Создатели двигателей

Гумилевский Лев Иванович

Глава третья. Гидравлический двигатель

 

 

1. Водяные колеса

Фролов

В 1817 году французское правительство основало в Сент-Этьенне Высшую школу горных наук. Когда состоялся первый набор учащихся, о школе знали очень мало. На первый курс поступило всего только восемь человек, преимущественно уроженцев Сент-Этьенна.

Среди этих восьми человек находился сын учителя математики Сент-Этьеннской гимназии Бенуа Фурнейрон. Он хорошо выдержал приемный экзамен, но с включением его в число принятых было немало хлопот: мальчик родился 1 ноября 1802 года и, таким образом, не имел даже полных пятнадцати лет. Только ссылаясь на способности Фурнейрона, экзаменаторам удалось добиться согласия дирекции на зачисление его в школу.

Администрация школы не имела поводов сожалеть о своем решении. Мальчик учился отлично. Но семеро товарищей Фурнейрона провели бы, вероятно, свои школьные годы веселее, если бы между ними не было этого способного, но не очень приятного юноши. Он был угрюм, вечно недоволен, ужасно обидчив, страшно самолюбив л к тому же обладал острым и злым языком. Маленькие глазки, большой нос, грубые черты лица, медвежья сила и медвежья неловкость делали его еще более неприятным.

Сам Фурнейрон мало страдал от своего одиночества в школе; он упорно занимался и нисколько не тяготился отчуждением товарищей. Самолюбие толкало его стать первым в школе, а упрямство заставляло доводить до конца все свои предприятия.

Новая школа не имела точной программы. Даже не было определенной установки, кого, в сущности, она готовит: инженеров или техников, директоров горных промыслов или только мастеров. Все предоставлялось случаю, все зависело от самих учащихся и учителей. И если впоследствии Сент-Этьеннская школа завоевала репутацию первоклассного учебного заведения, то этим она была обязана подбору студентов первого выпуска й составу преподавателей. Среди них особое место занимал профессор Бурден.

Он читал студентам курс высшей математики и основы механики. Бурден, талантливый конструктор, к несчастью, не обладал практическим умом, настойчивостью, нужными для успешного осуществления даже гениальных идей. Бурден знал это и потому, может быть, предпочитал сеять свои идеи среди тех, кто с большим успехом мог бы их осуществить, нежели он сам.

Лектор он был блестящий. Свое изобретательское дарование он употреблял на то, чтобы конструировать всевозможные приборы для различных экспериментов, увлекавших учеников.

Некоторое увлечение Бурдена гидравликой, в частности водяными двигателями, в век пара казалось странным и старомодным. Это был «конек» учителя, с которого он уже не мог сойти, раз сев на него. Но надо сказать, что на самом деле в увлечении профессора Бурдена не было ничего смешного и тем более старомодного. Наоборот, оно показывало, что Бурден очень хорошо понимал запросы своего времени.

Несмотря на распространение парового двигателя, вододействующие колеса еще продолжали развиваться, главным образом в направлении увеличения их мощности.

В Англии, на родине Уатта, уже после его смерти, по проекту инженера Смитона было сооружено водяное колесо — одно из самых больших в мире. Диаметр его равнялся двадцати одному метру. Колесо делало один оборот в минуту, и мощность его достигала двухсот лошадиных сил. Поставленный в устье реки Клайд, на которой когда-то ловил рыбу маленький Уатт, этот железный гигант обслуживал бумагопрядильную фабрику.

Подобных же размеров водяное колесо англичане выстроили несколько позднее для откачивания воды из рудников на острове Мен. Оно приводило в движение штоки двух водяных насосов, поднимавших с глубины ста двадцати метров шесть кубических метров воды в минуту. Приводила в движение это колесо вода, собиравшаяся с горного кряжа в особые резервуары. Из резервуаров она подводилась к колесу подземными каналами, поднималась в башню и отсюда уже падала на колесо.

У нас на Нарвской мануфактуре мощность водяного колеса достигала 600 лошадиных сил.

Основной недостаток гидравлического двигателя заключается в его зависимости от наличия водяного потока. Промышленное предприятие должно располагаться возле реки, не считаясь с неудобствами, которые возникали от этого. Чтобы смягчить такую зависимость, приходилось строить иногда целые системы каналов, плотин, запруд, через которые вода из реки подавалась на промышленное предприятие.

Вододействующие колеса, как и ветряные мельницы, встречаются еще и сейчас в глухих уголках земного шара. При этом за две тысячи лет существования они не претерпели никаких существенных изменений. Изменялись лишь способ подведения к ним воды и материал, из которого они делались. В зависимости от способа подведения воды водяные колеса разделялись на подливные и наливные. Самые древние, подливные колеса ставились на реке так, что вода силою свободного течения действовала на нижние лопатки колеса. К наливному колесу вода подводилась сверху и работала своим весом, падая на лопатки. В зависимости от того, к какой части колеса подводилась вода, колеса назывались верхненаливными, средненаливными, заднебойными.

Разнообразие конструкций этих колес свидетельствует о том, что попытки найти наиболее выгодный способ использования водяного потока были основной заботой конструкторов в те времена, когда гидравлический двигатель был самым распространенным и почти единственным, если не считать ветряных мельниц, механическим двигателем.

В то же время не прекращались и попытки увеличить энергетическую эффективность водяных колес за счет их размеров и конструктивного совершенства.

История оставила нам немало рассказов о различных вододействующих установках, поражавших умы современников как своими размерами, так и остроумным устройством.

Наибольшую же известность получили русские гидромеханические сооружения на Урале и особенно — грандиозная гидросиловая установка Змеиногорского рудника на алтайских Колывано-Воскресенских заводах.

Об этой установке «Горный журнал», издававшийся в Петербурге, писал в 1827 году:

«Кто посещал Змеиногорский рудник, тот, конечно, с удовольствием осматривал производимые на оном работы, превышающие, кажется, силы человечества, и механические устройства, облегчающие труды рудокопателей при извлечении сокровищ из недр земных. Удивленный путешественник спросит невольно: кем устроены в глубоких храминах земли сии огромные колеса, каких не существует ни в одном из российских рудников? Изобретатель сего механизма есть берг-гауптман 6-го класса Кузьма Дмитриевич Фролов».

С начала XVIII века русское правительство обращало особое внимание на необходимость усиленного развития горнозаводского дела. Поиски руд начались у нас еще до Петра, причем уже тогда «разведывателями» были охвачены районы и далекого Севера и Урала с Зауральем. В XVII веке были основаны у нас и первые «вододействуемые» чугунные и медеплавильные заводы. Правда, некоторые из предприятий XVII века оказались недолговечными, но часть железоделательных заводов, в том числе и все крупные, имевшие гидротехнические сооружения в виде водяных колес, сохранились до XVIII века, когда началась бурная деятельность Петра по развитию металлургии в России.

Железоделательная промышленность достигла особенного развития на Урале. Уральское железо конкурировало на европейском рынке с самым высококачественным шведским железом и вывозилось даже в Англию, шедшую впереди других стран в своем промышленном развитии.

Для приведения в движение различных горнозаводских механизмов — «толчейных мельниц», измельчавших руду, воздуходувных мехов, водяных насосов — на Урале, на Алтае строились вододействующие колеса, принадлежащие к разряду гидравлических, то есть действующих водой, двигателей.

Гидравлические двигатели на Урале составляют славу товарища по школе и друга Ползунова — Кузьмы (Козьмы) Дмитриевича Фролова (1726–1800).

Так же как Ползунов, Фролов со школьного возраста, одновременно с изучением наук «словесных и арифметических» — геометрии, тригонометрии, механики и черчения, — непосредственно на производстве присматривался к делу и «руками по возможности применялся и о искусстве ремесла, в чем оное состоит, внятно уведомлялся и рассуждал: из чего лучше или хуже может быть».

Юноша был чрезвычайно привержен и к рассуждению и еще более к ручному труду. Он удивлял своих учителей способностью понимать с первого взгляда устройство машин и механизмов и «что потребно прибавливать или убавливать» во вновь проектируемом механизме для улучшения его работы. Однако, начав свою деятельность в качестве «горного ученика», Фролов не скоро стал собственно механиком. Первые тринадцать лет трудовой жизни, подобно Ползунову, он выполнял различные поручения горного начальства: то наблюдал за работами по промывке золота, то отправлялся для разведки новых рудных месторождений, причем иногда, в очень отдаленные местности.

Этот человек высокого роста, с большой черной бородой, одетый в длиннополый, стеснявший движения кафтан, был похож на сказочного русского богатыря. Он строил на Алтае машины для промывки руды, спроектировал, построил и пустил в ход водяные толчейные мельницы, измельчавшие руду. В Барнауле Фролов сделал водяные колеса для кузнечного молота. За годы своей инженерной деятельности на Алтае Фролов осуществил множество самых разнообразных конструкций, составивших ему известность не только на Урале, но и в Петербурге, куда его вызывали для инженерных работ на Онеге.

И только в 1781 году, когда Кузьма Дмитриевич был назначен управляющим Змеиногорского рудника, самого старого и самого богатого драгоценными металлами, ему предоставилась возможность начать перевооружение энергетического хозяйства рудника. Здесь он и проявил свой талант, изобретательность и ясное понимание необходимости увеличивать повсюду и всемерно мощность орудий производства для развития производительных сил страны.

Исключительно тяжелые условия работы в рудниках гнали отсюда крепостных людей. Никакими наказаниями, никакими угрозами невозможно было удержать их: они предпочитали пытки и казнь медленному умиранию от непосильного труда.

С недостатком рабочей силы Фролов столкнулся как с основным бедствием, вступив в должность управляющего. Причин этого бедствия он не понимал и думал, что все дело только в технической отсталости.

Устройство гидравлических колес Фролов хорошо изучил, строя водяной двигатель для молота барнаульской заводской кузницы. Это было небольшое деревянное колесо с прямыми лопатками на ободе. Вода падала сверху по направляющему желобу на лопатки колеса, и силою удара воды колесо вращалось. Через колесный вал движение передавалось на рукоять молота, который то поднимался, то падал. Молот плющил железо на наковальне. Такое же колесо, только гораздо больших размеров, и задумал построить для откачивания воды на одной из шахт (Вознесенской) Змеиногорского рудника новый его управляющий.

В 1783 году машина была готова. Внутри Змеевой горы, в самой шахте, механик поставил огромное деревянное колесо с механизмом для приведения в действие насосов.

Колесо вращала вода речки Змеевки, пущенная по подземному каналу. Внизу шахты были установлены насосы, которые поднимали воду с глубины в 60 метров. Но глубина шахты доходила до 100 метров, следовательно до поверхности оставалось еще 40 метров. Фролов устроил на высоте 60 метров для слива поднимаемой насосами воды наклонную подземную трубу. По этой трубе вода самотеком уходила в другую реку, Корбалиху, уровень которой был ниже уровня Змеевки.

Рабочие прозвали эту машину «слоновой» за ее небывалую величину.

Хотя машина была и очень мощной, одной ее не хватало для обслуживания всего рудника. Да к тому же она только откачивала воду, а руду из шахт по-прежнему выносили на спине. Этого допустить механик не мог.

Он понимал, что для увеличения производительности шахт нужны были новые машины, и принялся за составление проекта рудоподъемной машины.

Конечно, прежде чем взяться за новое дело, Кузьма Дмитриевич с пристальным вниманием начал изучать книги по механике, где имелись описания различных гидротехнических устройств. Книг таких тогда было мало, но они все-таки были. Нашлись они и в барнаульской библиотеке, которую отлично знал Ползунов.

Советуясь с другом своим по поводу прочитанного, руководствуясь отчасти и своим опытом, Фролов успешно справился с задачей. По его проекту в сарай, где стояла машина, был проведен желоб, по которому вода поступала из штольни, идущей от пруда. Желоб входил в деревянный ящик, называвшийся ларем. На дне этого ящика имелись три отверстия — «окна», закрывавшиеся каждое клапаном. Ящик устанавливался прямо над колесом, причем так, чтобы вода, пущенная из двух отверстий, падала как раз на его лопатки. Колесо машины было разделено по ширине обода на две равные части, то есть лопатки по колесу шли двумя параллельными рядами, но обращенные в противоположные стороны. Это нужно было для того, чтобы вращать колесо в ту или другую сторону. На валу колеса были накручены канаты, поднимавшие бадьи с рудой; при вращении вала они то сматывались, то наматывались, в зависимости от направления хода колеса. Третье отверстие на дне ларя открывали, когда нужно было колесо остановить. Вода поступала в ларь беспрерывно; следовательно, когда колесо стояло, то есть когда оба отверстия для стока воды на лопатки были закрыты, необходимо было прибывающей воде дать сток, иначе она полилась бы через край. Для предупреждения этого и служил третий клапан. Через него вода выливалась мимо колеса в подземный канал, идущий к другой машине — водоотливной, стоящей на Екатерининской шахте.

Колесо необходимо было останавливать и на то время, пока поднятую бадью разгружали, а нижнюю, находившуюся на дне шахты, нагружали рудой. Тяжелое, намокшее колесо, конечно, не сразу останавливалось в силу инерции, и конструктор сделал на другом конце вала второе колесо, поменьше и уже без лопаток, приладив к нему тормозные колодки. Когда рабочее колесо требовалось остановить, нужно было только прижать эти колодки к ободу второго колеса. Делалось это специальными рычагами, и с торможением справлялся любой рабочий.

Фролов установил на валу своей машины тормозное колесо без лопаток.

Из этого описания легко судить о конструктивной сложности машины и необычайной изобретательности русского механика.

Конечно, при постройке ее Фролову пришлось преодолеть немало трудностей, но ни одна из них не привела механика к разочарованию или к неверию в творческие силы своих помощников и свои собственные.

Испытания этого грандиозного сооружения дали превосходные результаты, и Кузьма Дмитриевич немедленно взялся за проектирование, а затем и строительство еще одной машины на той же Екатерининской шахте для откачивания воды из нижних выработок. Эта машина конструктивно была задумана еще смелее рудоподъемной. Колесо имело такие же гигантские размеры, как и на Вознесенской шахте. Оно было 15 метров в диаметре. Собрать такое колесо, да еще деревянное, поднять и насадить на вал представляло задачу трудную, требовавшую от строителя находчивости для борьбы с постоянно возникавшими затруднениями.

Колесо двигало поршни насосов, установленных глубоко на дне шахты в два ряда, по девять в каждом. Насосы переливали воду в корыта, стоявшие над ними, а из них верхние насосы перекачивали ее еще выше, в устроенные на этой высоте другие корыта. Вода поднималась, как по лестнице, со ступеньки на ступеньку. Такое устройство позволяло качать воду со стометровой глубины. Передача от колесного вала к поршням насосов была тоже очень сложной, причем сложность конструкции удваивалась от ее размеров и несовершенства дерева как машиностроительного материала.

Длинные тяги, идущие от кривошипа укрепленного на валу колеса, лежали на подвижных катушках на всем протяжении — от колеса до колодца с насосами. Кривошип, вращаясь по кругу, тянул всю цепь и вытягивал поршневые штоки насосов. Обратное движение происходило само собой: тяжелые шесты насосных приспособлений тянули всю систему вниз силой собственного большого веса.

Четвертая машина, поставленная на Вознесенской шахте, была копией построенной в 1783 году. Она имела такое же гигантское колесо и устроена была почти так же, как и екатерининская.

Когда все водопроводящие каналы были прорыты, машины и вспомогательные механизмы установлены, началась постройка плотины, чтобы собрать достаточное количество воды для работы всех этих машин.

Чтобы запрудить реку Змеевку, поперек течения забили сваи, заплели их фашинами, а в промежутки навалили камень и землю. Плотина высотой в 23 метра, длиной 128 метров и шириной от 96 до 21 метра подняла воду и образовала пруд площадью в 6 квадратных километров. Это была серьезная гидротехническая задача, которую Фролов разрешил блестяще.

Через плотину были проложены две канавы с каменным дном и стенками: одна — чтобы спускать лишнюю воду весной или после больших дождей, с подъемными ставнями для запора воды, если понадобится. Через другую канаву вода шла беспрерывно и служила для пуска воды на систему подземных каналов и желобов, подводивших воду к рабочим колесам машин.

В своем стремлении достигнуть предельной мощности Фролов построил самые большие в мире деревянные водяные колеса. Даже одно из чудес французского короля Людовика XIV — водяное колесо голландского архитектора Реннекена, подававшее воду в фонтаны Версальского парка, — уступало по величине и конструктивному совершенству змеиногорским сооружениям Фролова.

Поставленные на шахтах для разных производственных целей, водяные колеса Фролова имели диаметр, равный высоте нынешнего пятиэтажного дома. Как ни развито было на Руси плотничное дело, как ни велик был опыт строителей русских плотин и мельниц, нельзя не удивляться инженерному искусству и математической точности Фролова, сумевшего так рассчитать все части колеса, что оно не разваливалось на куски от собственной тяжести и от силы инерции во время работы. Поражали современников и все остальные части сооружения: насосы и приводы к ним, плотины и пруд.

Но дело не только в размерах и грандиозности сооружений Фролова, а в их конструктивном совершенстве, в необычайном умении русского механика использовать стихийную силу водного потока как источник энергии.

Повадки водяной стихии, свойства воды как силы Фролов знал, вероятно, как никто в мире. Он не ограничивался строительством водяных колес для нужд рудника. Для удовлетворения своей изобретательской страсти Кузьма Дмитриевич строил, например, водяные часы, где механизм приводился в движение водой, а показывали эти часы время с точностью маятниковых часов.

После смерти Ползунова Кузьма Дмитриевич с необычайным искусством исправил насосы в его машине.

Кузьма Дмитриевич до последних дней своей жизни гордился дружбой с великим русским теплотехником. По странной случайности, пережив на много лет своего друга, он умер в 1800 году в том же Барнауле, куда вызван был на заседание Горного совета.

Гидротехника на Урале развивалась и после Фролова. Именно благодаря высокому мастерству русских строителей гидравлические двигатели удерживались в России и много лет спустя после появления парового двигателя.

Все эти колеса были горизонтальными, то есть вал их располагался горизонтально. Значительно позднее появились водяные колеса с вертикально поставленным валом, колесо при этом лежало в воде.

История этих «лежачих колес» любопытна.

Установка водяного колеса, как само собой понятно, возможна только при наличии водного потока. Берега рек и речушек обычно находились во владениях помещиков, так что владелец мельницы должен был платить арендную плату за воду. Разумеется, он взыскивал ее, в свою очередь, с крестьян, привозивших на мельницу хлеб. Чаще всего сами помещики строили для окружного крестьянства большие мельницы и за помол брали значительную долю зерна.

Мельничная установка — дело несложное. С ним могли справиться и простые плотники. Однако крестьяне не имели средств строить собственные мельницы и должны были платить своим господам за помол зерном. Эти сборы за помол оказывались тягостными для земледельцев, и не мудрено, что они стремились как-нибудь обойти их. Многие прибегали к ручным мельницам и ступкам, некоторые, пользуясь протекавшим где-нибудь ручейком, в укромном месте строили маленькие водяные мельницы. Именно стремление укрыть от господ свою установку и повели к поискам конструкции лежачего колеса, которое можно было бы спрятать и избегнуть передачи под прямым углом.

Лежачие колеса, несмотря на свои небольшие размеры, оказались конструктивно более совершенными и выгодными, чем обычные, и получили большое распространение во Франции. Образцом такого практическим путем найденного наиболее совершенного водяного колеса считалось колесо мельницы в Базакле. Лопасти этого колеса помещались в огромном деревянном цилиндре и находились на дне его, почти вплотную подходя к стенкам. Вода шла в цилиндр сверху. Равномерное давление всей массы воды на крутые лопасти колеса, установленного вертикально, и свободный сток воды через особую трубу обеспечивали сильный и равномерный ход мельницы. На верхнем конце колесного вала был насажен мельничный жернов.

Изобретение деревенских хитрецов имело большие преимущества перед громоздкими господскими водяными колесами, и оно сыграло известную роль не только в борьбе крестьян со своими угнетателями. Повсеместно распространенные, долго бывшие основными двигателями в народном хозяйстве, водяные колеса не раз привлекали внимание ученых. Путем теоретических размышлений математики и инженеры стремились найти способ увеличить скорость вращения водяных двигателей, облегчить их конструкцию и тем повысить их мощность.

Таким исследованием занимался венгр Сегнер. Он предложил новую конструкцию действующего водою колеса. В основу сегнерова колеса был положен принцип реакции вытекающей из сосуда воды, высказанный лет за двадцать до этого Даниилом Бернулли, основоположником гидравлики.

Сегнерово колесо представляет собой цилиндр, вращающийся на вертикальной оси. Внизу цилиндра имеются крестообразно расположенные трубки, из которых вытекает вода, подаваемая в цилиндр сверху. При вытекании воды прибор вращается в сторону, противоположную отверстиям трубок. Колесо приводится в движение реактивной силой вытекающей воды, той самой реактивной силой, которая заставляет ракету взвиваться высоко вверх, когда из нее выбрасываются газы.

Изобретение деревенских хитрецов имело преимущества перед господскими водяными колесами.

Дальнейшие исследования действия реактивной силы истекающей из сосуда жидкости были произведены знаменитым математиком, членом Петербургской Академии наук Леонардом Эйлером. Он дал усовершенствованную конструкцию реактивного колеса, замечательную тем, что здесь вода перед входом на вращающиеся ковши проходит через неподвижные трубки, придающие ей наивыгоднейшую скорость и направление. Эйлер создал, таким образом, направляющий аппарат, отделенный от рабочего колеса.

Всю эту историю развития вододействующих колес профессор Бурден излагал перед своими слушателями со знанием дела и с увлечением. При этом он не упускал ни одного случая добавить:

«Водяной двигатель может и должен стать таким же совершенным, как паровая машина!»

Самым внимательным и способным учеником профессора Бурдена оказался Бенуа Фурнейрон.

Неуклюжий юноша с тяжелым характером, будучи студентом, не раз заменял своего учителя во время его отсутствия в качестве ассистента. Однако по окончании курса в 1819 году Фурнейрон был послан на практику в Крезо в качестве разведчика новых мест залегания угля. Он начал работать как горный инженер-геолог.

Фурнейрон и здесь проявил такие способности, что через год получил приглашение на разведочные работы в Алэ, Директор Сент-Этьеннской школы Бонье, внимательно следивший за карьерой бывших учеников, отлично знал об успехах Фурнейрона на практической работе. Бонье в это время закончил разработку проекта первой железнодорожной линии во Франции — между Сент-Этьенном и Андрезье. На разведочные работы для будущей линии он пригласил Фурнейрона. И с этим делом молодой инженер справился как нельзя лучше.

Таким образом, карьера Фурнейрона была очень далека от той области деятельности, к которой готовил его Бурден. Однако сам Фурнейрон мечтал о чем-нибудь более значительном, чем выполнение случайных и временных поручений. Ему нужно было дело большого размаха, которое он мог бы при своей настойчивости и изобретательности довести до полного конца.

В 1821 году Фурнейрон взялся организовать производство белой жести на одном металлургическом заводе. Дела этого он не знал, секрет производства тщательно сохранялся англичанами. Но Фурнейрон сам сконструировал прокатные станы и организовал производство. Конечно, ему пришлось заново изучить дело, предварительно произвести массу опытов.

Во время установки прокатных станов, приводившихся в движение обыкновенным водяным колесом, Фурнейрон и столкнулся наконец на практике с тем гидравлическим двигателем, историю которого так хорошо рассказывал профессор Бурден.

Тогда Фурнейрон понял, что увлечение его учителя было совсем не случайным.

Промышленная революция, начавшаяся в Англии, довольно быстро захватила все европейские страны. Вслед за прядильными и ткацкими станками, вслед за появлением множества вновь изобретенных рабочих машин в Англии появился двигатель Уатта. Он положил основание для крупной промышленности. Но даже и в самой Англии паровой двигатель не мог сразу вытеснить водяное колесо, не мог повсеместно его заменить. Для этого нужно было немало времени, труда, металла; средств.

Иначе обстояло дело во Франции. «Континентальная блокада», которую проводил Наполеон для изоляции Англии и подрыва ее торговли, привела к полному прекращению торговых сношений с Англией. Поэтому сюда, во Францию, новые станки, машины и паровой двигатель Уатта явились не скоро. Взоры французских предпринимателей были устремлены всецело на водяной двигатель, и не случайно, значит, именно во Франции больше всего появилось научных исследований, касавшихся вопроса об улучшении водяного колеса.

Кроме зависимости от наличия водного потока, в водяном колесе было множество других недостатков. Пользование им затруднялось зимой, при спаде воды. Водяное колесо было тихоходным, маломощным и громоздким двигателем.

Задача создания нового типа водяного двигателя, свободного от этих недостатков, была неотложной и совершенно очевидной. В то время как Фурнейрон еще только размышлял обо всем этом, старейшее французское «Общество поощрения национальной промышленности» решило объявить конкурс на проект водяного двигателя.

В качестве образца, из которого следовало исходить, общество указывало на водяное колесо мельницы в Базакле. За лучший проект назначалась премия в шесть тысяч франков. Модели следовало представить к 1 мая 1827 года.

Срок, предоставленный изобретателям, оказался недостаточным. Во всяком случае, этого времени не хватило щепетильному и требовательному Фурнейрону, чтобы закончить свои опыты со множеством построенных им моделей. Поэтому он в конкурсе не участвовал.

Представлены были в срок только два проекта. Один принадлежал голландскому механику Мари, другой — профессору Бурдену. Этот последний проект обратил на себя всеобщее внимание.

Профессор Бурден предложил совершенно оригинальную конструкцию водяного колеса, названного им «турбиной» — от латинского слова, означающего «вихрь». Турбина состояла из двух частей: рабочего колеса с лопатками и аппарата, направляющего воду на лопатки колеса. Рабочее колесо представляло собой диск, закрепленный на вертикальном валу, а вал проходил через трубу, установленную в центре направляющего аппарата. Направляющий аппарат, находившийся внутри рабочего колеса, имел шесть кривых вертикальных перегородок, образующих каналы. Они направляли воду на такие же кривые, но изогнутые в обратную сторону лопатки колеса. Вода должна была поступать сверху в цилиндрический резервуар над направляющим аппаратом, откуда, разбегаясь между его перегородками, устремлялась на лопатки рабочего колеса.

Бурден напал на замечательную идею, поместив направляющий аппарат внутри рабочего колеса. Однако при постройке модели ему не хватило практического опыта. И, когда турбину испытали на производственной работе, надежды, на нее возлагавшиеся, не оправдались.

Жюри конкурса выдало изобретателю треть премии и объявило вторичный конкурс, так как турбина Бурдена только приблизила решение проблемы, но не решала ее. Срок нового конкурса назначили на 1832 год.

На этот раз в нем принял участие и Фурнейрон.

 

2. Турбины

Фурнейрон

Бурден знал о работах своего ученика, хотя Фурнейрон держал их в секрете. Из опытных моделей Фурнейрона одна — мощностью в шесть лошадиных сил — казалось, отвечала всем требованиям конкурса. Оставалось только разрешить задачу о регулировании ее хода. Разочарованный в собственной турбине, Бурден возлагал много надежд на турбину своего ученика и писал ему:

«Бодрость, храбрость, дорогой Фурнейрон! Заставьте только свою турбину хорошо вертеться, а я желаю вам удачи, успеха и триумфа за триумфом».

Сообщения Фурнейрона о дальнейших испытаниях модели заставляли Бурдена писать своему ученику в 1827 году:

«Пусть, по крайней мере, скажут, что если я не создал хороших турбин, то воспитал отличного механика, что еще лучше. Я же буду вам благодарен, если вы, не найдя в этом ничего противоречащего вашим интересам, заявите, что слушали мои лекции в Сент-Этьенне и что благодаря мне вы занялись этими опытами».

Между тем личные средства Фурнейрона быстро иссякли, а для продолжения опытов он нуждался в них более чем когда-нибудь. Изобретателю пришлось искать покровителя с деньгами. В Безансоне ему удалось заинтересовать своей турбиной владельца железоделательного завода Карона. Карон заказал на пробу турбину мощностью в десять лошадиных сил для воздуходувных мехов домны.

В основе конструкции Фурнейрона лежало то же, что и у Бурдена: соединение в турбине отдельных частей — рабочего колеса и помещенного внутри него аппарата, направляющего поток воды. Но Фурнейрон разработал эту конструкцию с тем совершенством отдельных частей, которое только и могло обеспечить турбине полный успех.

Прежде всего Фурнейрон перешел на металл. Раньше, вплоть до Бурдена, для постройки турбин употреблялось исключительно дерево. Металлическая турбина Фурнейрона благодаря теоретически правильным представлениям конструктора и точному расчету поражала своими маленькими размерами. Десятисильная турбина, сделанная для Карона, была не больше винного бочонка. Никто при взгляде на нее не хотел верить, что эта машина при незначительном напоре водного потока может благодаря огромной скорости работать с мощностью в десятки лошадиных сил. Но Карон был удовлетворен поставленной на работу машиной Фурнейрона и заказал ему другую турбину, мощностью в пятьдесят лошадиных сил. И этот заказ Фурнейрон выполнил. Турбина была установлена на заводе в Фрезане. Диаметр ее был немного более полуметра, а делала она свыше двух тысяч оборотов в минуту. Изменение в силе напора воды почти не отражалось на работе турбины. Она одинаково работала и на поверхности реки и погруженная на глубину.

В эту турбину Фурнейрон внес существенно важное устройство для регулирования скорости хода. Регулировался ход при помощи особых задвижек, находившихся в каналах направляющего аппарата. При перемещении их увеличивался или уменьшался приток воды на лопатки рабочего колеса. Соответственно ускорялась или замедлялась скорость хода.

Турбину, работавшую в Фрезане, Фурнейрон и представил на конкурс в 1832 году. На этот раз в конкурсе участвовало немало изобретателей. Но премию жюри единодушно присудило Фурнейрону. Кроме того, он получил золотую медаль общества.

Нельзя сказать, однако, что изобретатель сразу же был завален заказами. Потребовалось несколько лет, для того чтобы новые машины получили известность и сломили обычное недоверие ко всякому новшеству.

За эти годы Фурнейрон еще более усовершенствовал конструкцию турбины. Через пять лет он построил свою четвертую турбину — для мануфактурной фабрики в Сен-Блезе. Турбина развивала мощность в шестьдесят лошадиных сил, а размеры ее были просто игрушечными: диаметр рабочего колеса был не больше диаметра обыкновенной шляпы; весил двигатель всего семнадцать килограммов.

Успешные испытания этой турбины на фабрике сломили наконец недоверие заказчиков. Мастерская в Безансоне вскоре уже не могла справляться с заказами. Фурнейрон вошел в компанию с Нидерборнскими заводами и организовал там производство турбин.

Распространение турбин шло прекрасно, успех их возрастал. Медлительный, осторожный, расчетливый Фурнейрон работал не хуже, чем его турбины. Правда, у него не оставалось ни времени, ни охоты на то, чтобы устроить как-нибудь свою личную жизнь, но он копил деньги на нее с медвежьим упорством и медвежьей неторопливостью. Конечно, когда деньги были накоплены и улеглась деловая суета, Фурнейрон оказался слишком старым. Но так уж бывает со всеми людьми его типа, людьми слишком расчетливыми, слишком осторожными.

У Фурнейрона не было ни жены, ни детей, ни привязанностей, кроме сестры, у которой он жил. Впрочем, сам он не испытывал никаких неудобств от своего одиночества: с машинами было не меньше забот и хлопот, чем с самыми болтливыми друзьями и самыми любящими родственниками.

Диаметр рабочего колеса турбины Фурнейрона был не больше диаметра обыкновенной шляпы.

Турбины заинтересовали ученый мир. Виднейшие теоретики начали искать научные основы для дальнейшего развития гидравлического двигателя. Среди них был знаменитый математик и военный инженер Понселе. Отправившись с Наполеоном в поход на Россию, Понселе два года провел в русском плену. В Саратове, куда его выслали, Понселе написал самое важное свое сочинение, посвященное геометрии и содержащее много новых идей. Понселе и дал научную теорию работы Фурнейроновой турбины.

Теория, данная Понселе, превосходная конструкция Фурнейрона и экономическая потребность в новом двигателе — все это повлекло за собой быстрое развитие турбостроения. Турбины новых конструкций появлялись одна за другой. Геншель из Касселя, Жонваль из Эльзаса, плотник Пелтон и инженер Френсис в Америке строили турбины разных типов. Из них наиболее выгодными оказались турбины Френсиса и Пелтона. Они и применяются в настоящее время наиболее широко: турбина Френсиса — для равнинных рек, с тихим течением, а турбина Пелтона — для горных рек, с большим напором воды.

Турбина Пелтона представляет собой колесо с ковшами, устроенными в виде двух сложенных ложек, разъединенных ребром пополам. Вода подводится к колесу двумя или тремя сильными струями; ударяясь о ребро каждого ковша, они разбиваются надвое и, стекая по стенкам ковша, оказывают на него сильное давление, заставляя все колесо вращаться с огромной скоростью.

В водяных колесах вода действует или своим весом, или ударом струи о лопатку колеса. Ударное действие струи используется также и в активных или свободноструйных ковшовых турбинах. Действие же так называемых реактивных турбин основано на принципе, предложенном Сегнером и развитом Эйлером в стройную теорию. Эта теория легла в основу всех дальнейших конструктивных усовершенствований турбин, использующих реактивное действие потока воды, протекающей по каналам между лопатками рабочего колеса турбины.

Всего лишь тремя годами позже Фурнейрона, в начале 1837 года, в России, на Урале, плотинным мастером Алапаевских заводов Игнатием Егоровичем Сафоновым самостоятельно была построена первая в России, а по мощности самая крупная тогда водяная турбина. Установленная на Алапаевском металлургическом заводе, турбина эта выдержала все испытания и работала отлично. Вскоре Сафонов построил еще две такие же турбины — для Ирбитского и Нейво-Шайтанского заводов.

Колесо первой турбины еще имело детали, выполненные из дерева, но колеса двух следующих турбин были отлиты из чугуна.

Первые турбины Сафонова имели коэффициент полезного действия около 50 процентов. Это объяснялось тем, что лопатки, или «перья», как их тогда называли, рабочего колеса не были закрыты сверху и снизу ободами и поэтому работали не всей своей длиной, а лишь частью: вода стекала с них, не дойдя до внешнего края.

Конструкция второй турбины была улучшена, и ее коэффициент полезного действия достигал 70 процентов.

По мощности турбина Сафонова превосходила турбины Фурнейрона: мощность алапаевской турбины составляла 36 лошадиных сил, а мощность нейво-шайтанской — 60 лошадиных сил.

Современные реактивные турбины основаны на том же принципе, что и турбины Фурнейрона и Сафонова, но имеют одно принципиальное отличие. В прежних конструкциях турбин вода подавалась в турбину в центре и протекала через лопатки рабочего колеса от центра к периферии. Впоследствии выяснилось, что движение от периферии к центру выгоднее. Оно дает возможность уменьшить размеры турбины и получить более высокий коэффициент полезного действия. Поэтому в современных реактивных турбинах вода подается в радиальном направлении и, пройдя через направляющий аппарат, меняет постепенно в рабочем колесе свое направление и уходит из него уже в осевом направлении. Отсюда они и получили свое название радиально-осевых турбин.

Успехи турбостроения могли бы вскружить любую голову. Но Фурнейрона они не радовали. Ему вдруг пришлось обороняться с двух сторон — и от своих последователей и от своих преследователей, без чего не обходится ни один житейский успех в капиталистическом обществе.

Последователей у Фурнейрона оказалось очень много. Они строили турбины, не считаясь с его патентами и не спрашивая у него разрешения. Иногда маленькие, но очень зоркие глазки Фурнейрона обнаруживали этих «пиратов индустрии», как он их называл, и тогда затевались долгие, но по большей части бесполезные суды. Суд часто приговаривал нарушителя привилегии к уплате такого огромного штрафа, что он не мог его выплатить. Дело кончалось тем, что ответчик, как это было в случае с неким Кюхлиным, становился приятелем истца, или тем, как это было с неким Шартром, что Фурнейрон брал свой иск обратно.

Преследователем Фурнейрона совершенно неожиданно оказался его старый учитель профессор Бурден.

Сначала он не очень ценил свою идею и для второго конкурса построил турбину иной системы, где рабочее колесо помещалось под направляющим аппаратом. Но огромный успех турбин Фурнейрона напомнил ему, что ведь идея-то конструкции все-таки принадлежала ему, а не его славному ученику!

Впервые, когда Бурден ознакомился в Фрезане с турбиной Фурнейрона, он писал ему:

«Я видел вашу турбину и восхищен ею. Будет хорошо, чтобы я вторично подчеркнул, что если ученые и признают за мной некоторые заслуги в создании турбины, то надо все же признать и то, что без вас наша родина еще долго бы оставалась без этой удивительной машины».

Но вот восемь лет спустя после этого письма, в 1841 году, профессор Бурден решил выставить свою кандидатуру в члены Французской академии. Тут он на первое место поставил себе в заслугу изобретение турбины. Фурнейрон обиделся на своего учителя и представил в опровержение его утверждения письма самого Бурдена и мнение Понселе, На основании этих документов за Фурнейроном и было оставлено имя творца гидравлической турбины.

Впрочем, когда через год Фурнейрон сам баллотировался в члены академии, он также не получил большинства голосов. Неизвестно, как перенес свое поражение Бурден, но Фурнейрон возвратился в свой Безансон со сжатыми кулаками и решением, которому не изменил уже до конца жизни: никогда больше не заниматься научными работами и презирать всех академиков!

У него даже мелькнула мысль покончить навсегда с делами, купить усадьбу и пролежать в берлоге до конца жизни. Но затем он решил, что надо еще немного прикопить денег и чуть-чуть расширить дело, а тогда уже уйти на покой. Поэтому он основал новый завод в Шамбоне, с литейными мастерскими, и стал работать не только на Францию, но и на весь мир. Этот завод, существующий и до сих пор, начал выпускать улиткообразные трубы для подвода воды к турбине, а затем стал строить турбины с автоматическим регулятором — по принципу регуляторов Уатта.

Организовав производство, поставив на ноги завод, Фурнейрон переехал в Париж — может быть, с целью урвать наконец от жизни немного личного счастья. Но тут он втянулся в водоворот политической жизни и даже принял участие в февральской революции 1848 года, когда парижане под грохот набата с факелами в руках двинулись во дворец, чтобы низвергнуть июльскую монархию.

Вступив в ряды Национальной гвардии, Фурнейрон, разумеется, не собирался воевать за социализм и коммунизм. Промышленная буржуазия, мелкая и средняя, нуждалась в свержении монархии для своих целей, и, как только республика была провозглашена, она постаралась занять побольше мест в Конституционном собрании для установления строя, открывавшего ей свободу действий.

Фурнейрон прошел в это Конституционное собрание кандидатом от Сент-Этьенна и деятельно поддерживал здесь политику мелких и средних промышленников, к которым сам принадлежал, но, после того как провалился на выборах в установленный конституцией Законодательный корпус, снова обиделся на людей и мрачно засел в своей сент-этьеннской берлоге.

Фурнейрон стал думать о создании паровой турбины, но при своей медлительности и расчетливости не успел в этой области предпринять конкретные шаги.

Перед смертью он рассказал о неосуществленных замыслах сестре, заметив с горечью:

— Если бы я мог довести до конца то, что начал… это произвело бы полный переворот в промышленности. Жаль, что это уже невозможно…

Деньги, накопленные за долгую расчетливую жизнь, надо было все-таки куда-то девать. Для братьев и сестры, с которыми следовало расплатиться за их привязанность и терпеливость, это было бы слишком много. Фурнейрон завещал часть денег на научные цели академии и Сент-Этьеннской горной школе, часть — другим научным обществам.

Вечером 8 июля 1867 года, не разгладив суровых морщин на лице, Фурнейрон умер.

Мастер гидравлической техники не ошибался, предчувствуя переворот в промышленности, развитию которой он так много содействовал. Но переворот этот был связан не с паровой турбиной, а с внедрением в промышленность электрического тока. В этом перевороте созданная Фур-нейроном турбина сыграла огромную роль и получила новое значение, о котором Фурнейрон при жизни не мог и мечтать.

Незадолго до его смерти турбины Фурнейрона были установлены в тихом уголке Швейцарии, в Шафгаузене на Рейне.

Здесь испокон веков находилась вододействующая установка, считавшаяся образцовой. Мелкую промышленность Шафгаузена обслуживали несколько вододействующих колес, установленных на двух каналах, отведенных от Рейна, ниже знаменитого Рейнского водопада. Но колеса эти плохо справлялись с делом, а зимой 1857/58 года из-за спада воды и вовсе подвели кустарей, так что некоторые предприятия вынуждены были закрыться.

Это было обидно шафгаузенцам, тем более что рядом с ними находился даровой источник водной энергии неиссякаемой мощи в виде Рейнского водопада. И вот часовых дел мастер и фабрикант часов Генрих Мозер предложил своим согражданам осуществить смелое предприятие: плотиной запрудить Рейн, поставить на левом берегу здание и установить в нем три турбины Фурнейрона для обслуживания механической энергией всех предприятий Шафгаузена.

Старый Мозер пользовался большим влиянием, и сограждане согласились взяться за дело. Рейн запрудили, турбины поставили, а от вала, который они вращали, были устроены передачи не только на близлежащие фабрики, но и на другой берег Рейна — при помощи двух проволочных канатов.

Устройство канатных передач оказалось очень сложным, громоздким и довольно невыгодным делом. Однако благодаря турбинной установке в течение двух десятков лет Шафгаузен из тихого, провинциального городка превратился в значительный промышленный центр, а разросшиеся предприятия Генриха Мозера получили мировую известность.

Но истинный расцвет Шафгаузена как промышленного центра начался лишь после того, как вместо прежней установки на Рейне была сооружена гидроэлектростанция. Водяные турбины теперь стали вращать генераторы электрического тока, который по проводам пошел на все предприятия города. От этого тока стали работать электродвигатели, приводившие в движение станки и машины. Новый способ использования дешевой водной энергии и привел тихий Шафгаузен к необычайному расцвету.

В этой замене вододействующих колес турбинами, а турбин — турбогенераторами, в этом связанном с ними промышленном, экономическом и культурном росте Шафгаузена, как небо в капле воды, и отразилась вся история развития водяного двигателя и его нынешнее значение.

 

3. Электродвигатель

Якоби

Разнообразные проявления электричества и магнетизма известны людям очень давно. Об этом свидетельствуют даже названия их. Греки, например, приписывали открытие магнетизма мифическому пастуху, по имени Магнус, жившему неведомо как давно. Магнус будто бы однажды забрался со своими стадами на гору Иду и здесь познакомился с таинственной силой каких-то бурых камней, притянувших к себе гвозди его сандалий и железный наконечник посоха.

По имени пастуха загадочное явление, обнаруженное им, и получило у греков название «магнетизма».

Хорошо знали греки и о свойстве янтаря (по-гречески «электрона») притягивать мелкие частицы разных веществ, если его предварительно потереть о шерсть.

Однако в течение многих веков человечество не сдвинулось ни на шаг с места в изучении магнитных и электрических явлений, хотя и забавлялось ими. Куски магнитного железняка, имеющего вид бурых камней, весом в два-три килограмма, оправляли в бронзу и с таким естественным магнитом в руках проделывали всякие опыты. Магниты ценили, но пользоваться странной силой для практических целей не умели, если не считать введенного европейцами в мореплавании компаса. Впрочем, китайцы знали о нем еще раньше.

Но вот в конце XVIII века профессор медицины в Болонье Луиджи Гальвани, занимаясь своими опытами, столкнулся еще с одним явлением, загадочным и таинственным, получившим от его имени название «гальванизм».

Гальвани открыл не что иное, как явление движущегося электричества. Долгое время он так и назывался:

«гальванический ток», и лишь позже получил привычное для нас название «электрический ток».

Открытие Гальвани произвело огромное впечатление на ученых того времени, и многие стали изучать явление гальванизма. Среди них был и замечательный физик Алессандро Вольта.

Вольта нашел, что при химическом взаимодействии некоторых веществ и металлов появляется электрический ток. В 1800 году он построил так называемый «вольтов столб», состоявший из 20 пар медных и цинковых кружков, разделенных суконными кружками, смоченными соленой водой. В проволоке, соединяющей концы столба, появлялся довольно сильный электрический ток. Так был найден первый источник тока, причем источник, как видите, электрохимический. Подобные источники электрического тока, под названием «гальванические элементы», широко применяются и в настоящее время там, где нужен ток небольшой мощности.

В природе вообще, как открылось впоследствии, существует много различных источников электричества, но электрохимический был первым и довольно долгое время единственным, которым пользовались уже для практических целей. Как только найден был этот источник тока, так тотчас же изучение магнитных и электрических явлений пошло вперед гигантскими шагами.

Вольта построил свой «столб» в 1800 году, а уже в 1803 году профессор Медико-хирургической академии в Петербурге Василий Владимирович Петров издал обширный труд с подробным описанием произведенных им оригинальнейших опытов и сделанных открытий. Книга эта называлась «Известие о Гальвано-Волтовских опытах… посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков…». Самым замечательным открытием русского ученого было получение электрического света и белого пламени между двумя кусками древесного угля, от которого «темный покой достаточно ярко освещен быть может».

Василий Владимирович Петров, открывший явление вольтовой дуги, писал на русском языке, и сочинение его не было прочитано английскими патриотами, которые были убеждены, что открытие вольтовой дуги принадлежит их соотечественнику Гемфри Деви, наблюдавшему то же явление десять лет спустя. Надо заметить, впрочем, что не только в Европе, но и в России Петрову, как хронологически, так и по своему значению непосредственно следующему за Ломоносовым, не было уделено должного внимания.

Он родился 8 июля 1761 года в семье священника города Обояни, Курской губернии, учился в духовном коллегиуме, откуда перешел в Петербургскую учительскую гимназию, где и занимался преимущественно физикой и математикой. Потребность в учителях для все возраставшего количества школ в те времена была очень велика. Петрова как выдающегося математика направили на службу в Барнаул — преподавать математику и физику ученикам Горной школы. Возвратившись в 1791 году в Петербург. Петров стал преподавателем Измайловского кадетского училища, а затем его перевели во Врачебное училище. Когда вскоре это училище было преобразовано в Медико-хирургическую академию, Петров был назначен профессором «физико-математики».

В блестящей образованности, показанной молодым профессором на пробных лекциях, был только один «пробел»: «природный россиянин», по его собственным словам, он не имел случая «пользоваться изустным учением иностранных профессоров физики». Но насколько он стоял вполне на уровне современной ему науки, показывают уже его первый труд «Собрание физико-химических новых опытов и наблюдений», вышедший в 1801 году, и в особенности последовавшее затем «Известие о Гальвано-Волтовских опытах…».

Петров был первым у нас организатором физических кабинетов. В конструировании различных приборов для физических и химических опытов он с успехом руководствовался тонким пониманием практических следствий новых научных данных. Открыв явление вольтовой дуги, он тут же предсказал и применение ее в технике не только для освещения, но и для сварки металлов и для выплавки их из руд.

Нисколько не сомневаясь в том, что инженерно-техническая мысль именно таким образом использует его открытие, Василий Владимирович писал в своей книге:

«Я надеюсь, что просвещенные и беспристрастные физики по крайней мере некогда согласятся отдать трудам моим ту справедливость, которую важность сих последних опытов заслуживает».

Если идея использования электрического тока для практических целей явилась уму русского ученого почти одновременно с открытием вольтова столба, то для осуществления этих идей понадобилось еще немало научных открытий в области электромагнитных явлений.

О связи между магнитными и электрическими явлениями думал и Петров. Но установить эту связь выпало ла долю датского физика Эрстеда. В 1820 году, готовясь, как обычно, к лекции, Эрстед обнаружил, что при протекании электрического тока вблизи стрелки компаса она отклоняется. Это «явление Эрстеда» сыграло огромную роль в развитии учения об электромагнитных явлениях. Из него выросла вся современная электротехника с ее динамо-машинами, электродвигателями, телеграфом, телефоном и электропоездами.

Для русской инженерно-технической мысли характерно, что в бурном развитии электротехники XIX века русские инженеры не только принимали деятельное участие, но и чаще всех выступали пионерами практического приложения новых открытий.

Так, узнав о «явлении Эрстеда», русский инженер Павел Львович Шиллинг построил первый в мире практически годный и применявшийся на деле телеграф.

Изучая «явление Эрстеда», в то же время известный французский ученый Араго нашел, что при помощи тока можно намагничивать сталь; а другой француз, Ампер, открыл взаимодействие электрических токов, выражающееся в их притяжении и отталкивании.

Говорят, что, узнав об открытиях Эрстеда, Араго и Ампера, великий английский ученый Майкл Фарадей положил себе в карман магнит и стал носить его с собой, чтобы он постоянно напоминал ему о новой задаче: «превратить магнетизм в электричество». Магнит Фарадею пришлось носить девять лет.

Благодаря трудам Стерджона, а затем Генри искусство превращать электричество в магнетизм сделало большие успехи. Новые электрические магниты представляли собой подковообразные стержни из мягкого железа, обмотанные изолированной медной проволокой, через которую пропускался электрический ток от какого-нибудь электрохимического источника. Электромагниты обладали способностью притягивать к себе груз, почти во сто раз более тяжелый, чем весили они сами. Электромагниты вызывали всеобщее удивление, но практического применения в технике не имели.

Наоборот, превращать магнетизм в электричество, к чему стремился Фарадей, удалось не сразу и далеко не так скоро. Только в 1831 году, после ряда разнообразнейших опытов и попыток, Фарадей сделал свое великое открытие. Он нашел, что если к металлу, являющемуся проводником тока, приближать и удалять от него магнит, то в проводнике возникает электрический ток. Фарадей брал катушку изолированной медной проволоки и быстро вводил в пустую сердцевину катушки магнитный стержень. При этом оказывалось, что в этот момент по проволоке проходил электрический ток. В момент удаления магнита из катушки по проволоке также проходил ток, но уже обратного направления. Разумеется, можно было поступать и наоборот: двигать катушку, а магнит оставлять неподвижным. Результат получался одинаковый.

Это удивительное явление, названное «магнитной индукцией», давало возможность превращать механическую энергию в электричество, получать электрический ток простым передвижением магнита возле замкнутого мотка изолированной медной проволоки.

Какая же могла быть особенная трудность в том, чтобы строить электрические машины, в которых двигающийся взад и вперед магнит вызывал бы появление в проволоке электрического тока?

Такие электрические машины стали появляться во множестве. Все они состояли из нескольких больших и сильных магнитов, между полюсами которых вращались катушки изолированной проволоки. В проволоках появлялись электрические токи, проходившие то в одном, то в другом, обратном, направлении. Их соединяли затем в один, большей мощности. Токи получались также то одного, то другого, обратного, направления. Такой переменный ток путем особого устройства, называемого «коммутатором», превращался в постоянный, одного направления.

Но заменить гальванические элементы, где ток получается электрохимическим путем, новые магнитоэлектрические машины не могли: ток они давали незначительной мощности и непостоянного напряжения, магниты нагревались.

Тем не менее никто уже не сомневался в том, что в мир вошла таинственная и могущественная сила и что далее последуют новые практические результаты огромного значения.

Очень рано стали думать о получении непрерывной движущей силы путем преобразования магнитной энергии в механическую. Ток, проходящий в обмотке железного стержня, делает его магнитом, и тогда он притягивает кусок железа, называемый в этом случае якорем. При выключении тока магнитные свойства электромагнита исчезнут, и якорь отпадет, а при новом включении тока якорь опять будет притянут. Таким образом, прерывая ток, можно получить постоянное прямое и обратное движение якоря, причем прерывание и замыкание легко поручить самому же току.

Двигателей с прямолинейно-возвратным движением, работающих силой магнитного притяжения, различными изобретателями было сооружено довольно много. Конструктивно все эти модели копировали паровую машину.

Прямолинейно-возвратное движение в магнитных двигателях преобразовывалось во вращательное движение колеса при помощи кривошипа. Однако никакого практического применения они себе не нашли и остались лабораторными приборами для демонстрации электромагнитных явлений.

Одновременно с этими магнитными машинами появилось немало и «электрических вертушек», как их тогда называли, где получалось непосредственно вращательное движение магнита. Вертушки состояли из неподвижного электромагнита и помещаемого над ним вращающегося магнита. Как только в подковообразный электромагнит пропускался прерывающийся ток из гальванической батареи, так тотчас перемещающийся от полюса к полюсу магнит начинал вращаться с большой скоростью. Беспомощные сами по себе, эти приборы, однако, сыграли большую роль в развитии наших знаний об электромагнетизме и явились предшественниками наших электродвигателей, приводимых в действие при помощи электрического тока.

Первым, кто подошел к этим вертушкам как энергетик, кто увидел в них прототип электродвигателя, был русский ученый Борис Семенович Якоби (1801–1874).

В том немногом, несовершенном, почти игрушечном, чем располагала тогда едва зарождавшаяся электротехника, Якоби увидел элементы новой энергетики. Мысль о превращении электрических вертушек в электродвигатель захватила профессора архитектуры Дерптского университета.

Промышленная буржуазия, опираясь на паровой двигатель, создавала крупные фабрики и заводы. Для конкуренции с ними полукустарная мелкая промышленность более всего нуждалась в собственном механическом двигателе для своих небольших предприятий. Громоздкие паровые двигатели Уатта, требовавшие больших помещений и значительных средств, никак не могли удовлетворить кустарные мастерские, оружейные производства, типографии и множество мелких предприятий городской промышленности, снабжавших население иголками, булавками, нитками, кружевами, гвоздями. Подобные продукты производились уже механическим путем, на станках и машинах, но приводились эти станки в движение руками.

Потребность в небольшом, легком, удобном двигателе, мощностью хотя бы в две-три лошадиных силы, была настолько велика и неотложна, что над созданием его трудились многие изобретатели. Одним из них и был Якоби.

Якоби верил, что задача создания электродвигателя может быть уже решена при тогдашнем состоянии техники. Подобного же взгляда держался и Фарадей, как это видно из его письма к Якоби.

В 1834 году Якоби представил описание своей электродвигательной машины Парижской академии наук, а вместе с тем попытался заинтересовать электродвигателем и русское правительство.

Развитие промышленно-капиталистических отношений в России вынудило царское правительство, уступая требованиям времени, открыть в течение одного столетия Технологический институт в Петербурге, Высшее техническое училище в Москве, Политехнический институт в Киеве. Поэтому Якоби со своей обширной докладной запиской «О применении электромагнитного возбуждения железа для движения машин» обратился к тогдашнему министру просвещения Уварову.

Изложив историю учения об электромагнетизме, Якоби в своей записке подробно останавливается на преимуществах электродвигателя. В сравнении с паровым двигателем их было много: простота и легкость движущегося механизма; отсутствие многих трущихся частей, вследствие чего двигатель почти не подвергается изнашиванию; наличие непосредственного вращательного движения; бесшумность, отсутствие толчков и тряски; полная безопасность и, наконец, дешевизна вследствие уменьшения расходов по эксплуатации.

Сконструированный Якоби двигатель отличался действительно простотой и легкостью. Он состоял из двух систем электромагнитов, из которых одна вращалась, другая была неподвижной.

«Аппарат состоит, — писал изобретатель, — из двух групп по восемь стержней мягкого железа. Обе группы стержней располагаются на двух дисках под прямым к ним углом и симметрично одна по отношению к другой таким образом, чтобы полюсы приходились один против другого. Один из дисков вращается вокруг некоторой оси, благодаря чему группа подвижных стержней проходит мимо группы неподвижных на возможно близком расстоянии от них. Все шестнадцать стержней обмотаны медной проволокой. Концы обмоток соединяются с полюсами гальванической батареи. Масса вращающейся части машины дает весьма значительную живую силу».

Двигатель Якоби благодаря удачно сконструированному коммутатору, осуществлявшему быструю перемену полюсов, работал настолько удовлетворительно, что изобретатель предлагал его использовать для практической работы, на первый раз применив для движения гребного винта судна.

В заключение своей обширной докладной записки Якоби писал:

«Когда я, следуя почетному приглашению, переходил в здешний университет, я не думал о тех стесненных обстоятельствах, в которые буду временно поставлен… Не могу скрыть, что я ставлю себе в упрек то обстоятельство, что с просьбой о поддержке я обратился только теперь, но это вызвано желанием посвятить все свое время и всю свою энергию этому делу именно теперь, когда не остается больше никаких сомнений в успехе задуманного, и не только для того, чтобы не отказываться от своих прежних трудов, но и для того, чтобы отечество не лишилось славы сказать, что Нева раньше Темзы или Тибра покрылась судами с магнитными двигателями».

В 1837 году в Петербурге была создана «Комиссия для приложения электромагнетизма к движению судов по способу профессора Якоби», под председательством адмирала Крузенштерна, известного путешественника.

Якоби повторил опыт, заменив медный электрод гравированной медной пластинкой.

Царь согласился и на отпуск средств изобретателю для постройки электромагнитного бота.

Одновременно Борис Семенович в качестве адъюнкта Академии наук был переведен в Петербург, где с величайшим воодушевлением принялся за осуществление своего электромагнитного бота.

Конечно, сам изобретатель отлично понимал, что электродвигатель останется бесполезной вертушкой, если для питания его не найдется дешевого и мощного источника электрической энергии. Так как известные к этому времени магнитоэлектрические машины не оправдали возлагавшихся на них надежд, то Якоби, естественно, обратился к старым гальваническим элементам, соединяемым в батареи, где электрический ток возникает при происходящем здесь электрохимическом процессе.

В то время уже существовало довольно много разных гальванических элементов, и Якоби стал искать среди них самый выгодный. Когда они были все перепробованы и оказались мало подходящими, ученый принялся сам испытывать различные вещества, чтобы найти наиболее дешево обходящийся процесс.

Однажды он испробовал в батарее раствор медного купороса с медным же электродом и совершенно неожиданно сделал открытие, стяжавшее ему мировую известность: из раствора на электроде выделилась химически чистая металлическая медь, причем на полученной таким способом меди повторились с замечательной точностью все очертания и углубления, бывшие на поверхности электрода, как будто бы это был его собственный отпечаток.

Стоит подробнее рассказать о том, как это все произошло.

Зайдя утром в лабораторию, прежде чем отправиться на занятия со студентами, Борис Семенович, переходя от одной испытуемой батареи к другой, с недоумением остановился перед батареей с раствором медного купороса. Осторожно, чтобы не запачкать своего форменного сюртука с золочеными пуговицами, он наклонился над стеклянным ящиком и стал разглядывать медный электрод. Он казался двойным, точно склепанным из двух листов меди.

Не подозревая, что имеет дело с совершенно новым явлением, Якоби решил, что электрод был склепан из двух медных листов и просто раздвоился от действия раствора. Ученый только возмутился небрежностью рабочего, которому было поручено изготовление электрода.

Покачав головой и оставив разговор с рабочим до вечернего посещения лаборатории, Борис Семенович, как всегда, провел свой день в занятиях, и мысли его были очень далеки от странного явления, замеченного им в лаборатории. Ему просто не пришло в голову искать причину раздвоения медного электрода в чем-нибудь ином, кроме как в дурной работе мастера.

Якоби был человек требовательный и вечером, вызвав рабочего, стал его бранить.

«До сих пор, — признавался Якоби впоследствии, — я не могу понять, каким образом, глядя на этот слой меди, я мог сомневаться в его происхождении и допускал, что он образовался от дурного плющения меди или что рабочий, не имея достаточно толстых листов, умышленно сдвоил их. Повинуясь первому влечению чувства, я призвал его и стал упрекать за дурное исполнение поручения, но энергичные возражения с его стороны навели меня на мысль, что спор можно разрешить, тщательно сравнив соприкасающиеся поверхности. Начав это исследование, я заметил почти микроскопические оттиски малейших шероховатостей и царапин, причем выпуклостям на одном диске соответствовали углубления на другом».

Якоби повторил опыт, заменив медный электрод гравированной медной пластинкой, и через несколько дней получил с нее медную копию такой точности, которая не могла быть достигнута никаким иным способом.

«В результате тщательных исследований и появилась гальванопластика», — заключает свой рассказ Борис Семенович Якоби.

Гальванопластический снимок Якоби представил Петербургской Академии наук в октябре 1853 года вместе со своим докладом о сделанном им открытии. Доклад назывался «Гальванопластика, или способ по данным образцам производить изделия из медных растворов с помощью гальванического тока».

Правительство выдало Якоби солидную премию в 25 тысяч рублей за сделанное им открытие. Благодарный изобретатель при опубликовании своей работы о гальванопластике счел нужным подчеркнуть, что «гальванопластика исключительно принадлежит России: здесь она получила свое начало и образование».

Открытие гальванопластики положило начало новой отрасли промышленности. При помощи гальванического элемента стали не только получать медные копии, но также золотить и серебрить разные металлические изделия.

Сам Якоби не принимал никакого участия в промышленном использовании своего изобретения. Он был добродушный, веселый, прямой человек и постеснялся даже взять патент на свою гальванопластику, раз она сама далась ему в руки, без всякого намерения найти или открыть что-либо подобное.

Этому великому добродушию ученого мы и обязаны тем, что он честно и искренне рассказал все происшедшее в его лаборатории.

Восстановить творческую историю того или другого открытия или изобретения всегда очень трудно, а часто и просто невозможно, потому что многие ученые, исследователи и изобретатели не обладали добродушием Бориса Семеновича Якоби и не любили вводить других в свою творческую лабораторию.

Предоставив практическим людям извлекать доходы из своего случайного открытия, Якоби всецело занялся изготовлением электродвигателя для электромагнитного бота. Этот знаменитый бот был спущен на Неву в 1839 году. На дне шлюпки помещалось триста двадцать медноцинковых элементов. Током их питался электродвигатель системы Якоби. Электродвигатель непосредственно соединялся с двумя гребными колесами. Мощность электродвигателя равнялась примерно одной лошадиной силе.

Первые опытные плавания сулили успех. И вот, посадив в свой электромагнитный бот двенадцать пассажиров, главным образом членов комиссии, изобретатель предпринял довольно большое путешествие по Неве против течения. Сначала все шло отлично, но огромного количества элементов, загружавших лодку, все-таки не хватило на слишком долгий путь. Бот прошел около сорока километров, когда элементы начали иссякать, и Якоби повернул обратно.

Члены комиссии в своем отзыве по поводу электромагнитного бота справедливо заключили, что опыты Якоби более содействуют познанию загадочных явлений электромагнетизма, нежели решают вопрос об извлечении из них практической пользы.

Действительно, при всех достоинствах электродвигателя практическое применение его наталкивалось на непригодность для производственных целей существующих источников тока: гальванические элементы действовали недолго. Впоследствии Якоби испробовал элементы Грове, заменив в них свинец цинком, но это не помогло делу, и в конце концов электромагнитный бот пришлось оставить.

Электромагнитный бот Якоби на Неве.

Мечта о покрытой электромагнитными ботами Неве оказалась пока неосуществимой, но опыты с электродвигателем Якоби обогатили науку об электричестве целым рядом новых законов.

В дальнейшей истории электродвигателя исключительное значение имело впервые установленное в Петербурге академиком Э. X. Ленцем тождество между электродвигателем и генератором электрического тока. Двигатель Якоби, приводимый в движение электрическим током, оказывается, превращался в генератор, в источник электрического тока, если его приводили в движение механической силой.

Так же как обратимость тепловых процессов повела мысль конструкторов далее, к созданию новых тепловых машин, так и обратимостью электромагнитных процессов изобретатели воспользовались для создания динамо-машин и электродвигателей современного типа.

Опыты Якоби и научно-теоретические исследования в области электричества имели существенное значение в истории русской и мировой электротехники.

Некоторое время Борис Семенович — уже действительный член Академии наук — занимался постройкой подземного телеграфа между Петербургом и Царским Селом, а затем, в 1849 году, пытался впервые в России устроить электрическое освещение на улицах Петербурга. Попытка не привела к успеху не столько из-за несовершенства первых лампочек, сколько опять-таки из-за отсутствия надежного источника электрической энергии, так как и для освещения в те времена пользовались гальваническими батареями.

Опыт показывал, что дальнейшее развитие электротехники тормозится отсутствием машинного генератора электрического тока. Естественно, что, не добившись толку от гальванических батарей, конструкторы продолжали работать над усовершенствованием магнитоэлектрически к машин. Не вдруг и не легко, но в конце концов все же удалось обширной кооперации современников превратить эти машины в нужный промышленности электрогенератор и в удобный для нее электродвигатель.

 

4. Вторичный двигатель

Кооперация современников

Мощность магнитоэлектрических машин зависела главным образом от силы магнита, возбуждающего в катушках электрические токи. К усилению этих магнитов и стремились конструкторы. Однако многого они в этом направлении не добились.

Некоторый успех имел немецкий механик Эмиль Штерер. Он построил магнитоэлектрическую машину, конструктивно похожую на двигатель Якоби. Штерер установил по кругу три сложных стальных магнита, а против них расположил столько же электромагнитов, вращающихся на общей оси. Машина Штерера считалась наиболее сильной, и в 1844 году она употреблялась, между прочим, в германских театрах в качестве источника энергии для восходящего солнца в опере «Пророк».

Другое практическое применение нашла машина Нолле, установленная в 1849 году для освещения маяка.

Это была очень громоздкая машина. Приводил ее в действие паровой двигатель.

В магнитоэлектрические машины некоторое улучшение внес Вернер Сименс. Он предложил новую конструкцию вращающейся части, называемой якорем. Это название распространилось на катушки с их железным сердечником потому, что сердечники их имели вид якоря. Якорь Сименса состоял из железного цилиндра с двумя продольными желобами, в которых и помещалась проволока, намотанная по направлению оси цилиндра. Такой цилиндр лучше вращался, ближе подходил к магнитам, полнее ими окружался и давал более равномерный ток.

Все это было очень хорошо, но магнитоэлектрические машины нуждались не в отдельных улучшениях, а в решительной перестройке.

Основной порок этих машин заключался в следующем.

Во всех магнитоэлектрических машинах для усиления мощности тока приходилось брать большое количество массивных магнитов.

Увеличивая набор магнитов, конструкторы выигрывали немного. Машина резко увеличивалась в размерах, в весе, в стоимости, а сила магнитов повышалась в очень слабой степени. И, хотя всем было известно, что электромагниты обладают значительно большей силой, чем стальные магниты, никому не приходила в голову простая мысль — вместо слабосильной магнитной части машины поставить электромагнит. Конечно, для электромагнита нужен ток, но тут можно было пользоваться и гальванической батареей. Можно было бы получать его и от маленькой дополнительной магнитоэлектрической машины, приводимой в действие от того же двигателя. Технических трудностей тут не встречалось. Мысль о замене постоянных стальных магнитов электромагнитами, очевидно, так долго не появлялась лишь благодаря косности привычного мышления, благодаря предвзятости его.

Преодолел этот привычный взгляд на магнитоэлектрическую машину раньше всех английский инженер Уайльд из Манчестера. В 1866 году, весной, он построил обычную магнитоэлектрическую машину с якорем Сименса, но только неподвижные стальные магниты он заменил электромагнитом, получавшим ток от маленькой магнитоэлектрической машины старого типа.

Эта — теперь уже электромагнитная, а не магнитоэлектрическая — машина Уайльда оказалась несравненно более мощной, чем старые машины. Видевшим ее оставалось только удивляться, как это они сами не додумались до такой простой, удобной и выгодной конструкции. Машина Уайльда получила широкую известность среди электротехников.

Стоило Вернеру Сименсу взглянуть на новую конструкцию, как у него, естественно, возникла мысль о том, чтобы, воспользовавшись для возбуждения электромагнита током самой же машины, достигнуть того же эффекта еще проще. Не прибегая к теоретическому обсуждению вопроса, Сименс удалил меньшую магнитоэлектрическую машину, а провода якоря соединил с проводами электромагнита и таким образом ток, который мог возникнуть в якоре, направил в обмотку электромагнита.

Казалось необходимым перед пуском машины пропустить в якорь откуда-нибудь ток, но Сименс, конечно, знал, что в этом нет никакой надобности, так как в железном теле якоря всегда есть так называемый «остаточный магнетизм». Этого остаточного магнетизма оказалось достаточно для того, чтобы при вращении якоря в его проводах возникал электрический ток, хотя и очень слабый.

Отведя этот ток в обмотку электромагнита, Сименс усиливал его магнитность, хотя и в самой малой степени, уже при первых оборотах якоря. Но увеличение мощности электромагнита усиливает индукционные токи в якоре, идущие обратно в обмотку электромагнита, благодаря чему еще больше усиливается электромагнит и происходит теоретически неограниченное взаимное усиление электромагнита и индукционных токов. Сила тока возрастала тут от простого повышения скорости вращения якоря.

Опыты со своей динамо-электрической машиной без постоянных стальных магнитов Сименс закончил в декабре 1866 года. Он торопился заявить свои права на новую конструкцию.

Идею самовозбуждающегося электромагнитного генератора все предшествующее развитие электротехники подготовило настолько, а кооперация современников, работавших над той же задачей, была так обширна, что каждый день можно было ожидать появления точно таких же динамо-электрических машин.

Опасаясь прежде всего Уайльда, Сименс проявил исключительную энергию в постройке машины и принял все меры к тому, чтобы опередить других изобретателей.

Сделав свое открытие, что «при помощи одних катушек и мягкого железа можно превращать механическую энергию в электрический ток», он немедленно берет патент на машину с самовозбуждением и пишет брату Вильгельму Сименсу в Лондон:

«При правильной конструкции эффект должен быть поразительным. Эта идея легко осуществима и может открыть эру в области электромагнетизма. Машина будет готова через несколько дней. Сделай и ты изыскания, чтобы Уайльд, который также стоит близко у цели, не опередил нас. Магнитное электричество сделается дешевым, станет доступным и применимым для освещения, гальванометаллургии и много другого».

Одновременно Сименс представляет в Берлинскую академию свой доклад о «динамо-электрическом принципе» в магнитоэлектрических машинах и такой же доклад высылает в Лондон брату для Королевского общества. Этот доклад 14 февраля 1867 года Вильгельм зачитывает на заседании общества, когда выясняется, что братья спешили не напрасно. На том же заседании с аналогичным сообщением выступил профессор Уитсон, который тут же продемонстрировал небольшую машину, им сконструированную.

Сименсы опередили Уайльда, но выступление Уитсона было для них неожиданным. Встревоженный Сименс рекомендовал брату в защиту его приоритета указать, что доклад Берлинской академии был представлен на месяц раньше и что Королевскому обществу доклад был вручен за две недели до заседания, на котором выступил Уитсон.

Несомненно, что Вернер Сименс был только одним из многих, кому пришла мысль о самовозбуждающемся генераторе электрического тока.

Его преимущество перед другими состояло в том, что он имел в своем распоряжении готовые мастерские с хорошим оборудованием и первоклассными рабочими, огромные связи в деловом мире и был неразборчив в средствах для достижения цели.

Вскоре якорь Сименса был заменен якорем другой формы, основанной на изобретении итальянца Пачинотти.

Еще в 1860 году Пачинотти построил магнитоэлектрическую машину, дававшую токи постоянной мощности и направления. Пачинотти взял вместо катушки кольцо из мягкого железа и обмотал его изолированной проволокой. Кольцо он вращал между полюсами магнитов. В одной половине такого кольцеобразного якоря ток шел по проволоке слева направо, а в другой, наоборот, — справа налево, а на кольце получались две точки с постоянным направлением тока.

Соединив эти точки вне машины проводником, Пачинотти получил в нем постоянный ток. К подобной же идее кольцеобразного якоря пришел десять лет спустя рабочий компании «Альянс» Грамм, независимо от Пачинотти, об изобретении которого все эти десять лет не знал никто, даже Сименс. В якоре Пачинотти — Грамма нагревания почти не происходило. Это изобретение далеко подвинуло вперед конструкцию генератора электрического тока.

Дальнейшее развитие конструкции генераторов электрического тока шло главным образом по пути увеличения их мощности.

Истинный переворот динамо-машина произвела во всей индустрии после того, как было использовано свойство обратимости электромагнитной машины: при питании динамо-машины электрическим током от постороннего источника она сама становится двигателем.

Таким образом, вместе с динамо-машиной был создан и электродвигатель.

Свойством обратимости динамо-машины Сименс воспользовался прежде всего для создания электрической тяги. После телеграфа и освещения это была третья область практического использования электрической энергии.

В 1879 году Сименс продемонстрировал на Берлинской промышленной выставке модель трамвайной линии, вернее — электровоза, тянувшего за собой три вагончика. Электродвигатель мощностью в 13 лошадиных сил, помещенный на четырехколесной тележке, работал непосредственно на движущую ось электровоза. Этот электрический поезд, рассчитанный на семьдесят восемь пассажиров, ходил по узкоколейному кругу длиной в триста метров, со скоростью около семи километров в час. Он пользовался большим успехом на выставке.

Электродвигатель питался током от провода, проложенного в рельсах дороги. Ток этот давала динамо-машина, вращаемая паровым двигателем на маленькой электростанции.

Демонстрация первого электровоза наглядно доказала, что электрический ток пригоден не только для тонкой работы включения и выключения, как это было на телеграфе, но вполне может выполнять и всякие другие функции, вплоть до самых «тяжелых работ» на транспорте.

Электропоезд Сименса пользовался большим успехом на выставке.

Успех выставочной электрической дороги побудил фирму «Сименс и Гальске» закрепить за собой права на изобретение и начать постройку таких дорог в более широком масштабе. Вместе с тем фирма выпустила и свой первый рудничный электровоз, предназначенный для работы в копях.

Через десять лет была открыта для публики первая электрическая дорога, длиной около трех километров, в Лихтерфельде, близ Берлина. Это был электрический трамвай с питанием током через рельсы. Электродвигатель помещался под полом вагона, между осями; колеса он вращал с помощью передачи в виде стального троса.

На обеих площадках вагона были установлены рычаги: один управлял обыкновенным механическим тормозом, а другой служил для управления электродвигателем, то есть скоростью хода и переменой прямого хода на обратный.

Дальнейшее развитие трамвая пошло в том же направлении, без существенных изменений конструкции. Лишь вместо неудобной проводки тока по рельсам электротяга перешла на воздушную проводку. Трамвай показал все преимущества электротяги, и вскоре началась электрификация железных дорог, сперва в туннелях и пригородных участках, а затем и на магистральных линиях.

Электротехника стала важнейшей областью промышленности, а электродвигатель занял виднейшее место в мировом хозяйстве, как вторичный двигатель.

Создание его, как мы видели из нашего беглого очерка, не было делом рук одного человека, как и других изобретений, хотя мы и приписываем их тому или другому лицу. На вторичном двигателе, однако, наиболее ярко сказывается основной закон, провозглашенный Марксом: «Всякое изобретение, всякое открытие, всякий научный труд является общим трудом. Он обусловливается частью кооперацией современников, частью использованием работы предшественников».

С еще большей силой сказался этот закон на дальнейшем развитии и совершенствовании вторичного двигателя.

Вторичным мы называем электродвигатель потому, что в нем мы вторично получаем механическую энергию. Полученная в первичном двигателе — скажем, в водяной турбине — механическая энергия преобразуется в электрическую энергию генератором, а электрическая энергия превращается электродвигателем снова в механическую. В развитии производительных сил роль такого вторичного двигателя огромна: он позволяет с исключительными удобствами везде и всюду применять движущую силу, добытую где угодно и каким угодно способом.

С установлением способности тока высокого напряжения передаваться на значительные расстояния без больших потерь явилась возможность полученную в одном месте энергию передавать в другое место и уже здесь превращать ее в механическую, применяя электродвигатель. Началось строительство гидроэлектростанций, дававших дешевую энергию, началось бурное развитие электротехники и внедрение электродвигателя во все области промышленности.

Этот новый период развития электротехники, ознаменовавшийся созданием совершенных генераторов электрического тока, изобретением «свечи Яблочкова» и «лампочки накаливания» Лодыгина и широчайшим распространением электрического освещения, теоретическими исследованиями Столетова, наконец, изобретением радио Поповым, главным образом связан с трудами русских ученых и изобретателей.

Исключительное значение работ русских инженеров в истории развития электродвигателя явилось настолько общепризнанным, что авторитетный французский журнал «Электрический свет» писал в 1880 году:

«Мы решили посвящать особую главу прогрессу электричества в России: развитие этой отрасли промышленности в России заслуживает настоящей оценки у нас, во Франции, где оно мало известно не потому, что не представляет интереса, а потому, что у нас слишком мало лиц, знакомых с языком обширной северной империи».

Особенную же услугу инженерам-электротехникам в этом деле оказала докторская диссертация знаменитого русского физика Александра Григорьевича Столетова «Исследование о функции намагничения мягкого железа». С помощью измерений, которые впервые проделал в своей работе Столетов, определяется теперь магнитная проницаемость для различных сортов железа и стали, и на основе этих данных ведется проектирование всех генераторов и двигателей в электротехнике.

Хотя диссертационная работа Столетова имела чисто теоретический характер, Александр Григорьевич как типичный представитель передовой науки указывал в заключение и на практическое значение произведенных им исследований:

«Изучение функции намагничения железа может иметь практическую важность при устройстве и употреблении как электромагнитных двигателей, так и тех магнитоэлектрических машин нового рода, в которых временное намагничение железа играет главную роль… Знание свойства железа относительно временного намагничения так же необходимо здесь, как необходимо знакомство со свойствами пара для теории паровых машин».

Работы Столетова положили начало теоретическим исследованиям вопросов электротехники, развивавшейся тогда в основном эмпирическим путем. Это было и начало нового периода развития электротехники. Теоретические исследования стали намечать правильные пути для разрешения вопросов, связанных с конструированием электрических машин и дальнейшим использованием электричества как энергетического источника.

Если в первом периоде развития электротехники всеобъемлющей проблемой являлась проблема создания генераторов электрического тока, то во втором периоде, когда эти генераторы были созданы, задача стала сводиться уже к тому, чтобы использовать их во всей полноте для практических нужд.

Препятствием для широкого использования электроэнергии являлась невозможность передавать ее на значительное расстояние — от места производства электроэнергии до места потребления.

И эта задача величайшего значения была разрешена русскими учеными и инженерами.

В 1880 году специальный русский журнал «Электричество» в ряде номеров начал публикацию статей профессора физики Петербургского лесного института Дмитрия Александровича Лачинова о применении электродвигателей и о передаче электрической энергии. Лачинов показал, что дальнейшее промышленное использование электродвигателей зависит не от их конструкции, а от возможности «провести механическую силу к рабочему, вместо того чтобы заставлять его приходить к источнику силы». В результате своих теоретических соображений русский ученый предложил для передачи «электрической силы, распределяемой подобно воде и газу», пользоваться токами высокого напряжения, но малой силы.

Этим предложением воспользовался ассистент профессора Столетова, талантливый изобретатель и конструктор Иван Филиппович Усагин. Летом 1882 года на Всероссийской промышленной выставке он осуществил передачу электроэнергии на значительное расстояние для освещения выставки.

Следуя тому же простому предложению Лачинова, француз Марсель Депре сначала в Париже в 1881 году, а затем в Мюнхене в 1882 году демонстрировал свои установки передачи электроэнергии.

Эти опыты произвели огромное впечатление, так как открывали широчайшие возможности для использования вторичного двигателя повсюду, где имеется нужда в механическом двигателе, вне зависимости от местонахождения генератора электрического тока.

В одном из своих писем Энгельс писал:

«Паровая машина научила нас превращать тепло в механическое движение, но использование электричества откроет нам путь к тому, чтобы превращать все виды энергии — теплоту, механическое движение, электричество, магнетизм, свет — одну в другую и обратно п применять их в промышленности. Круг завершен. Новейшее открытие Депре, состоящее в том, что электрический ток очень высокого напряжения при сравнительно малой потере энергии можно передавать по простому телеграфному проводу на такие расстояния, о каких до сих пор и мечтать не смели, и использовать в конечном пункте, — дело это еще только в зародыше, — это открытие окончательно освобождает промышленность почти от всяких границ, полагаемых местными условиями, делает возможным использование также и самой отдаленной водяной энергии, и если вначале оно будет полезно только для городов, то в конце концов оно станет самым мощным рычагом для устранения противоположности между городом и деревней. Совершенно ясно, что благодаря этому производительные силы настолько вырастут, что управление ими будет все более и более не под силу буржуазии».

Открывая широчайшие перспективы перед вторичным двигателем, опыты Усагина и Депре, конечно, еще не осуществляли этих перспектив. Практическое значение передача электроэнергии на расстояние приобрела только после того, как в 1890 году блестящий русский инженер Михаил Осипович Доливо-Добровольский сконструировал очень простой и удобный так называемый асинхронный электродвигатель трехфазного тока. Совместно с другим русским инженером, Робертом Эдуардовичем Классоном, он построил линию электропередачи в Германии между Лауфеном и Франкфуртом, начавшую работать 25 августа 1891 года. Эта историческая линия показала возможность передачи электроэнергии с незначительными потерями от генератора тока к потребителю на расстояние около 170 километров.

То был крупнейший успех электротехники. Началось применение электропередач на большие расстояния, открывшее, в свою очередь, возможность использования прежде всего гидравлических двигателей для производства дешевой энергии, а также и паровых машин, работающих на местном топливе.

Благодаря дешевизне электроэнергии роль электродвигателя возросла необычайно. Вторичные двигатели не только не умалили значения первичных двигателей, но и еще более подняли их значение в связи с повсеместно начавшимся строительством как городских, так и местных электростанций, обслуживавших фабрики, заводы, промышленные предприятия, общественные здания.

Первые электростанции в России были построены в 1883 году и предназначались в основном для осветительных целей.

Перед Великой Октябрьской социалистической революцией у нас было всего 289 небольших городских электростанций и несколько больше — совсем уже мелких, промышленных.

Совершенно иной характер и размах электрификация получила после Октябрьской революции в нашей стране, когда В. И. Ленин выдвинул гениальный план электрификации всей страны.

«…Если не перевести Россию на иную технику, более высокую, чем прежде, — говорил Владимир Ильич на Московской губернской конференции РКП (б) в 1920 году, — не может быть речи о восстановлении народного хозяйства и о коммунизме. Коммунизм есть Советская власть плюс электрификация всей страны, ибо без электрификации поднять промышленность невозможно…»

В декабре 1920 года Государственной комиссией по электрификации России был представлен VIII Всероссийскому съезду Советов доклад об электрификации страны, который и был утвержден съездом.

Инициатором и вдохновителем изложенного в докладе плана электрификации был В. И. Ленин, а разработка его велась под руководством академика Г. М. Кржижановского.

План ГОЭЛРО стал программой электрификации всей страны, принятой за основу ее хозяйственного восстановления. Однако впоследствии роль его далеко вышла из этих рамок, так как он послужил могучим рычагом и для коренной реконструкции всех отраслей народного хозяйства на основе электротехники.

План ГОЭЛРО был принят, когда страна находилась в тягчайшей обстановке, порожденной первой мировой и гражданской войнами. Многик казалось безумной мечтой говорить об электрификации технически отсталой, разоренной молодой Страны Советов, окруженной враждебным капиталистическим миром.

Ленинская идея электрификации страны была проникнута глубочайшей мудростью и предвидением: речь шла не только о создании новых энергетических мощностей, но и о переводе хозяйства страны на современные технические рельсы. Под руководством Коммунистической партии была развернута энергичнейшая борьба за осуществление этого плана.

В 1913 году Россия занимала по выработке электроэнергии одно из последних мест в мире. План ГОЭЛРО начал осуществляться еще при жизни Ленина. В 1922 году были построены Каширская электростанция, электростанция «Красный Октябрь», началось сооружение Волховской и Земо-Авчальской электростанций. А к 1928 году, после того как в строй вступили Горьковская электростанция, Шатурская имени В. И. Ленина, Штеровская, Узбекская, Волховская имени В. И. Ленина и ряд других, после того как были пущены новые мощные агрегаты на старых электростанциях, общая их мощность увеличилась почти до 2 миллионов киловатт. За пятнадцать лет, прошедших после утверждения плана ГОЭЛРО, эта мощность увеличилась вдвое, и к концу 1935 года план ГОЭЛРО был перевыполнен почти втрое. Советский Союз по производству электроэнергии занял второе место в Европе и третье в мире, а затем, к 1960 году, вышел уже на второе место в мире.

В техническом же отношении важно то, что мы перешли от маломощного силового оборудования к крупнейшим электрическим генераторам и, наконец, создали в короткий срок собственные турбостроительные и электропромышленные предприятия.

На строительстве гидроэлектростанции.

Наша техника с первых же месяцев победы советской власти была направлена Коммунистической партией на решение задач, связанных с построением социалистического общества.

Широкий размах строительства тепловых и гидравлических электростанций в Советском Союзе свидетельствует о том, что Коммунистическая партия твердо и последовательно проводит ленинский курс на преимущественное развитие тяжелой индустрии и электрификацию страны.

Внедрение электродвигателя во все области промышленности и транспорта необыкновенно повысило распространение, мощность и значение гидравлического двигателя. Но оно отразилось и на других типах двигателей, оказавшихся удобными для соединения с генераторами электрического тока.