходимых для успешного выполнения групповых прыжков.

Парашютисты соревнуются в точности и ловкости. Один совершает прыжок с самолета «УТ-2» в момент, когда тот входит в вираж. Другие камнем кидаются с самолетов «УТ-2», показывая технику затяжных прыжков.

В центр круга, созданного самолетами, прыгают еще десять парашютистов.

Над аэродромом проходят десятки транспортных самолетов. Они высаживают десант из нескольких сот человек. Небо расцветает от многоцветных парашютов, образующих радужный фейерверк.

Парашютисты приземляются, вызывая горячие аплодисменты зрителей.

На небольшой высоте идут советские транспортные самолеты новых типов. Их возглавляет четырехмоторный воздушный корабль Туполева.

Авиационный праздник на Тушинском аэродроме выливается в яркую демонстрацию могущества советского Воздушного Флота, мастерства летчиков, стремления сделать свою авиацию лучшей в мире.

Созданная трудами народа, окруженная постоянным вниманием Коммунистической партии и Советского правительства, наша авиация покрыла себя бессмертной славой в Великой Отечественной войне. Празднуя в мирных условиях День Воздушного Флота, советский народ выражает горячую признательность своим летчикам — бесстрашным защитникам Родины и отмечает выдающиеся заслуги Военно-воздушных сил и работников авиационной промышленности. День Воздушного Флота — день смотра нашей авиации, новых успехов ее конструкторов, ее строителей, ее личного состава.

Реактивные самолеты

Советские реактивные самолеты впервые были показаны широкой публике 18 августа 1946 года.

Встреченные шумными возгласами и аплодисментами на трибунах зрителей, молниями прочертившие небо, реактивные самолеты не были, однако, слишком большой неожиданностью для присутствовавших. Советские люди хорошо знакомы с реактивной техникой: теоретически — благодаря трудам Циолковского, а практически — благодаря знаменитым гвардейским минометам, прозванным «катюшами», внушавшими такой ужас врагам и завоевавшими такую любовь у Советской Армии и у советского народа.

Прототипом своеобразного двигателя, получившего название реактивного, является обыкновенная, всем известная ракета, об употреблении которой и способах ее изготовления люди знают с незапамятных времен.

Пороховая ракета представляет собой простейший реактивный двигатель. Она движется, толкаемая пороховыми газами, образующимися при горении пороха, заключенного в самой ракете. Ракета может летать не только в воздухе, но и в безвоздушном пространстве. Сила тяги ракеты — реактивная сила — создается вытекающей струей пороховых газов; ни окружающий воздух, ни скорость движения ракеты не оказывают на эту силу никакого воздействия: в какой бы среде и с какой бы скоростью ни летела ракета, сила тяги будет постоянной.

«Патриархом ракетоплавания» заслуженно и бесспорно титулуется у нас и за границей К. Э. Циолковский. Его «Исследование мировых пространств реактивными приборами» появилось в 1903 году. В этой работе Циолковский дал детально разработанную теорию полета ракеты в разных условиях: в атмосфере и космическом пространстве. По разнообразию и полноте рассмотренных им условий полета и устройства ракет Циолковский по справедливости может быть назван творцом теории космической ракеты на жидком топливе, применяемом ныне в реактивных самолетах.

Ракета, извергающая во время своего полета продукты горения, представляет собой тело, масса которого непрерывно меняется благодаря сгоранию топлива. Анализ движения переменной массы делался задолго до Циолковского многими учеными. Но первое теоретическое исследование полета ракеты, как частный случай движения твердого тела переменной массы, появилось также в России, в сочинении профессора механики Петербургского политехнического института М. В. Мещерского. Эта его работа «Динамика точки переменной массы» была представлена им и защищена как диссертация на получение ученой степени магистра прикладной математики в 1897 году. Однако Мещерский решает задачу схематически.

К. Э. Циолковский исходит из иных предпосылок и расширяет условия задачи, вводя действие переменной силы тяготения и переменного сопротивления воздуха, исследуя вертикальный и наклонный взлет ракеты.

Нечто среднее между теоретическим исследованием и практическим приложением представляет «Проект воздухоплавательного прибора» Н. И. Кибальчича, известного революционера-народовольца — «первомартовца». Его проект был опубликован лишь в 1918 году, но закончен он был Кибальчичем в Петропавловской крепости в марте 1881 года. О сущности проекта, иллюстрированного авторским схематическим чертежом, Кибальчич рассказывает так:

«В цилиндре, имеющем в нижнем дне отверстие, устанавливается по оси пороховая свечка, как я буду называть цилиндрики из прессованного пороха. Цилиндр посредством стоек прикреплен к средней части платформы, на которой должен стоять воздухоплаватель. Представим теперь, что свечка зажжена. Через очень короткий промежуток времени цилиндр наполнится горячими газами, часть которых давит на верхнее дно цилиндра, и если это давление превосходит вес цилиндра, платформы и воздухоплавателя, то прибор должен подняться вверх».

Принципиально идея Кибальчича верна, и полет на такой основе возможен, если дать газам свободный выход и перенести платформу, чтобы не сжечь летателя выходящими газами.

Перед смертью — он был казнен 3 апреля 1881 года — Кибальчич передал проект своему защитнику, и об этом своем изобретении он страстно говорил на суде, как о возможности оказать «громадную услугу родине и человечеству».

Вопросом боевого применения ракет занимался в специальной лаборатории военного ведомства инженер К. И. Константинов. Он ставил множество опытов, определяя движущую силу ракеты, и первым в мире пришел к выводу о неэкономичности реактивного движения при малых скоростях. Выводы его были опубликованы и в России и за границей и полностью совпадают с нынешней точкой зрения на этот вопрос.

О возможности применения реактивного двигателя к воздухоплавательным аппаратам писал в 40-х годах Н. С. Соковнин. Сочинение Соковнина «Воздушный корабль» было переведено на английский язык и появилось в Лондоне в 1886 году, одновременно с русским изданием.

Наконец, в 1896 году развивал ту же мысль А. П. Федоров в своей работе «Новый способ воздухоплавания», исключавшей воздух как опорную среду. Эта книга и побудила Циолковского заняться вопросами реактивного движения.

Любопытную фигуру среди практиков ракетостроения представляет инженер-полковник Н. Н. Герасимов, построивший ракету, несущую на себе снаряд. Осенью 1908 года на Охтенском морском полигоне происходило испытание ее, на которое в качестве председателя Морского технического комитета был приглашен А. Н. Крылов.

«Поехал я посмотреть, — рассказывал академик А. Н. Крылов на торжественном заседании, посвященном 75-летию К. Э. Циолковского. — Ракета была стальная, фута в три с половиной длиною, в диаметре имела около восьми дюймов и наполнена была пороховой мякотью. Хвоста у нее не было, но чтобы сообщить ей устойчивость, изобретатель приспособил крылатку, вроде вентилятора, а на ней маховичок: это гироскопическое приспособление и должно было придать ракете устойчивость при полете. Приехал он на полигон, поставил свой ракетный станок. Мы осмотрели все приспособления, потом он спрашивает: „Ну что же, позволите поджигать?“ — „Нет, нельзя! Здесь, на полигоне, поджигать ракету не иначе полагается, как из блиндажа. Даже при стрельбе из испытанной пушки все люди должны быть в блиндаже, а выстрел производится гальванически по проводу из блиндажа“. Разнесли и прирастили провод, приспособив к ракете воспламенитель. Герасимов нас спрашивает: „Где у нас наблюдатели?“ Отвечают, что они расставлены чуть ли не на восемнадцать верст. „Как раз, — говорит Герасимов, — она на восемнадцать верст и улетит!“ Замкнул он ток, из блиндажа видно было облако дыма. Подходим — ни станка, ни ракеты, ничего, только одни дребезги».

Этот юмористический случай был рассказан А. Н. Крыловым всего лишь десяток лет назад в оправдание недоверия к практическому ракетостроению. Достижения в этой области, сделанные за последние годы, заставляют нас совершенно иначе смотреть на неудачный опыт инженер-полковника Герасимова, но тон рассказа А. Н. Крылова характеризует отношение к реактивному полету в совсем недавнее время.

Предвзятый взгляд на вопрос более всего и способствовал тому обстоятельству, что реактивным движением занимались не ученые, как бы следовало, а новаторы-энтузиасты, из которых каждый если и намеревался летать, то никак не ближе чем на Луну.

В качестве боевого снаряда ракета вывелась из употребления после того, как появились нарезные пушки. Но предметом развлечения она оставалась неизменно в течение многих-многих веков.

Естественно, что когда появились первые аэропланы с тяжелыми и неудобными моторами, у многих людей возникла мысль применить здесь ракетообразный двигатель, простой и легкий, как нарочно созданный для авиации.

Таких предложений было сделано на заре авиации очень много, но теоретического обоснования их работе не имелось. Теория «воздушно-реактивного двигателя», могущего заменить авиационный мотор, впервые была разработана Борисом Сергеевичем Стечкиным.

Еще во времена Воздухоплавательного кружка Жуковский заметил своим ученикам, что надо бы кому-нибудь из членов кружка посвятить себя вопросам авиационного моторостроения. При организации Авиационного расчетно-испытательного бюро и Курсов авиации в особенности специалист по авиамоторам стал совершенно необходим. Развитие авиации в то время настоятельно требовало разделения специальностей пилота, конструктора и моториста, на первых порах соединявшихся в одном лице.

Выбор Николая Егоровича пал на тяготевшего к энергетической технике студента, бывавшего часто в Воздухоплавательном кружке, Бориса Сергеевича Стечкина.

Это был очень удачный выбор. Б. С. Стечкин воспитывался в Орловском кадетском корпусе, как раз в те годы, когда кадетские корпуса перестраивали свои учебные программы, приближая их к вопросам естествознания. Орловский кадетский корпус, в частности, отличался такой хорошей постановкой преподавания естественных наук и математики, что Стечкин, по окончании его в 1908 году, без всякой дополнительной подготовки выдержал конкурсный экзамен для поступления в Московское высшее техническое училище, где и начал учиться.

Юноша, часто бывавший в доме Жуковского и испытавший на себе огромное влияние его светлого ума, принял совет Николая Егоровича и, еще будучи студентом, начал заниматься вопросами авиационного моторостроения. В 1915 году, когда открылись Курсы авиации, Стечкин заведовал моторной лабораторией курсов. Общее руководство занятиями в лаборатории осуществлял профессор, ныне академик, Н. И. Кулебакин, читавший на курсах лекции по вопросам авиационного моторостроения.

Б. С. Стечкин.

В 1915 году в Москву, по желанию Жуковского, приехал из Киева А. А. Микулин. Он начал урывками работать в моторной лаборатории у Стечкина. Совместно они задумали осуществить очень оригинальный авиационный мотор.

Мотор назывался «Амбес», по инициалам конструкторов. Это был один из первых в мире моторов без коленчатого вала, с осями поршней, расположенными параллельно валу. В патенте, правда, конструкторам было отказано, так как имелся патент на двигатель без кривошипного механизма, принадлежащий какому-то иностранцу. Но Стечкин и Микулин все-таки построили свой мотор и подвергли его испытаниям. Испытания не привели к утешительным результатам.

По окончании училища в 1918 году Стечкин был оставлен при Техническом училище для научно-исследовательской работы. Моторная лаборатория Курсов авиации помещалась, как и курсы, на Вознесенской улице. Когда тут организовался, по инициативе Н. Е. Жуковского и А. Н. Туполева, Экспериментально-аэродинамический отдел Народного комиссариата путей сообщения, моторная лаборатория вошла в его винто-моторную секцию, которой стал заведовать Стечкин.

А в конце того же, 1918 года Б. С. Стечкин вместе со своей лабораторией вошел в состав ЦАГИ, возглавив здесь винто-моторный отдел.

В непосредственной близости к Жуковскому Стечкин формировался скорее как ученый и исследователь, нежели как конструктор. Он ставил перед винто-моторным отделом чисто исследовательские задачи. С организацией ЦАГИ ему удалось превратить моторную лабораторию из учебной в научно-исследовательскую и создать для этой цели экспериментальную базу.

Отдельных оригинальных и весьма ценных научно-исследовательских работ сотрудниками винто-моторного отдела было проведено очень много.

Вопросами реактивного движения с особенной страстностью занимался здесь Ф. А. Цандер — человек совершенно необычайной целеустремленности, скромный, застенчивый и тихий в жизни, но исполненный внутренне грандиознейших замыслов и непреклонной веры в их осуществление.

Подобно Циолковскому, он мечтал о межпланетных сообщениях, давал своим детям имена планет и, увлеченный своими расчетами, заставляя вздрагивать углубленных в свои занятия сотрудников лаборатории, часто восклицал, высоко подняв голову:

— О Марс, о Юпитер! Я увижу вас…

Он рано умер от туберкулеза легких, не успев высказать всех своих идей и не дожив до появления реактивных самолетов, но и сделанные им предложения показывают, каким оригинальным и изобретательным умом обладал этот скромный, болезненно тихий человек.

Цандер начал заниматься реактивным движением еще до революции. После целого ряда работ по вычислению скорости истечения газов и по изучению сверхвысотного самолета с обычной винто-моторной группой он предложил в 1917 году присоединить к этому самолету ракеты для полетов на больших высотах.

В 1923 году Цандер разрабатывает идею применения металла в качестве топлива в жидкостных реактивных двигателях с использованием для той же цели и отдельных частей конструкции летательного аппарата, с тем чтобы таким образом увеличить запас топлива. По его проекту, такой аппарат должен был постепенно втягивать крылья в камеру сгорания во время полета, расплавляя втянутые части и используя их далее в качестве топлива. К концу полета, таким образом, аппарат превращался в самолет с маленькими крыльями, необходимыми только для спуска и посадки. Проведенные Цандером позднее опыты подтвердили возможность сжигания в воздухе сплавов, содержащих магний и алюминий.

Из других предложений Цандера интересны крылатые ракеты для полетов в высшие слои земной атмосферы. В низших слоях атмосферы он рекомендовал пользоваться реактивными двигателями, приспособленными для полетов в воздухе.

Незадолго до смерти им была разработана схема реактивного двигателя весьма оригинальной конструкции.

Но самой интересной из работ, выполненных в винто-моторной лаборатории ЦАГИ, остается работа самого Стечкина «О теории воздушно-реактивного двигателя», опубликованная им в 1929 году.

Реактивное движение теперь уже вышло из своего младенческого возраста. Но двадцать лет назад надо было обладать большой смелостью и предвиденьем, чтобы ввести вопросы реактивных двигателей в научное хозяйство исследовательского института.

Стечкин имел замыслы более скромные, чем полет на Луну, но и более близкие к осуществлению. Поэтому он занялся не ракетным двигателем, а воздушно-реактивным, столь простым и легким, что у техников он получил название «свистульки». Схематически воздушно-реактивный двигатель представляет собой сосуд с более узким горлом спереди и более широким — сзади. При быстром движении летательного аппарата с таким двигателем воздух входит в узкое горло сосуда, затем несколько уплотняется в расширяющемся сосуде и поступает в камеру сгорания. Газообразные продукты сгорания выходят из широкого горла со значительно большей скоростью, чем имеет воздух, поступающий в двигатель. Разность между скоростями поступления и выхода и сообщает всему аппарату движущую силу.

Ракета пленяет «звездоплавателей» тем, что она может лететь и в безвоздушном пространстве, так как не нуждается в кислороде для сгорания топлива. Кислород входит в состав горючего, как это имеет место при начинке ракеты порохом, или же запасается в жидком виде, как это проектировал Циолковский. В безвоздушном пространстве, конечно, только и можно летать на ракете, скорость которой будет при этом очень большой, так как тут нет сопротивления воздуха.

Но если мы собираемся летать в пределах земной атмосферы, то, разумеется, выгоднее не таскать с собой в баллонах жидкий воздух, а брать его прямо из атмосферы.

Как средство межпланетных сообщений, ракетные двигатели представляют для нас главным образом теоретический интерес. Ведь для преодоления земного притяжения ракета должна развить скорость до 40 тысяч километров в час. Существующие же виды горючего и материалов не дают возможности достигнуть таких скоростей. Это не значит, конечно, что и в будущем полеты на Луну будут совершаться только в фантастических романах. Ряд очень серьезных авторов считает полет на Луну с помощью ракетного двигателя вполне осуществимым.

Практическому использованию ракетных двигателей мешает их ужасающая неэкономичность — непомерный расход горючего. Но ракетные установки все-таки находят себе применение в виде приспособлений для облегчения взлета перегруженных самолетов или для быстрого набора высоты. Такие ракетные установки состоят из нескольких ракет, прикрепленных к фюзеляжу. После использования пустые гильзы ракет и вся установка автоматически отрываются от самолета и спускаются на парашюте.

Такие вспомогательные ракетные установки оказываются очень удобными и полезными, когда самолету приходится подниматься с неприспособленных площадок недостаточного размера. Применяя пусковые ракеты, удается вдвое уменьшить разбег истребителя для взлета, что резко увеличивает пропускную способность палубы авианосца.

Практический интерес и широчайшее развитие получили в наше время, как известно, не ракетные, а воздушно-реактивные двигатели.

Вот такому-то воздушно-реактивному двигателю Борис Сергеевич Стечкин и дал теоретическое обоснование, поставив вопрос на научную почву и приблизив реактивный самолет к практическому осуществлению.

В течение последующего десятилетия вопросами реактивного движения у нас занимались мало, и это понятно: воздушно-реактивный двигатель становится выгодным лишь при очень большой скорости полета, приближающейся к звуковой. Но авиации в те времена такие скорости были еще не по силам, и в области реактивного движения продолжал работать только Циолковский.

Одна из работ этого страстного мечтателя все же имела очень интересное практическое приложение. В 1932 году Циолковский опубликовал свое сочинение: «Стратоплан полуреактивный», посвященное приблизительным расчетам некоторых деталей своеобразного самолета, который «движется одновременно силою тяги воздушного винта и отдачей продуктов горения».

В. И. Поликовскому, с его иным строем мысли, прежде всего бросилось в глаза, когда он начал работать в авиации, что при все возрастающих скоростях выхлопные трубы начинают действовать как реактивные двигатели.

Углубившись в физическую сущность явления, он дал его теорию и показал, что, используя выхлопные трубы по предложенному им методу, можно повышать мощность мотора на пятнадцать процентов, что и подтвердилось практикой самолетостроения.

Осуществление воздушно-реактивного двигателя совершенно нового типа возможно, конечно, только на основе глубокого и правильного понимания природы явления.

Но характерно для широты нашей научной и инженерно-технической мысли, что вопросами реактивного движения мы начали заниматься так давно.

Конечно, применяемые теперь в авиации воздушно-реактивные двигатели уже не представляют собой примитивную «свистульку», но принцип их действия тот же.

В чем же заключаются преимущества воздушно-реактивного двигателя перед обычным авиационным мотором?

На первых аэропланах ставились двигатели внутреннего сгорания мощностью 25–40 лошадиных сил. С тех пор поршневые двигатели непрерывно совершенствовались, повышая свою мощность. Есть авиационные моторы в 2000 лошадиных сил и выше.

Рост мощности сопровождается увеличением веса двигателя. Авиационный мотор оброс множеством вспомогательных механизмов и представляет собой сейчас одну из самых сложных машин.

Схема действия турбо-компрессорного воздушно-реактивного двигателя.

Для увеличения скорости полета необходимо повысить тягу двигателя, не допуская при этом роста его размеров и веса, ибо утяжеление самолета сведет на нет прирост мощности.

На пути к повышению мощности самолетов есть и другое препятствие. При небольших скоростях полета винт имеет высокий коэффициент полезного действия, но при скорости полета в 800 километров в час и более эффективность винта уменьшается. Когда лопасти винта начинают рассекать воздух со скоростями, превышающими скорость звука, возникает особое «волновое сопротивление», во много раз превышающее обычное сопротивление трения лопасти о воздух. На преодоление этого сопротивления затрачивается значительная доля мощности мотора.

Для дальнейшего увеличения скорости полета поршневый мотор и винт становятся все менее пригодными. Наоборот, воздушно-реактивные двигатели, мало пригодные для полета с небольшой скоростью, с увеличением скорости полета становятся очень удобными.

При современных скоростях полета повышение давления в двигателе невелико, поэтому при истечении через сопло воздух расширяется незначительно — температура его мало понижается, и огромная тепловая энергия уносится с отходящей струей неиспользованной. Эффективность такого двигателя поэтому очень низка. Только при сверхзвуковой скорости полета, когда повышение давления внутри двигателя будет достаточно большим, он станет выгодным.

Простейший воздушно-реактивный двигатель может работать только во время полета, поэтому он не способен самостоятельно поднять самолет в воздух.

В настоящее время применяются гораздо более совершенные двигатели — турбо-реактивные.

В таком двигателе для уменьшения потерь тепловой энергии, уносимой потоком, перед камерой сгорания во внутреннем потоке ставится компрессор, повышающий давление воздуха до нескольких атмосфер. Компрессор вращается турбиной, приводимой в действие горячим воздухом, выходящим из камеры сгорания.

Турбина — самый компактный из известных сейчас двигателей. Мощность в несколько тысяч лошадиных сил может быть получена с одного диска турбины диаметром значительно меньше метра. Но проектирование ее представляет большие трудности. Необходимо сконструировать прочную турбину, способную выдержать огромные окружные скорости и высокие температуры воздуха.

Основное преимущество турбо-реактивного двигателя перед поршневым — небольшой вес и малые размеры.

Экономичность турбо-реактивного двигателя при скорости полета 900–1000 километров в час такая же, как у самолета с обычным мотором, но при дальнейшем увеличении скорости экономичность реактивного двигателя будет расти, тогда как у винта она падает. Этот двигатель, в противоположность поршневому двигателю, не требует высокосортного бензина, он работает на керосине.

Турбо-реактивный двигатель прост в управлении и обеспечивает самостоятельный взлет самолета.

Появление турбо-реактивных двигателей сразу подняло авиацию на новую ступень. Самолеты с такими двигателями уже летают со скоростями, достигающими 1000 километров в час, имея при этом продолжительность полета, измеряемую не минутами, а часами.

Турбо-реактивный двигатель представляет собой весьма совершенную машину, и создание его опиралось на последние научные достижения газовой динамики, аэродинамики и других областей механики, на высокий уровень современного машиностроения и большой размах исследовательской работы.

Реактивные двигатели и реактивную авиацию ждет бурное развитие. Советские ученые и конструкторы упорно работали и работают в этой области.

Реактивные самолеты, показанные в День авиации в 1946 году на Тушинском аэродроме, были не единственными новинками советской авиации для широкой публики.

Не меньшее внимание зрителей привлекли новые пассажирские самолеты, из которых особенное впечатление произвел геликоптер.

Геликоптер

Простая идея геликоптера возникла значительно раньше мысли о самолете. Первую попытку построить геликоптер сделал, как мы видели уже, Ломоносов. Окончательное же решение проблемы приблизил Борис Николаевич Юрьев, которому, как уже говорилось, в 1912 году была присуждена на Международной выставке в Москве золотая медаль «за прекрасную теоретическую разработку проекта геликоптера».

Живой свидетель и участник создания советской воздушной мощи, один из ближайших учеников Жуковского, доброй волей и сознанием необходимости перебрасываемый с одного ответственного участка строительства на другой, Борис Николаевич, в сущности, никогда не переставал работать над осуществлением идеи геликоптера. Работали над той же проблемой конструкторы во всех странах мира. Тем не менее лишь к концу второй мировой войны проблема геликоптера была разрешена не только теоретически, но и практически — созданием машин этого типа.

В чем же причина запоздалого развития геликоптера?

«Причин имеется несколько, — говорит Б. Н. Юрьев. — Прежде всего, долгое время конструкторы не имели разработанной теории геликоптера и в первую очередь теории воздушных винтов. Многие из них не поняли необходимости сперва решать вопрос об управлении геликоптера на всех его режимах полета, прежде чем строить опытную машину. Нужно было также решать вопрос о безопасности спуска в случае остановки мотора. Весьма важным для геликоптера является вопрос о его конструктивной схеме и рациональном выборе его основных размеров. В этом отношении геликоптер гораздо труднее, чем аэроплан: неверно выбранные параметры делают геликоптер вообще неспособным подняться в воздух. Все эти вопросы ранее недооценивались, и в результате получались машины, не могущие подняться в воздух и лишь компрометирующие идею геликоптера в глазах авиационных работников. Но важнейшей причиной, тормозившей развитие геликоптера, является технический консерватизм руководителей капиталистической авиационной промышленности. Было ясно с самого начала, что решить задачу геликоптера можно лишь путем разработки его теории и производства многих, дорогостоящих опытов. Как правило, все начинавшиеся в прошлом работы по геликоптерам не доводились до конца: или исчерпывались денежные средства капиталиста, или сами изобретатели пугались трудностей и бросали задачу. Будущий историк, несомненно, будет считать развитие геликоптера печальнейшей страницей в истории развития техники. Можно без преувеличения и с гордостью сказать, что первые реально летающие геликоптеры были созданы в Советском Союзе».

Советские опытные геликоптеры уже в 1930 году действительно летали, а не «прыгали», по выражению Б. Н. Юрьева, как за границей. Опыты эти не получили широкой огласки. Но теоретические работы по геликоптерам публиковались очень широко. До того широко, что листовка с описанием геликоптера Б. Н. Юрьева, строившегося в 1911 году Воздухоплавательным кружком, раздавалась всем желающим на Международной выставке в Москве, где демонстрировался и макет геликоптера. Все новейшие геликоптеры, производящие сейчас сенсацию в Америке и Англии, построены по однороторной схеме Б. Н. Юрьева и весьма напоминают геликоптер «ЦАГИ-ЭА-1», начавший летать в 1930 году.

Геликоптер «ЦАГИ-ЭА-1».

Успешной разработки вопроса мы добились благодаря правильному методу работы, принятому учениками Жуковского еще в студенческом Воздухоплавательном кружке, где была детально разработана теория винта и произведены опыты с моделями геликоптеров. В результате этих работ и была создана новая, однороторная схема геликоптера Юрьева, в которой были решены основные вопросы геликоптера, а именно: управляемость, сообщение поступательной скорости, безопасный спуск при внезапной остановке мотора. Характерной особенностью этой новой схемы являются: один большой винт-ротор, играющий роль несущей плоскости, малый хвостовой винт и автомат-перекос у несущего винта.

«Самым простым геликоптером был бы такой, у которого имелся бы лишь один несущий винт, — говорит по поводу своей схемы Б. Н. Юрьев. — Однако реактивный момент такого винта заставил бы гондолу такого аппарата вертеться в противоположную вращению винта сторону. Для удержания гондолы от вращения необходимо к ней приложить внешний момент, который проще всего получить с помощью тяги маленького винта, действующего на достаточном плече. Отсюда получается простейшая схема однороторного геликоптера с хвостовым винтом, служащим, помимо реактивного момента, еще рулем поворота машины. Получается весьма простая и компактная схема геликоптера.

Остается весьма важный вопрос управления геликоптером. В этой схеме он был решен с помощью автомат-перекоса — своеобразного пространственного эксцентрика, заставляющего лопасти несущего винта делать во время их оборота дополнительное колебательное движение, изменяющее их углы атаки. Если геликоптер случайно наклонится, например направо, то летчик может с помощью автомат-перекоса заставить лопасти пробегать опустившуюся сторону под большим углом атаки и давать там бóльшую подъемную силу, благодаря чему эта сторона поднимется и тем крен будет уничтожен. Само управление может быть устроено совершенно так же, как на самолете, то-есть с помощью педалей и ручки управления.

Поступательное движение проще всего получать с помощью наклона всего аппарата вперед: получается горизонтальная проекция силы тяги, которая и сообщает аппарату горизонтальную скорость. Так как геликоптер можно наклонить в любую сторону, то на геликоптерах можно двигаться не только вперед, но и назад и вбок.

В случае остановки мотора, как показали исследования студента Сорокоумовского, геликоптер может спокойно опуститься на землю на авторотирующем большом винте».

Автожир «ЦАГИ-А-6».

Воздухоплавательный кружок, не получив поддержки от правительства, лишь используя свои скромные средства, не достроил аппарата по этой схеме, и во время войны 1914–1918 годов дело заглохло. Но в советское время и тотчас же, как только было закончено строительство ЦАГИ, работы над осуществлением геликоптера возобновились, однако лишь после пересмотра всей проблемы.

В результате многих опытов и лабораторных испытаний разнообразных моделей удалось найти три наивыгоднейших типа геликоптеров. Это однороторный геликоптер по схеме Юрьева, двухроторный геликоптер продольного или поперечного типа и многороторные схемы тяжелых геликоптеров.

Самой простой оказалась схема Юрьева. Она была положена в основу первых советских опытных геликоптеров. Остальные схемы хотя и разрабатывались одновременно, но осуществление их было отложено до того, как будет накоплен достаточный опыт с полетами однороторного аппарата.

Первый опытный геликоптер такого типа — «ЦАГИ-ЭА-1» — начал успешно летать в 1930 году, и это был первый в мире геликоптер, который действительно летал, а не «прыгал» только. В 1932 году на этом аппарате, управляемом проф. А. М. Черемухиным, была достигнута рекордная по тому времени высота в 605 метров.

Однотипный геликоптер «ЦАГИ-ЭА-3», построенный для ускорения работ по изучению геликоптеров, совершил, как и «ЭА-1», очень много полетов на высоте от 50 до 120 метров, продолжительностью до 15 минут с дальностью до 3 километров. Скоростью эти машины не отличались, но поднимались и опускались вертикально, делали повороты вокруг собственной оси, висели в воздухе — словом, делали все то, что им полагалось.

Основной недостаток этих машин — неустойчивость при спуске — удалось преодолеть на геликоптере «ЭА-5». Спуск его проходил спокойно, а в полете на нем можно было даже бросать ручку управления.

В это время в коллективе, работавшем над проблемой геликоптера, возникла мысль о создании новой своеобразной машины — геликоптера, превращающегося в полете в автожир, чем предполагалось достигнуть большей скорости полета.

Автожир представляет промежуточный тип летательного аппарата между геликоптером и самолетом. Автожир поддерживается в воздухе на том же принципе, как и аэроплан, но вместо неподвижных крыльев, а чаще вдобавок к ним, он имеет свободно вращающийся ротор. Необходимую для движения силу тяги автожир, как и самолет, получает от обычной винто-моторной группы. Благодаря вращающемуся ротору, раскручиваемому перед полетом приводом от мотора, автожир при взлете получает большую подъемную силу (как и при посадке), почему взлет происходит очень быстро и с очень малым пробегом, при крутом угле подъема. В полете же лопасти ротора только заменяют крыло и лишь ухудшают маневренность автожира, не сообщая ему при установившемся движении никаких ценных качеств.

Автожир Н. И. Камова «А-7».

В создании этой машины принимал деятельное участие молодой инженер Иван Павлович Братухин, который впоследствии осуществил проект двухвинтового геликоптера, задуманного Юрьевым.

Сравнивая основные типы геликоптеров в своем «Исследовании лётных свойств геликоптеров», опубликованном в 1939 году, Б. Н. Юрьев пришел к выводу, что, несмотря на крайнюю простоту и компактность одновинтового геликоптера, он все же уступает двухвинтовому по грузоподъемности. Кроме того, при горизонтальном полете одновинтового геликоптера возникают некоторые трудности от несимметричности системы.

Все это побудило неутомимого исследователя проблемы геликоптера обратиться к двухвинтовой схеме, которую он и разработал совместно с И. П. Братухиным.

Воспитанник все того же Московского высшего технического училища, Братухин отдался всецело идее геликоптера и, располагая теоретическими познаниями и опытом, очень удачно конструктивно осуществил и построил ту машину, за которую ему и Б. Н. Юрьеву была присуждена в 1946 году Сталинская премия первой степени.

Десятки тысяч москвичей, присутствовавших на традиционном авиационном празднике в Тушине в 1948 году, с большим интересом наблюдали полет советского геликоптера, сконструированного И. П. Братухиным.

Двухмоторный аппарат имеет оригинальную схему. Его моторные гондолы соединены с фюзеляжем легкими металлическими фермами. Над ними расположены горизонтальные винты.

Геликоптер цельнометаллический, с двухместной кабиной, дающей превосходный обзор. Управление обычного самолетного типа. Скорость полета геликоптера от нуля до 180 километров в час.

И. П. Братухин и его геликоптер.

Перед зрителями геликоптер обнаружил все свои особенности. Он поднимался и опускался вертикально, стоял неподвижно в воздухе, причем показал полную устойчивость в воздухе и легкую управляемость.

Зрителям были очевидны разнообразные возможности применения геликоптера для специальных нужд.

Геликоптер поможет создать новые и расширить существующие линии воздушных сообщений.

Область применения геликоптера, несомненно, будет все расширяться по мере дальнейшего улучшения его конструкций.

Перед этим интереснейшим летательным аппаратом — огромное будущее.

Геликоптеру не нужны аэродромы: он может совершать посадку на самую маленькую площадку — на плоскую крышу дома, на палубу парохода, на небольшом дворе.

Геликоптер может оказать неоценимую помощь советским полярникам в их сложной и ответственной работе по освоению Великого Северного морского пути. С огромным успехом он может быть использован также для аэрофотосъемки, для ледовой разведки и для различного рода картографических и геодезических работ. Особенно эти машины незаменимы в тех местах, где аэродромы вовсе отсутствуют, либо там, где посадка самолета невозможна, — в тундре, в тайге, в болотистых местностях, на островах и т. д. Находясь на палубе ледохода, геликоптер сможет в любую минуту вылететь на ледовую разведку и тем помочь капитанам ледоколов в проведении судов сквозь льды Полярного бассейна.

Над дальнейшим развитием нового типа летательного аппарата и работает его конструктор.

Геликоптер принимает пассажира не приземляясь.

Он занят проектированием и постройкой пассажирского геликоптера, рассчитанного на несколько пассажиров. Одновременно идет работа над созданием геликоптера для нужд сельского хозяйства. Он оборудуется специальными приспособлениями для борьбы с вредителями сельского хозяйства, для разбрасывания на полях минеральных удобрений, для посева.

Если принять во внимание, что геликоптер находится в самом начале своего развития, нетрудно представить себе, какое широкое и прекрасное будущее предстоит этой машине.

Таким образом, многолетняя упорная работа советского коллектива, во главе с академиком Юрьевым, по созданию геликоптера увенчалась полным успехом.

Конечно, советские конструкторы не успокоились на достигнутых результатах и продолжают работу, изыскивая новые пути применения геликоптера и совершенствования его для новых целей.

И конечная цель — сделать геликоптер не только хозяйственной машиной, средством связи, но и машиной личного пользования — быть может, уже не так далека от своего достижения.

Гражданская авиация

За годы советской власти неизмеримо выросла техническая база воздушного флота, были созданы многочисленные кадры, и воздушный транспорт начал играть важную роль в народном хозяйстве Советского Союза.

Применение авиации в народном хозяйстве весьма разнообразно. Она используется как скоростной вид транспорта. С самолетов ведется борьба с вредителями сельскохозяйственных растений. Кроме борьбы с вредителями растений, авиация применяется и на работах по внесению минеральных удобрений.

Для выполнения такого рода операций обычно применялся все тот же самолет «По-2» — конечно, с установкой на нем специального оборудования. Но в настоящее время широкое распространение получил в нашем хозяйстве совершенно особенный, не похожий ни на один из существующих, специальный сельскохозяйственный самолет «СХ-1».

«СХ-1» может взлететь с любой площадки — с шоссейной или проселочной дороги, с опушки леса. Кабина его рассчитана на двенадцать человек. Самолет оборудован всеми приборами для слепого и ночного полета, он хорошо освещается и отапливается, его кресла легко приспосабливаются для любого положения пассажира.

Конструктор этого самолета О. К. Антонов не только хорошо понял, но и прекрасно разрешил поставленную нашим народным хозяйством перед советской конструкторской мыслью задачу. Проблему легкого, удобного, способного всюду подниматься и приземляться, делового, рабочего, хозяйственного самолета О. К. Антонов разрешил так широко и обдуманно, что самолет его не только отлично выполняет прямое свое назначение, но еще и открывает новые и новые перспективы использования авиации в повседневной хозяйственной и культурной жизни страны.

Конструктор самолета «СХ-1» О. К. Антонов.

Трудно переоценить роль авиации и в медицинском обслуживании населения, особенно в условиях отдаленных и бездорожных районов. Здесь до больницы, в которой можно производить экстренные операции и переливание крови, нередко приходится ехать десятки, а то и сотни километров. Благодаря перевозке больных санитарными самолетами спасены жизнь и здоровье многих тысяч людей.

Развитие воздушного транспорта в СССР началось в 1923 году с организации воздушной линии Москва — Горький. Эксплуатация этой линии дала возможность накопить опыт, который был использован при дальнейшей организации авиалиний, в частности в таких районах, где отсутствовали другие виды механического транспорта.

В 1924 году в Средней Азии были открыты трассы Ташкент — Алма-Ата, Каган — Термез — Сталинабад и Каган — Хива. Почти одновременно воздушные линии связали Харьков, Полтаву и Киев, Харьков и Одессу. В последующие годы развитие воздушного сообщения шло все более нарастающими темпами. В 1932 году общая протяженность авиационных линий в СССР составляла свыше тридцати тысяч километров, а в 1940 году — около ста сорока тысяч километров.

Созданная за годы первых пятилеток мощная авиационная промышленность явилась основной базой развития советской авиации. Конструкции отечественных самолетов всё более и более совершенствовались.

Советские гражданские летчики, обслуживая нужды народного хозяйства, постоянно совершенствовали свои технические знания и лётное мастерство. Полеты в условиях сурового Севера и над необъятной сибирской тайгой, над снежными вершинами Кавказа и песчаными просторами Средней Азии воспитали у летчиков выносливость, твердую волю и решительность, научили спокойно и уверенно преодолевать любые трудности. Эти замечательные качества личного состава Гражданского Воздушного Флота с особой силой сказались в дни Великой Отечественной войны, когда по зову Партии и Правительства работники гражданской авиации поднялись на защиту Родины.

С окончанием войны Гражданский Воздушный Флот вновь встал на службу народному хозяйству. В 1945 году транспортной авиацией было перевезено пассажиров в два раза больше, чем в 1940 году, а общий объем перевозок превзошел довоенный год почти в три раза.

Грузооборот Гражданского Воздушного Флота в 1952 году по сравнению с 1940 годом возрос почти в десять раз, а протяженность одних только почтовых авиалиний увеличилась в два с половиной раза.

Воздушное сообщение охватывает теперь не только важнейшие направления — от Москвы к столицам союзных республик и областным городам, — но и районы Севера, Сибири и Дальнего Востока. Одновременно были восстановлены и непрерывно развиваются линии, связывающие центры республики и областей со всеми отдаленными районами. Воздушные линии союзного значения оборудованы техническими средствами, позволяющими совершать регулярные полеты в течение всего года, а на важнейших трассах — и в ночное время.

На магистральных линиях введены в строй четырехмоторные скоростные самолеты, оборудованные новейшими приборами для полетов в сложных условиях, в ночное время и на больших высотах.

На линиях местного, внутриреспубликанского значения курсируют двух- и одномоторные самолеты, которые могут садиться на небольшие аэродромы.

Советские конструкторы работают над созданием транспортных самолетов с не меньшим успехом и энергией, чем над созданием боевых самолетов.

Умерший в расцвете творческих сил в 1944 году Герой Социалистического Труда, главный конструктор по самолетостроению Николай Николаевич Поликарпов постоянно и далеко смотрел в будущее и уже в самые суровые годы Великой Отечественной войны работал не только над созданием боевых самолетов, над приспосабливанием своего «У-2» для новых целей, но и непрестанно обрабатывал накапливаемый в дни войны опыт, чтобы применить его для развития послевоенной гражданской авиации.

Мотопланер Н. Н. Поликарпова.

С твердой верой в победоносное окончание войны он говорил:

— Из нынешнего военного опыта для гражданской авиации после войны мы возьмем очень многое: метод поточного производства, упрощенное управление самолетом, доступное массовому летчику, грузоподъемность, живучесть, высокие лётные качества, дешевизну в производстве, экономичность в эксплуатации. Я смотрю на задачи авиации сейчас не только с точки зрения нынешнего, но и завтрашнего дня, который наступит после разгрома Гитлера и поставит перед нами в порядок дня потребности мирного, послевоенного строительства…

Смертельно больной, он резко протестовал против попыток врачей облегчить его боли введением в организм наркотиков, потому что морфий гасил ясность сознания и мешал ему слушать ежедневно навещавших его сотрудников, докладывающих о работе конструкторского бюро и опытного завода. Он предпочитал выносить физические страдания, лишь бы не терять возможности руководить работой своего бюро, уже перестраивавшегося для выполнения новых задач мирного времени.

Истребители Героя Социалистического Труда А. С. Яковлева в период Великой Отечественной войны были грозой для врага. Но сам конструктор в годы войны, когда конструкторское бюро под его руководством работало над дальнейшим усовершенствованием истребителей, начал готовиться к созданию новых пассажирских самолетов. Он поставил перед собой задачу дать гражданской авиации такие машины, которые, отвечая всем требованиям современной техники самолетостроения, были бы в то же время экономичны и дешевы. Такие машины были созданы в рекордно короткие сроки, и первые из них конструктор демонстрировал уже в мае 1945 года.

Легкий пассажирский самолет А. С. Яковлева.

Все это — монопланы с легкими моторами воздушного охлаждения и оборудованные современными навигационными приборами.

В последующие годы А. С. Яковлев создал три замечательные машины этого типа разного назначения.

«Як-12» — четырехместный самолет связи, с мотором «М-11», имеющий скорость до 180 километров и обладающий незаменимым для связной машины качеством: посадку и взлет он может совершать на минимальной площадке.

«Як-16», демонстрировавшийся на выставках в Праге и в Варшаве — десятиместный пассажирский самолет с двумя моторами «АШ-21» мощностью в 500 лошадиных сил. Скорость его — 370 километров.

«Як-18» — учебно-тренировочный двухместный моноплан с убирающимися шасси — имеет полное радиоэлектрооборудование, может делать ночные, слепые полеты, дает учащемуся полное представление о современной авиационной технике и является вполне современным учебно-тренировочным самолетом.

Модифицированный учебно-тренировочный самолет А. С. Яковлева.

Проектирование транспортного самолета «Ильюшин-12», предназначенного для мирных целей, было начато в конструкторском бюро С. В. Ильюшиным также в самые суровые дни Великой Отечественной войны, когда ожесточенные сражения шли на полях Украины, у стен Ленинграда, под Ржевом, у знаменитой Курской дуги.

Этот транспортный самолет сохраняет некоторые черты ильюшинского штурмовика, на котором так резко сказался стиль конструкторской работы Ильюшина.

«Ил-12» — самая совершенная машина своего класса. Он снабжен двумя моторами воздушного охлаждения А. Д. Швецова большой мощности.

В кабине двадцать семь пассажирских мест, а грузовой вариант самолета рассчитан на 3 тонны груза.

Экипаж самолета состоит из пяти человек.

Рейсовая скорость машины 375 километров в час при дальности полета до 2000 километров.

Самолет оборудован новейшими приборами для полетов в любых метеорологических условиях и имеет совершенно оригинальное устройство для предохранения самолета от обледенения. Он может летать ночью и садиться «вслепую». Безопасность полета гарантируется еще и тем, что «Ил-12» может идти на одном моторе, в случае выхода из строя другого, до места назначения.

Советский воздушный транспорт получил отличную скоростную машину, стоящую вполне на уровне современных достижений мировой авиационной техники.

Вслед за этой машиной вышел на аэродром для лётных испытаний еще более грандиозный транспортный самолет Сергея Владимировича, рассчитанный на пятьдесят пять пассажиров. Скорость этого воздушного корабля свыше пятисот километров в час, дальность до 5000 километров, полет на высоте 12 километров, где нет «воздушных ям» и нет никакой «качки», столь неприятной для пассажиров. Конечно, кабина самолета, роскошно оборудованная не только спальными местами, но даже и кухней с плитой, сделана герметичной и сохраняет на любой высоте внутри необходимое давление.

Так же как и «Ил-12», этот огромный четырехмоторный самолет оборудован всеми новейшими приборами, обеспечивающими полет в любых метеорологических условиях, в любое время дня и ночи. Очень интересно разрешена здесь проблема безопасности полета в условиях, грозящих обледенением: отработавшие в моторах газы используются для обогревания передней кромки крыла, подвергающейся обледенению.

Самолет «Ил-12».

Борьба с обледенением самолета на больших высотах при существующих там низких температурах всегда была одной из самых серьезных проблем авиастроения. Было придумано много весьма сложных и разнообразных приспособлений для этой цели, вплоть до обогревания крыла электрическим током и обшивки его резиной, под которую летчик в нужный момент впускает сжатый воздух, вследствие чего резиновая кромка вспухает, лед ломается и опадает.

Простое же решение — обогревать крыло отходящими из мотора газами — представлялось конструкторам неосуществимым из-за очень высокой (до 800 градусов) температуры газов, которые могли бы сжечь самолет. Установка же радиаторов для некоторого охлаждения этих газов перед выпуском их в крыло повела бы к отяжелению самолета и к увеличению его сопротивления в полете.

Ильюшин нашел способ снизить температуру отходящих газов, не прибегая к радиаторам, и открыл путь простого решения трудной проблемы.

И этот грандиозный самолет, предназначенный обслуживать наши дальние воздушные линии, может в случае выхода из строя одного и двух моторов, хотя бы и с одной стороны, продолжать свой полет до ближайшего аэродрома.

Транспортные самолеты Ильюшина в не меньшей мере, чем ильюшинские штурмовики и бомбардировщики, характеризуют и инженерное дарование конструктора и общее состояние советского самолетостроения после войны.

Таким образом, советский воздушный транспорт уже располагает всеми современными типами самолетов для парка самолетов гражданской авиации.

Огромный военный опыт советские конструкторы прежде всего употребили для достижения мирных целей, для процветания Родины и благосостояния советских людей.