Загадка булатного узора

Гуревич Юрий Григорьевич

ГЛАВА ПЯТАЯ

СТАРЫЕ ЗНАКОМЫЕ

 

 

Наследники булата

Холодное оружие давно потеряло ценность, а с ним ушли в прошлое и булаты. Еще раз подчеркнем: в сравнении с высокопрочными и вязкими легированными сталями булат не представляет ничего выдающегося.

Кроме того, для всех рассмотренных способов производства булатов характерна сложная и длительная технология, которая к тому же не позволяет получать изделия точных размеров и формы. Для требуемой макроструктуры (узора) булата и придания изделию нужных размеров и формы необходима дополнительная механическая обработка. Практическая невозможность изготовления слитков булата массой более 30–50 кг без существенного нарушения требуемой физической неоднородности делает процессы приготовления стали, аналогичной древнему булату, очень дорогими и поэтому экономически невыгодными для современного производства.

Современная техника нашла много других способов выплавки сталей и сплавов. Легированные стали с широким диапазоном изменения физических и механических свойств получают по сравнительно простой технологии в многотонных сталеплавильных агрегатах. К булату остался сегодня только исторический интерес. Но идеи, заложенные в выборе сходных материалов для получения булата, в способах его производства, в его строении и свойствах, живут до сих пор. То, к чему древние ремесленники пришли эмпирически и чего П. П. Аносов добился кропотливым и упорным трудом, сегодня служит металлургам научной основой для получения материалов с высокими физико-механическими и служебными характеристиками.

Сначала на базе исследований булата были разработаны многие классические идеи металлографии стали и сплавов; а затем — и приемы его приготовления, и высокие свойства его необыкновенной структуры начали широко использоваться при разработке самых различных технологических процессов получения сталей, сплавов и композиционных материалов.

В проблемной лаборатории Донецкого политехнического института некоторое время назад появился удивительный нож. Для того чтобы заточить его лезвие, понадобился алмазный круг, обычный наждак не брал. После рубки ножом толстых гвоздей на его поверхности не оставалось даже царапины. Но самое удивительное, что этот нож, так же как и булат, был сделан не из легированной стали, а из простого сплава железо — углерод.

Впрочем, сплав был не такой уже простой, он содержал 3,5 % углерода. По составу это был чугун… Несмотря на это, сплав отлично ковался и прокатывался. Резцы и фрезы из него неплохо обрабатывали сталь и не уступали по прочности инструменту из легированной инструментальной стали. Как тут не вспомнить легендарные рельсы из Катав-Ивановска, которые так помогли уральцам в тяжелые времена Отечественной войны!

Только теперь свойства чудо-ножа можно легко научно объяснить. Нож был приготовлен из сплава, специально очищенного от вредных примесей и мельчайших частиц неметаллических включений. А в этих условиях карбидам железа выпадать трудно.

Электронно-микроскопический и масс-спектрографический анализы показали, что углерод в сплаве находится в необычном аморфном состоянии, при котором он, увеличивая прочность и твердость металла, не делает его хрупким. Предвидение П. П. Аносова о различном состоянии углерода в железе и влиянии этого состояния на качество стали научно подтвердилось.

Уже не раз подчеркивалось: П. П. Аносов был уверен, что своими высокими свойствами булат обязан чистоте исходных материалов — железу и графиту. Читатель, очевидно, помнит, что при получении железа кричным или пудлинговым процессом значительная часть поверхности металла, так же как и при получении чугуна в доменной печи, контактировала с жидким шлаком. Шлак, как губка, впитывал и растворял вредные примеси и неметаллические включения, обеспечивая тем самым высокую чистоту пудлинговой стали.

Как уже отмечалось, современную сталь получают многоступенчатым процессом. Простейший из них — это доменная печь, а затем сталеплавильный агрегат, мартен, электропечь или кислородный конвертер. Готовую сталь разливают в слитки. Такая схема получения стали высокопроизводительна, но она часто не обеспечивает необходимую чистоту металла по вредным примесям. Что касается неметаллических включений, то мало того, что их трудно удалить во время плавки, они еще в значительных количествах попадают в сталь из материалов сталеплавильных агрегатов и ковша. Поэтому в наши дни чистота стали еще более актуальна, чем в аносовские времена.

Как же металлурги решают эту проблему? А все так же: пытаются использовать для очистки стали от ненужных компонентов ее взаимодействие с жидким шлаком.

Сначала такие процессы организовывались непосредственно в сталеплавильных агрегатах путем так называемого диффузионного раскисления. Его сущность состоит в продолжительном рафинировании металла в печи под восстановительным шлаком. В период рафинирования жидкая сталь взаимодействует со шлаком, в результате чего он отбирает у нее кислород и серу. Оказалось, что скорости этого процесса очень малы из-за относительно небольшой поверхности соприкосновения рафинирующего шлака с металлом.

Исчерпав возможности улучшения качества стали в сталеплавильных агрегатах, ученые и инженеры предложили внепечной способ ее очистки от вредных примесей. Еще в 1925 году советский инженер А. С. Точинский успешно рафинировал сталь жидкими синтетическими шлаками после слива ее из печи в ковш. Первые опыты по такой обработке стали в СССР были проведены в 1928 году, но не получили распространения из-за того, что предложенные в то время синтетические шлаки не обеспечивали должной десульфурации стали. Позднее опыты были продолжены во Франции, где Р. Перрен более успешно решил поставленную задачу.

Наиболее эффективного рафинирования металла жидкими синтетическими шлаками достигли ученые С. Г. Воинов, А. Г. Шалимов, Л. Ф. Косой, Е. С. Калинников в 1958–1962 годах. Суть предложенного ими способа заключается в следующем. В ковш вначале заливают необходимое количество синтетического шлака требуемого состава, а затем на этот шлак по возможности с большей высоты мощной струёй выпускают металл из сталеплавильного агрегата. Жидкий синтетический шлак разбрызгивается, и его капли «прилипают» к металлу. В результате этого поверхность соприкосновения металла и шлака неизмеримо возрастает, что и приводит к быстрому удалению из стали серы и неметаллических включений.

Промышленный опыт применения новой технологии рафинирования металлов подтвердил его эффективность для малолегированных сталей, выплавляемых в мартеновских печах или кислородных конвертерах. Однако, как оказалось, поверхность взаимодействия жидкой стали со шлаком и в этом случае недостаточно велика. По этой и другим причинам требуемого качества некоторых легированных сталей получить не удалось.

И тогда в Институте электросварки им. Е. О. Патона группой исследователей (Б. И. Медовар, Ю. В. Латаш, Б. Н. Максимович) под руководством академика Б. Е. Патона был разработан оригинальный способ получения высококачественной стали с помощью того же жидкого шлака. Новый процесс получил название электрошлакового переплава. В его основу был положен электрошлаковый процесс плавления расходуемых электродов в сочетании с принудительным формированием слитка в металлическом (медном) водоохлаждаемом кристаллизаторе (изложнице).

Созданная установка оказалась удивительно простой. По тонкой многометровой колонке движется держатель с расходуемым электродом, сделанным из выплавляемой марки стали. Электрод медленно опускается в медный кристаллизатор с расплавленным в нем синтетическим шлаком специально подобранного состава. В начале плавки после подачи электрического тока между кристаллизатором и электродом образуется дуга, горящая под слоем твердого сыпучего флюса. Флюс, расплавляясь, образует электропроводный жидкий шлак, который полностью шунтирует дугу. Начинается бездуговой процесс, получивший название электрошлакового. Выделяемое тепло медленно плавит стальной электрод, и капли жидкого металла, проходя через толщу шлака, попадают в кристаллизатор, где постепенно наращивается стальной слиток. Благодаря тому что каждая капля жидкого металла проходит через шлак, поверхность взаимодействия стали со шлаком огромная, и это обеспечивает достаточно полную очистку стали от ненужных компонентов.

Так вот, в Донецком политехническом институте использовали установку электрошлакового переплава для получения сплава железа с углеродом. Для этой цели стальной расходуемый электрод заменили графитовым, а в синтетический шлак порциями подавали металлизованные железные окатыши (комки руды, содержащие металлическое железо и его окислы). Окислы железа восстанавливались, железо плавилось, насыщалось углеродом, очищалось шлаком от вредных примесей и неметаллических включений и стекало в кристаллизатор. Так древний одностадийный способ получения незагрязненного вредными примесями высокоуглеродистого сплава был осуществлен на современной научно-технической основе.

 

Однородность или неоднородность?

Как мы уже выяснили, в начале XIX века существовали два совершенно противоположных подхода к природе стали, обеспечивающих ее высокое качество. Ле-Шателье и Карстен, известные западноевропейские металлурги, полагали, что хороший металл должен обладать однородной структурой: «Чем красивее структура, тем она хуже с точки зрения практики». П. П. Аносов считал, что чем неоднороднее металл, чем более подчеркивается неоднородность рисунком, тем выше свойства стали.

Современная наука подтвердила правомерность обоих этих взглядов. Каждый из способов был использован для получения высокопрочных материалов.

В последние годы с большим успехом развивается совершенно новое направление производства «однородных» сплавов — получение так называемых аморфных металлов. Жидкий сплав охлаждают с огромной скоростью, благодаря чему он переходит в твердое состояние, минуя кристаллическую фазу. Свойства таких «стеклообразных» металлов очень высокие. Так, например, прочность аморфного сплава железо — углерод — фосфор в 10 раз больше обычного (кристаллического). Кроме того, подобно железу, падавшему на Землю из космического пространства, аморфные сплавы обладают высокой стойкостью против атмосферной коррозии.

И все-таки слоистая структура булата и способы ее получения лежат в основе технологии производства материалов, также превосходящих по прочности обычные «однородные» стали. Для того чтобы понять природу упрочнения слоистых материалов, давайте мысленно проделаем такой эксперимент. Возьмем кусок картона я попробуем его разорвать. После этого наклеим на картон обычную бумагу и вновь испытаем его прочность на разрыв. Как, по-вашему, она увеличилась? Ответ настолько ясен, что вопрос, вероятно, вызовет улыбку читателя.

Между тем только в 30-е годы нашего столетия было обнаружено, что прочность двух сваренных между собой пластинок из твердой и мягкой стали значительно выше прочности каждой из них в отдельности. Такой эффект повышения прочности слоистого материала считался крупным научным открытием нашего времени!

Алексей Максимович Горький часто показывал своим гостям три небольших металлических бруска. Это первые самозатачивающиеся резцы, сделанные в 1926 году талантливым ученым и изобретателем А. М. Игнатьевым — большим другом писателя. Каждый резец состоит из нескольких металлических слоев разной твердости. Булатную структуру инструмента автор изобретения заимствовал у… бобров. Он заметил, что самозатачивающиеея зубы бобров и других грызунов состоят из твердых наружных слоев и мягких внутренних. Изобретение А. М. Игнатьева было в свое время запатентовано в США, Англии, Франции и многих других странах.

Сегодня слоистые материалы находят широкое применение в химической, электротехнической, машиностроительной, пищевой и других отраслях промышленности, а также в ювелирном деле и медицине. Представителями их являются биметаллические изделия, листы и ленты, изготовляемые металлургической промышленностью. Такие изделия привлекают не только прочностью, но и высокими физико-химическими свойствами материала в целом. Основой для большинства биметаллов является обычная низкоуглеродистая сталь, плакированная (покрытая) коррозионно-стойкими и кислотоупорными сплавами, никелем, кобальтом и титаном. Толщина покрытия обычно составляет 10–50 % от общей толщины. Эксплуатационные свойства таких биметаллов изменяются в широких пределах.

В качестве основы для покрытия применяются также углеродистые и легированные стали и чугуны. Знаменательно, что, подобно булату, двухслойные и трехслойные углеродистые легированные и инструментальные стали нашли широкое применение для производства различного инструмента, промышленных ножей, пил, штампов, лемехов и лущильников тракторных плугов.

Как тут не вспомнить заключительные строки сочинения П. П. Аносова «О булатах»: «Оканчиваю сочинение надеждою, что скоро… наши земледельцы будут обрабатывать землю булатными орудиями, наши ремесленники выделывать свои изделия булатными инструментами, одним словом, я убежден, что с распространением способов приготовления и обработки булатов они вытесняют из употребления всякого рода сталь, употребляемую ныне на приготовление изделий, требующих особенной остроты и стойкости».

Многослойные металлы изготовляются несколькими методами. Некоторые из них очень похожи на один из способов приготовления булата. В изложницу (форму), в которую заливают жидкую сталь, помещается несколько попарно скрепленных пластин плакирующего металла на некотором расстоянии друг от друга. Между поверхностями соприкосновения пластин каждой пары расположен слой разделяющего вещества. Заливкой в изложницу жидкого металла получают многослойный слиток, из которого после прокатки и обрезки кромок получают один трехслойный и два двухслойных листа. Подобным образом в изложнице устанавливают большее количество пластин и получают слиток с 5–9 слоями. Можно с полным основанием утверждать, что таким способом можно делать и булат…

 

Металлические усы

Это произошло в Англии во время второй мировой войны. Новые, весьма необходимые автоматические приборы, использующиеся в военной технике, выходили из строя один за другим — замыкались контакты. Причину замыкания долго найти не могли. Наконец, после тщательного наблюдения установили: виновники аварии — тонкие волоски олова, выступавшие на тончайшей оловянной пленке, нанесенной на сталь. Волоски состригли, и приборы начали работать. Через некоторое время контакты вновь замкнулись, и исследователи опять обнаружили все те же волоски олова. Сколько их в дальнейшем ни «стригли», они вырастали вновь. Волоски были названы усами.

После войны многие ученые начали исследовать причины появления усов, определять их свойства. Ус имел толщину около 1,5 мк. Оказалось, что тончайший ус обладал колоссальной прочностью. Если бы такой волосок имел сечение в 1 мм2, он бы выдержал нагрузку в несколько сот килограммов! Это значит, что прочность металла близка к теоретической. Рентгеноструктурный анализ помог разгадать чудесные свойства усов: они представляли собой почти бездефектные, «идеальные» монокристаллы чистого олова!

Как показали дальнейшие эксперименты, отсутствие дефектов в усах объяснялось условиями их роста и малыми размерами. Они росли столь быстро, что дефекты просто не успевали возникнуть. Стоило увеличить размеры усов, дефекты кристаллической решетки появлялись, и прочность резко падала. Было обнаружено, что усы даже после рождения могут быстро «портиться» за счет появления примесей в результате окисления их поверхности. Поэтому надо было принимать специальные меры для хранения выращенных усов. Поскольку усы состояли из отдельных нитей, их назвали также нитевидными кристаллами.

Сегодня существует более 100 способов получения монокристаллов. Наиболее совершенными свойствами обладают нитевидные кристаллы, полученные осаждением из газовой фазы. В трубчатую печь помещают алундовую или кварцевую лодочку с хлористой солью металла. При нагреве происходит возгонка соли. Через печь пропускают водород, который восстанавливает соль до металла. Нитевидные кристаллы появляются на стенках лодочки в виде пушистых наростов — усов. Рост нитевидных кристаллов связан с влажностью, чистотой и количеством соли, стабильностью режима восстановления. Определяющими всегда являются температура и скорость восстановления.

В Советском Союзе в 60-х годах Е. М. Савицкий с сотрудниками получил нитевидные кристаллы почти всех тугоплавких металлов. В настоящее время получают нитевидные кристаллы чистых металлов размером 2–10 мм и толщиной от 0,5 до 2,0 мк, практически лишенные дефектов кристаллической решетки. Эти монокристаллы обладают прочностью, близкой к теоретической. Так, например, предел прочности монокристаллов железа составляет 13 000 МПа, меди — 3000 и цинка 2000 МПа, в то время как техническое железо имеет предел прочности 300 МПа, медь — 250 и цинк 180 МПа.

Исследование поверхности нитевидных кристаллов показало, что она не имеет микроскопических трещин, остается «атомно гладкой». Кристаллическая решетка усов характеризуется почти полным отсутствием дислокации. Таким образом, отсутствие в металле примесей при определенных условиях обеспечивает бездефектную структуру его кристаллов. Бездефектная структура чистых («однородных») металлов является надежным способом повышения их прочности.

 

Вот они, современные булаты

С современной точки зрения булат — композиционный материал, состоящий из двух металлических фаз. Одна из фаз — мягкое железо, другая — высокоуглеродистая сталь. Таким образом, булат представляет собой объемное сочетание разнородных компонентов, один из которых пластичный, а другой обладает высокой прочностью.

В «Основных направлениях экономического и социального развития СССР на 1981–1985 годы и на период до 1990 года» предусматривается дальнейшее повышение качества продукции на основе всемерного использования достижений научно-технического прогресса. Большое внимание при этом обращается на улучшение качества металлов и сплавов с целью обеспечения их высокой прочности, износостойкости, долговечности, коррозиестойкости. Одним из перспективных путей решения этих задач является создание композиционных материалов.

Очень близки по своему строению к булату так называемые естественные композиционные стали, представляющие собой композиции из мягкой матрицы и распределенных в ней высокопрочных волокон второй фазы, значительно более прочной, чем сама матрица.

Подобно тому как в древности люди присматривались к волокнам древесины, чтобы научиться ковкой повышать прочность железа, в наше время — стремятся заимствовать у природы строение и свойства композиционных материалов. Только делается это на высокой научной основе. Известно, что древесина представляет собой композицию целлюлозы с лигнином. Волокна целлюлозы обладают высокой прочностью на разрыв, но низкой на срез. Лигнин связывает волокна в единое целое и сообщает древесине жесткость. На этом принципе и были созданы новые материалы, представляющие собой композицию из мягкой основы (матрицы) и высокопрочных волокон или пластин, выполняющих роль ее арматуры. В таком материале, так же как и в древесине, основную часть нагрузки воспринимают волокна, а матрица служит средой, передающей нагрузку от одного волокна к другому.

Во всяком компактном материале, например в легированных сталях и сплавах, нагрузку воспринимает материал в целом. Поэтому возникшая трещина быстро распространяется и приводит к хрупкому разрушению металла. Чем выше прочность материала, тем меньше его сопротивление хрупкому разрушению. В композиционном материале трещина, возникшая при разрушении прочного волокна или пластины, гасится мягкой матрицей. Поэтому наряду с высокой прочностью такие материалы обладают и высокой вязкостью, и в этом отношении они также как бы продолжают традиционные свойства булатной стали.

Любая доэвтектоидная сталь после закалки по определенному режиму может иметь феррито-мартенситную структуру. Но это еще не композиционный материал. Как же превратить его в композит? Для этого необходимо, чтобы участки мартенсита были слоистыми, то есть имели соизмеримые размеры в двух направлениях и намного меньший размер в третьем. Такую структуру получают при помощи термомеханической обработки.

Для получения композиций с направленной феррито-мартенситной структурой доэвтектоидную сталь прокатывают при температуре, обеспечивающей ей двухфазную структуру — аустенит и феррит (рис. 2). Непосредственно после прокатки сталь закаливают, и слои аустенита превращаются в мартенсит, а феррит остается в прежнем состоянии. Это и приводит к образованию композиции из слоистого мартенсита, расположенного в мягкой ферритной матрице.

Так же как и булатная структура, структура композиционной феррито-мартенситной стали обеспечивает увеличение ее прочности более чем в 2 раза по сравнению с обычной сталью такого же состава. Так же как и в булате, прочные, твердые слои мартенсита соединены с мягкой пластичной ферритной матрицей, и в связи с этим композиционная сталь имеет более высокую вязкость и смещение порога хрупкого разрушения к более низким температурам.

Знаменательно, что идеи Д. К. Чернова о возможности получения булатной структуры, используя структуру эвтектоидного или эвтектического типа, практически полностью воспроизведены в так называемых эвтектических и эвтектоидных композициях. Получение этих композиций связано с использованием различных фазовых превращений в сплавах, в частности с кристаллизацией жидкости (эвтектическое превращение) или с превращением в твердом состоянии (эвтектоидный распад). В результате эвтектического превращения в системе образуются две или более твердые фазы, выпадаемые одновременно в виде механической смеси, называемой эвтектикой.

Одним из наиболее изученных и перспективных способов создания композиционных сплавов такого типа является направленная кристаллизация. Этот способ обеспечивает достаточно резко выраженную физически неоднородную структуру со строгой ориентацией фаз в пространстве. В эвтектических композициях реализуется идеальная структура — высокопрочные нитевидные кристаллы армируют пластичную и вязкую матрицу.

Не может быть сомнений в том, что, если бы П. П. Аносову предъявили такую структуру, он ее тотчас же назвал бы булатом…

 

Твердые, как алмазы

Очень высокая прочность и большая твердость материала достигается в искусственных композициях, которые еще в большей степени повторяют структуру булата. Принцип их создания давно известен. Подобно тому как в природном бамбуке мягкая целлюлозная матрица упрочняется жесткими и прочными нитями окиси кремния, принцип создания искусственных композиций заключается в сочетании (соединении) разнородных материалов. Еще в Древней Греции при строительстве Парфенонского храма широко использовались комбинированные материалы. Мраморные колонны храма армировались железными стержнями. В XVI веке при постройке храма Василия Блаженного в Москве знаменитые русские зодчие Барма и Постник применяли каменные плиты, армированные стальными полосами. Давно известен железобетон, который состоит из бетона, работающего на сжатие, и стальной арматуры, работающей на растяжение.

Новые композиционные материалы отличаются от обычных традиционных сплавов прежде всего булатной неравновесной структурой и очень высокими механическими свойствами.

Длительное время в качестве инструмента для обработки твердых материалов использовали алмаз. В производстве лампочек накаливания для волочения вольфрамовой нити применяли исключительно алмазные фильеры. Особенно дорого стоили алмазные фильеры для протяжки проволок больших диаметров. Естественно, что дорогостоящие и дефицитные алмазы всячески старались заменить каким-либо другим по возможности равноценным и дешевым материалом.

В начале XX века появились исследования, показывающие, что алмаз можно заменить твердыми и тугоплавкими, но более дешевыми карбидами металлов. Лучше всего для этой цели подходил карбид вольфрама. Попытки применить литой карбид вольфрама но дали положительных результатов — изделия имели низкую прочность и высокую хрупкость. Дальнейшие поиски показали, что хрупкость карбида вольфрама можно несколько уменьшить при сохранении высокой твердости посредством добавления железа, никеля и лучше всего кобальта. В 1923 году в Германии патентуется способ спекания карбида вольфрама с применением в качестве цементирующей связки кобальта до 10 %. В более поздних патентах содержание кобальта увеличивается ДО 20 %.

Положительный опыт использования твердых сплавов при волочении вольфрамовой проволоки открыл широкий путь для применения этого материала не только для фильер, но и в других областях техники в качестве твердосплавного режущего инструмента. Так, изделие, предназначенное для одной узкой цели — производства лампочек накаливания с вольфрамовой нитью, — получило совершенно непредвиденное вначале универсальное значение.

Впервые спеченный твердый сплав для режущего инструмента был получен на основе монокарбида вольфрама и кобальта в 1923–1925 годах германской фирмой «Осрам» по патенту немецкого инженера Шрёттера. В 1926 году промышленное производство таких сплавов под названием «видиа» было начато фирмой «Крупп». Видиа оказался очень хорошим материалом для металлорежущих резцов, наконечников для напайки на сверла, пластинок для фрез, пил, зенкеров и разверток. Благодаря новому композиционному материалу оказалось возможным обрабатывать резанием такие стали и чугуны, из которых раньше можно было получать изделия только ковкой или литьем. Новый материал, как в свое время быстрорежущая сталь, произвел революцию в машиностроении.

В Советском Союзе появление спеченных инструментальных твердых сплавов относится к 1929–1930 годам, когда на Московском электроламповом заводе были изготовлены первые образцы такого сплава на основе карбида вольфрама и кобальта под названием «победит». Второй советский сплав на хромомарганцевожелезной основе был самым дешевым твердым сплавом из всех известных в мире. Долгое время, вплоть до Великой Отечественной войны, он был известен под названием «сталинит» и имел большое распространение. Его широко применяли для наплавки деталей с целью предохранения от сильного износа при истирании, особенно для покрытия зубьев врубовых машин, всевозможных дробящих механизмов, экскаваторов, шнеков. Одна из марок этого сплава (сталинит-2) по сопротивлению истиранию превосходила лучший зарубежный сплав — вокер.

Современная технология получения твердых сплавов состоит в следующем. Порошки карбида вольфрама и кобальта тщательно перемешивают, формуют в заготовки и спекают в вакууме при температуре 1400–1500 °C. При этой температуре появляется жидкая фаза па основе кобальта, которая «склеивает» частицы карбида и обеспечивает получение компактного материала. Так же как и железо в булате, добавка кобальта к карбиду позволяет получить материал, обладающий одновременно высокой твердостью и достаточной прочностью и вязкостью.

Применение инструмента из спеченных твердых сплавов на основе карбида вольфрама и кобальта имеет огромное значение для промышленности. С помощью этого материала удалось в несколько раз повысить скорость резания при обработке металлов по сравнению со скоростями, применявшимися при использовании быстрорежущей стали. Замена стали «твердосплавными булатами» в производстве металлической проволоки повысила в 1000 раз стойкость волок — приспособлений, через калиброванные отверстия которых тянут проволоку.

При замене стальных штампов на твердосплавные их стойкость возрастает в 50–100 раз. Значительное применение получили твердосплавные буры, используемые в горном деле. Их стойкость в десятки раз выше, а скорости бурения в несколько раз больше, чем у стальных.

Повышение производительности труда при применении твердых сплавов во многих отраслях техники обеспечивает высокую эффективность работы дорогостоящего и дефицитного вольфрама. Так, например, по данным советского ученого В. И. Третьякова, инструментом из твердого сплава, имеющего в своем составе 1 кг вольфрама, можно обработать в 5 раз больше металла, чем инструментом из быстрорежущей стали с тем же количеством вольфрама.

В последнее время получают распространение твердые сплавы на основе карбида титана с никель-молибденовой связкой. Сравнительно дешевый и недефицитный карбид титана в ряде операций обеспечивает достаточно высокую стойкость режущему инструменту.

Несмотря на эти достижения, поиск путей повышения износостойкости режущего инструмента продолжается. Одним из новых и важных источников решения этой проблемы является технология нанесения нитридных и карбидных износостойких покрытий на режущий инструмент, в том числе твердосплавный.

Харьковские инженеры-изобретатели А. Романов, Л. Саблев и А. Андреев разработали метод нанесения таких покрытий потоками высокотемпературной плазмы. Износостойкость обработанного в вакуумной камере потоками плазмы режущего инструмента в 3–6 раз больше, чем у обычного. Повышение стойкости объясняется образованием тонкой, но очень прочной пленки из нитрида или карбида титана на режущей кромке инструмента. Для реализации прогрессивной технологии в промышленных условиях создана специальная установка. И не случайно эта установка известна под названием «Булат»…

«Булат» получит широкое применение в одиннадцатой пятилетке. В «Основных направлениях экономического и социального развития СССР на 1981–1985 годы и на период до 1990 года» указано: «Организовать производство в широких масштабах новых видов инструмента, в том числе с применением износостойких покрытий…» Структура, обеспечивающая сотни лет назад высокие режущие свойства булата, повторилась в современных твердых сплавах и износостойких покрытиях.

И все-таки полностью твердые сплавы заменить алмаз не могут. Только алмазные волоки способны длительное время противостоять разрушающему действию движущейся металлической проволоки. Стойкость алмазных волок в тысячи раз больше стальных, и они практически незаменимы при волочении тонких проволок из высокопрочных сплавов, особенно в тех случаях, когда требуется точная окружность, постоянство диаметра сечения и гладкая поверхность. Нити парашютной ткани протягиваются только с помощью алмазных волок. Они обеспечивают нити необходимую гладкость, которая гарантирует своевременное и быстрое раскрытие парашюта.

Примечательно, что первый цех алмазного инструмента в нашей стране был создан в конце прошлого века Константином Сергеевичем Алексеевым (Станиславским), которого мы знаем как выдающегося режиссера и основоположника системы воспитания актера. На московской фабрике «волоченого и плащеного золота и серебра», где начиналась его трудовая жизнь, выпускали тончайшую проволоку, канитель (тонкую витую проволоку), серебряные и золотые изделия из них. В производстве применялись чугунные волоки, с помощью которых процесс вытяжки тонкой проволоки был очень длителен («канительным» — как теперь говорят). Применение алмазного инструмента затруднялось в связи с тем, что вплоть до конца XIX века производство волок из драгоценных камней было монополией западных фабрикантов, в основном французских и итальянских. К. С. Станиславский едет за границу, знакомится с производством алмазного инструмента и по возвращении в Москву организует цех по изготовлению алмазных волок. На состоявшейся в 1900 году Всемирной промышленной выставке в Париже продукция золото-канительной фабрики получила высшие награды, а Константин Сергеевич был награжден медалью с дипломом выставки.

Как же обрабатывают алмаз, если он самый твердый из известных материалов? Долгое время алмазы служили только для украшений, но обрабатывать их не умели, и изделия из них выглядели порой весьма тускло. В 1475 году голландец Людвиг Беркен открыл способ гранить, шлифовать и полировать алмазы при помощи порошка этого же драгоценного минерала. Он впервые обработал для бургундского герцога Карла Смелого крупнейший алмаз лимонного цвета, придав ему форму, напоминающую розу. Затем был отполирован легендарный алмаз «Санси», купленный в свое время П. Н. Демидовым и привезенный в Россию. После полировки камни, сверкающие всеми своими гранями, стали очень красивыми. С того далекого времени по сей день алмазы обрабатывают алмазным же инструментом.

На станке, подобном токарному, алмазную заготовку обтачивают острыми выступами другой такой же заготовки. Распиливают, шлифуют или сверлят алмаз алмазным порошком, нанесенным на быстро вращающийся инструмент. В последнее время для ускорения обработки применяется вибрация инструмента с ультразвуковой частотой.

При обработке алмаза алмазными резцами в отходы превращается больше половины драгоценного кристалла. Таким образом, процесс обработки алмаза очень трудоемкий и дорогой. Но это еще не все. Оказывается, механическим способом алмаз удается обрабатывать не во всех направлениях. Особенности кристаллической решетки алмаза делают его неодинаково твердым в разных плоскостях. Поэтому алмаз поддается механической обработке только по «мягким» направлениям, и распиливать его можно лишь так, чтобы плоскость среза соответствовала расположению атомов углерода в плоскостях куба и ромбододекаэдра.

В последнее время для обработки алмаза начали использовать луч лазера, который выжигает вещество. Импульс света делает в алмазе воронку. Серией импульсов, направленных в одну точку, алмаз сверлят, а располагая импульсы в ряд — режут. При лазерной обработке поверхность воронок трескается из-за сильных термических напряжений. Слои алмаза, нарушенные лазером, приходится удалять с помощью все той же механической обработки.

Ученые долгое время искали новые эффективные способы обработки алмаза. Один из таких способов, существенно упрощающий изготовление традиционных изделий из алмаза и открывающий новые возможности его обработки, найден в Якутском филиале Сибирского отделения АН СССР. Он основан на явлении, давно известном металлургам, — растворении алмаза в железе. Помните, как П. П. Аносов вводил алмаз в сталь, надеясь получить новую форму существования в ней углерода? Зная об этом, нет причины удивляться тому, что железом можно резать алмаз!

Каждый атом углерода в структуре алмаза соединен со своими соседями четырьмя прочными связями, называемыми ковалентными. Природа этих самых прочных связей определяется небольшим размером атомов углерода. С другой стороны, благодаря своему небольшому размеру, атомы углерода при соответствующей температуре способны проникать в решетку металлов, образуя твердый раствор внедрения. Растворять в себе углерод могут не все металлы, а только те, атомы которых имеют недостроенную внутреннюю электронную оболочку. Они называются переходными металлами. Из переходных металлов лучше всего в твердом состоянии углерод растворяет железо, никель и кобальт.

Много лет назад во Франции для подтверждения углеродной природы алмаза был проделан следующий эксперимент. Алмаз положили на брусок железа, который нагрели в нейтральной среде до 1000 °C. В месте контакта с алмазом мягкое железо науглеродилось и превратилось в сталь. Этот опыт хорошо объясняет, почему железо в ряде случаев не удавалось обрабатывать алмазными резцами.

Читатель уже, наверное, догадался, как можно железом резать алмаз. Действительно, если положить на алмаз железную проволоку и нагреть в вакууме эту систему, то атомы углерода начнут «внедряться» в железо, алмаз будет растворяться, и проволока его разрежет! Но беда в том, что процесс растворения углерода в железе не бесконечен. Проволока сравнительно быстро насытится углеродом, и процесс «резания» сначала резко замедлится, а потом прекратится совсем. Следовательно, из железной проволоки надо все время убирать углерод, тогда она не будет терять своих режущих свойств. Но как это сделать? Якутские ученые дали исчерпывающий ответ на этот вопрос.

Дело в том, что при растворении алмаза в железе происходит разрыв прочных ковалентных связей, которые существуют между атомами углерода в решетке алмаза. В твердом растворе внедрения, который образуется в железе при 1000 °C, углерод практически находится в атомарном состоянии, испытывая лишь слабое химическое взаимодействие с металлом-растворителем. Поэтому растворенные в железе атомы углерода значительно более активны, чем в алмазе. При температуре «резания» (1000 °C) алмаз не способен взаимодействовать с водородом или углекислым газом, а растворенный в железе углерод хорошо с ними взаимодействует. Реакция протекает на поверхности металла и сопровождается образованием газообразных продуктов: метана или окиси углерода.

Если на алмаз поместить тонкую железную пластинку и нагревать ее до указанной температуры в атмосфере водорода, углерод начнет растворяться в железе и за счет диффузии двигаться в направлении поверхности пластинки. Достигнув ее, он «найдет» водород и, соединившись с ним, образует метан, который тут же покинет пластинку. Растворяя углерод алмаза своей нижней поверхностью и передавая его газу верхней, пластинка будет равномерно погружаться в алмаз. Скорость погружения, она же скорость резания, будет зависеть от температуры, толщины пластинки, состава, давления и скорости протекания газа над пластинкой. А форма образующейся в алмазе полости с вертикальными стенками будет полностью соответствовать выбранной форме погружаемого в него железа или сплава на его основе.

Термохимическим способом обработки алмаза в Якутском институте геологии «гравировали» на его кристаллах всевозможные рисунки, вырезали шестеренки, делали отверстия заданного диаметра. Были разработаны также термохимические методы шлифовки и обработки некоторых видов поликристаллических алмазных пеков. Так система железо — алмаз нашла практическое применение почти через полтораста лет после опытов П. П. Аносова.

 

Легче алюминия и прочнее стали

Исследование свойств различных композиционных материалов показало, что не только по прочности, но и по другим физико-механическим свойствам они превосходят каждый компонент, входящий в их состав. Созданы композиционные материалы, выдерживающие большие нагрузки, подвергающиеся большому тепловому воздействию, выдерживающие частые и резкие смены температур. Например, введением волокон асбеста в керамику можно повысить в несколько раз ее способность выносить тепловые удары. Волокна асбеста, как стальная арматура железобетона, связывают зерна огнеупора и удерживают их при резких перепадах температур от распада. Если изготовить трубку из керамической массы шамота, добавив в качестве высокотемпературного связующего скелета волокна каолина, то термостойкость шамота возрастает в десятки и даже сотни раз, Без подобных материалов сегодня немыслимы атомоходы, сверхзвуковые самолеты и космическая аппаратура.

Волокнистые композиционные материалы конструируются из металлической или керамической основы и упрочняющего волокна различного строения. Для получения волокон в зависимости от необходимых свойств используют самые разнообразные материалы: проволоку из молибдена или вольфрама, жаропрочной и жаростойкой стали, окись алюминия, каолин, графит, различные бориды, карбиды и нитриды. Каждый из таких волокон обеспечивает материалу определенный комплекс свойств. Введение волокон в матрицу чаще всего осуществляется методом формования волокон и порошка материала для матрицы или пропиткой волокон жидким металлом матрицы.

Очень напоминают технологию приготовления сварочного булата методы производства волокнистых композиционных материалов, упрочненных проволокой. Такие материалы разделяются на армированные проволоками, армированные сетками и армированные проволочными волокнами ограниченной длины. В последнем случае отдельные проволочные волокна располагаются в матрице в виде включений.

Прочность кобальта, нихрома и других сплавов, армированных вольфрамовой или молибденовой проволокой при температурах 300–1100 °C, повышается в несколько раз. Армирование серебра волокнами окиси алюминия повышает его прочность в 5 раз. Алюминий, упрочненный волокнами окиси кремния, имеет прочностные свойства лучших алюминиевых сплавов. По данным ряда исследований, введение в вольфрам частиц тугоплавких окислов или карбидов и боридов повышает его длительную прочность и срок службы в 25–50 раз.

Все большее значение приобретают в технике композиционные материалы, армированные монокристаллами — усами или нитевидными кристаллами. Нитевидные кристаллы повышенной прочности встречаются и в природе. К таким кристаллам можно отнести нефрит — разновидность минерала актинолита (лучистого камня, от греч. «актис» — луч, «литое» — камень). Нефрит состоит из игольчато-лучистых, иногда волосовидных агрегатов. Его цвет может меняться в зависимости от содержания в нем закиси железа от светлых зеленовато-серых тонов до темно-зеленых. С древнейших времен нефрит ценят как необычайно прочный поделочный камень. В Самарканде в мавзолее Гур-Эмир выделяется строгой красотой темно-зеленое нефритовое надгробие Тимура.

Мы уже рассказывали об огромной прочности металлических усов. Однако наиболее прочными из всех известных материалов являются графитовые нитевидные кристаллы — их прочность на растяжение достигает 20000 МПа, а модуль упругости составляет 106 МПа. И все это при относительной легкости материала. Известны два способа получения усов графита: в дуге с графитовыми электродами, горящей при высоком давлении, и при термическом разложении углеводородов.

Сапфир — одна из форм существования оксида алюминия. Нитевидные волокна сапфира получают из расплавленной окиси алюминия. Устройством для вытягивания волокон служит молибденовый капилляр, укрепленный на дне молибденового тигля. Расплав окиси алюминия при температуре плавления 2050 °C поднимается по капилляру, захватывается затравкой, с помощью которой вытягивается волокно. Вытягивание волокон диаметром 0,1–0,5 мм производится с достаточно большой скоростью. Прочность сапфировых волокон при растяжении достигает 2600 МПа.

К сожалению, до настоящего времени не разработаны эффективные методы введения нитевидных кристаллов в различные матрицы. Не изучены также в достаточной мере методы предотвращения взаимодействия и достижения необходимой степени сцепления нитевидных кристаллов с матрицей. Это в значительной мере препятствует достижению высокого уровня упрочнения и позволяет использовать только малую часть чрезвычайно высоких свойств нитевидных кристаллов. Кроме того, производство нитевидных кристаллов пока еще очень сложно, и они еще очень дороги.

Правда, в настоящее время освоено промышленное производство усов сапфира и карбида кремния. Цена за последнее время на них снизилась более чем в 200 раз. Волокна сапфира характеризуются высокой химической инертностью к металлам, что дает возможность использовать их в качестве упрочнителей никелевых, кобальтовых, титановых и других сплавов для работы при высоких температурах. Нитевидные кристаллы сапфира (прочность 7000 МПа) и карбида кремния (прочность — 12000 МПа) в будущем станут широко использоваться в качестве армирующих материалов.

Для эффективного использования волокон, как уже отмечалось, необходимо решить проблему хорошего сцепления твердых и прочных нитевидных кристаллов с мягкой и пластичной металлической матрицей. Разрешима ли эта проблема? Оказывается, да! Недавно было найдено, что покрытие из сплава железо — никель — кобальт, нанесенное на поверхность усов сапфира вакуумным напылением, обеспечивает достаточно прочное сцепление волокон этого материала со сплавом никель — палладий. Установлено также, что предварительная обработка поверхности углеродных волокон или нанесение на них барьерного слоя металлов, карбидов или нитридов значительно улучшает их смачиваемость металлом матрицы, а следовательно, и прочность сцепления с ней.

В связи с этим весьма перспективным становится композиционный материал на основе углеродного волокна. Хотя углеродное волокно известно более 70 лет, интерес к нему возник сравнительно недавно, после того как был разработан процесс получения высокопрочных и высокомодульных углеродистых волокон из полиакрил-нитрида. Этим методом при низкотемпературной графитизации получают углеграфитные волокна прочностью 3500 МПа. Углеграфитные волокна выпускаются в виде нитей, содержащих 1000–2000 элементарных волокон.

Давайте представим себе, что ученые и инженеры нашли метод получения дешевых углеграфитных волокон, а еще лучше — нитевидных кристаллов графита, и разработали эффективную технологию армирования такими кристаллами алюминия или пластмассы. Такой материал может быть в 2–6 раз прочнее легированных сталей и гораздо легче самого легкого металла — алюминия. Но этого мало, материал на основе алюминия должен легко подвергаться горячей деформации при 500–550 °C, а на основе пластмассы — 100–120 °C. Последний можно «ковать», например, нагревая в воде или паре.

Автомобиль из такого материала будет в 3–4 раза легче, его сумеет поднять один человек… Кроме того, в любых погодных условиях кузов автомобиля не будет подвержен атмосферной коррозии, а расход горючего сократится в несколько раз. Фантазия? Нет. Фирма «Форд» уже сделала опытный образец такого легкового автомобиля — его стоимость составила 3,5 миллиона долларов!

Появление сравнительно дешевых автомобилей из прочных и легких композитов — дело недалекого будущего. Получение и применение композиционных материалов в промышленности развивается быстрыми темпами. Так, первый высокопрочный композиционный материал, армированный нитевидными кристаллами, был получен в 1961 году, а в 1975 году такие композиции уже применялись в газотурбинных двигателях, корпусах глубоководных аппаратов в качестве пропитанных тканей, тросов, кабелей и других изделий. Есть все основания надеяться, что скоро композиты будут армировать волокнами с пределом прочности 7000–15000 МПа, а промышленность в достаточно большом количестве будет производить дешевые композиционные материалы на их основе. Итак, будущее за материалами со структурой типа булата.

 

Сварка по-дамасски

При изготовлении булата и дамасской стали большую роль играли процессы диффузии (перемещения) углерода из жидких, полужидких или твердых масс высокоуглеродистой стали в частицы малоуглеродистого железа, обеспечивающие сварку этих разнородных материалов. Сегодня подобные процессы называют диффузионной сваркой.

Можно ли приварить к стали стекло? Конечно, традиционные способы сварки не могут обеспечить соединение разнородных материалов: металл и неметаллический материал для них несовместимы. Преодолеть барьер такой несовместимости помог сравнительно недавно открытый в СССР Н. Ф. Казаковым способ диффузионного соединения материалов в вакууме и газовых средах. В последние годы диффузионная сварка нашла широкое применение при соединении различных металлов и сплавов между собой и с неметаллическими материалами, в том числе и со стеклом.

Современный процесс диффузионной сварки заключается в следующем. Две детали помещают в вакуумную камеру специальной установки и располагают так, чтобы их свариваемые поверхности хорошо стыковались. Для этой цели стыкующиеся поверхности предварительно шлифуются, после чего обезжириваются каким-либо растворителем. В процессе сварки детали сжимают при помощи гидравлического устройства. Величина прилагаемого давления должна быть достаточной, чтобы в результате деформации поверхности соединяемых деталей все пустоты в области стыка заполнялись свариваемыми материалами. После сжатия в вакуумной камере повышают температуру. Температура сварки для однородных металлов составляет 0,5–0,7 температуры их плавления. При соединении разнородных материалов температура несколько ниже.

Тесный контакт свариваемых поверхностей и исключение их окисления обеспечивают взаимную диффузию атомов контактирующих материалов. Сварочное соединение образуется в результате диффузии атомов через поверхность стыка как в твердом, так и в жидком состоянии. Примечательно, что если процесс соединения протекает при наличии жидкой фазы, то потребность в давлении отпадает, благодаря тому что происходит предварительное смачивание соединяемых поверхностей жидкой пленкой. Таким образом, в последнем случае способ диффузионной сварки повторяет почти в точности, конечно, на современном научном техническом уровне древние приемы, обеспечивающие высокое качество булату.

Под руководством Н. Ф. Казакова разработаны промышленные методы диффузионной сварки разнообразных металлов и неметаллических материалов. Металлы сваривают со стеклом, керамикой, графитом, полупроводниками и другими неметаллами. Диффузионная сварка обеспечивает создание конструкций, в которых соединения обладают новыми свойствами и прочностью, превышающей прочности исходных материалов. Она делает возможным образование таких форм и соединений, которые не могли быть изготовлены ранее известными способами. Недаром разработанный в Советском Союзе способ диффузионной сварки в вакууме и оборудование для нее запатентованы в США, Японии и ряде стран Западной Европы.

Итак, диффузионная сварка в вакууме или защитном инертном газе обеспечивает прочное соединение между металлами и сплавами. В древности не умели создавать вакуум и не знали газовых защитных сред. Поэтому древние мастера при изготовлении сварочных булатов для предохранения от окисления свариваемых поверхностей пользовались специальными флюсами. Этот факт натолкнул нас на идею, что возможно диффузионное соединение металлов и сплавов на воздухе без применения вакуумного оборудования — при использовании для растворения адсорбированных на свариваемых поверхностях оксидов пленки жидкого флюса (шлака).

Состав флюса был подобран так, чтобы температура его плавления была на 100–200 °C ниже температуры сварки. Кроме того, жидкий флюс (окисный расплав) растворял оксиды железа и легирующих элементов и легко выдавливался сварочными поверхностями при заданном давлении.

Процесс сварки производился следующим образом: свариваемые поверхности двух образцов шлифовались и обезжиривались, после чего они помещались в специальную установку, где осуществлялось обволакивание их пленками жидкого флюса под необходимым давлением. Полученные соединения стали 45 и чугуна, стали 45 и нержавеющей стали, стали 45 и быстрорежущей стали оказались достаточно прочными. Прочностные испытания образцов под действием ударной нагрузки показали, что разрушение происходит не по сварному шву. Металлографическим анализом установлено: диффузия углерода и легирующих элементов обеспечивает формирование прочного сварного соединения. Таким образом, древний метод диффузионной сварки, использовавшийся дамасскими кузнецами, нашел применение в современной технике.

 

От крицы к крице

Каждый знает, что без генератора двигатель автомобиля работать не может. Ни один генератор не будет работать без медно-графитовых щеток, которые забирают электрический ток с коллектора электромашины.

Сегодня изготовление медно-графитовой щетки не является проблемой, однако в процессе создания этого материала ученые столкнулись с немалыми трудностями. Дело в том, что графит не растворяется в меди, и поэтому получить этот материал традиционным методом сплавления невозможно. Можно, правда, расплавить медь и путем интенсивного перемешивания в ней порошка графита создать медно-графитную эмульсию. Если такая эмульсия будет кристаллизоваться (затвердевать) в условиях невесомости (например, на космическом корабле), то ее состав после затвердевания получится однородным. Изготовленный таким образом материал мог бы применяться для медно-графитовых щеток. Но сегодня такая «космическая» технология является, конечно, неприемлемой для промышленности. В условиях земного тяготения легкие частицы графита не распределяются равномерно в меди, обладающей значительным удельным весом. Поэтому сплавлением получать однородный медно-графитовый материал практически невозможно.

Как же ученые решили эту достаточно сложную задачу? Они нашли способ производства медно-графитных щеток, как две капли воды похожий на старинный способ получения… сварочных булатов.

Есть сведения, что в Х веке арабы применяли такую технологию для изготовления клинков из сварочного булата: из прокованных железных криц получали опилки, которые слегка окисляли, сваривали горячей ковкой и выжимали заготовку для клинка. Аналогичный способ производства мечей применялся и древними германцами. Стальной порошок перед сваркой подмешивался в корм птицам и пропускался через их пищеварительный тракт. Процесс пищеварения способствовал равномерному окислению порошка, а взаимодействие с птичьим пометом, содержащим углеродно-азотистые органические соединения, приводило к его цементации и азотированию. Полученный ковкой и сваркой такого порошка сварочный булат обладал высокими свойствами, поскольку частицы железного порошка, из которых он был «спечен», имели твердые, изностойкие карбидные или нитридные оболочки и пластичные, вязкие сердцевины.

Так вот, медно-графитные щетки приготовляются подобным образом. Сначала тщательно смешивают порошки меди и графита, затем путем прессования в специальных пресс-формах готовят прессовки из полученной смеси и спекают их при высокой температуре в печах с нейтральной или восстановительной атмосферой. В наше время подобные методы получения металлических сплавов и других материалов относят к порошковой металлургии.

Порошковая металлургия как искусство получения губчатого металла, металлических порошков и изделий из них появилась в глубокой древности. Порошки золота, меди и бронзы применяли как краски и использовали для декоративных целей в керамике и живописи. Ювелирные изделия, полученные спеканием засыпанных в соответствующие формы порошков золота и серебра, встречаются среди сокровищ египетских фараонов, вавилонских царей и древних инков. В дальнейшем этот способ получения металлических изделий был практически забыт.

Заслуга возрождения порошковой металлургии и превращения ее в технологический процесс производства металлических изделий принадлежит русскому металлургу П. Г. Соболевскому, который в первой половине XIX века совместно с В. В. Любарским разработал технологию прессования и спекания платинового порошка.

А случилось это так. В 1819 году на Урале в Верх-Исетском округе были открыты значительные залежи платины. Платина на Урале была известна давно — ее зерна часто находили при добыче золота. Вплоть до XVIII века никакого применения они не находили, и поэтому зерна платины либо сбрасывали в отвалы, либо местные охотники использовали их как дробь при стрельбе. Открытые большие залежи чистой платины долгое время оставались неиспользованными, и никто не знал, как и на что их употребить.

В 20-х годах XIX века русские финансы находились в весьма плачевном состоянии, и золота для чеканки монет не хватало. Министр финансов Е. Ф. Канкрин решил заменить золото платиной. Он поручил известному металлургу П. Г. Соболевскому организовать чеканку платиновых монет. Но как это осуществить, если температура плавления платины очень высокая (1773 °C) и расплавить ее в то время было невозможно, а под молотом она не ковалась и даже не раскалывалась при ударах на наковальне?

И все-таки П. Г. Соболевский и его коллега В. В. Любарский нашли способ производства изделий из платины. Они растворили ее в царской водке, добавили хлористый аммоний и выделили платину из раствора в виде комплексной соли. Прокаливая эту соль на воздухе, можно было получать платиновую губку, которая легко размалывалась в порошок. Порошок прессовали в холодном состоянии в специальных формах. Прессовку нагревали и в одних случаях спекали, а в других проковывали в различные изделия. В 1826 году были получены проволока, чаши, тигли, медали и даже слиток. С 1828 года Монетный двор начал серийный выпуск платиновых монет. На эти цели было употреблено 900 пудов соли (около 15 тонн) платины. Россия стала первой в мире страной, которая реализовала промышленную технологию порошковой металлургии платины. Англичанин Волластон только в 1829 году предложил аналогичный способ получения компактной платины. Знаменательно, что платиновые монеты, выпущенные к Московской Олимпиаде-80, были изготовлены также методом порошковой металлургии.

В XX веке порошковая металлургия становится наукой и отраслью промышленности. В настоящее время порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и неметаллических материалов, а также полуфабрикатов и изделий из них. Методами порошковой металлургии получают ряд материалов, которые подобно платине и медно-графитовым щеткам трудно или невозможно получить традиционными методами. Вольфрамомедные, железокерамические, металлостекольные, алюмографитовые, боропластмассовые и ряд других подобных материалов с равномерно распределенными частицами нерастворяющихся друг в друге фаз получают только путем спекания или горячего прессования заготовок из хорошо перемешанных порошков этих компонентов. В некоторых из перечисленных материалов достигнуто увеличение прочности примерно в 10 раз при сохранении низкого удельного веса.

Спрессованные и спеченные из металлических порошков изделия получаются пористыми. Эти свойства используются для изготовления фильтров. В настоящее время изготавливают фильтры из порошков меди, бронзы, латуни, никеля и нержавеющих сталей. Фильтры используют в автомобильных и авиационных двигателях для фильтрации масла, в дизелях для фильтрации горючего, в газопроводах для очистки газов от пыли, в пищевой и химической промышленности для фильтрации щелочей и кислот.

На основе железного порошка созданы различные антифрикционные изделия.

Из металлических порошков получают также большое количество фрикционных изделий, работающих в узлах высокого трения. Износостойкие фрикционные изделия из порошковых сплавов широко используют в тормозных устройствах различных машин и механизмах.

Особое значение приобрели порошки быстрорежущих сталей, легированных вольфрамом, молибденом, ванадием. Карбиды этих элементов, придающие стали износостойкость при высоких температурах, распределяются в ней неравномерно. Это явление, называемое ликвацией, значительно снижает стойкость режущего инструмента.

Ликвация связана со сравнительно медленной кристаллизацией стали в изложницах (формах). Если обеспечить очень быстрый переход стали из жидкого в твердое состояние, то ликвацию можно практически полностью устранить. Но можно ли это сделать? Да, можно — путем распыления жидкой стали специальными форсунками в защитной атмосфере и получением из нее порошка. Осуществляется это следующим образом: расплавленная сталь протекает через небольшое отверстие и разбивается струями азота или аргона на мельчайшие брызги. Остывая, они стальным порошком падают в металлосборник. Скорость охлаждения частиц расплавленного металла в сотни раз выше той, которая характерна для монолитного металла в ходе его кристаллизации в слитке. Благодаря этому почти полностью устраняется ликвация, стойкость инструмента из порошковой стали увеличивается в несколько раз.

Чтобы получить из порошка заготовку для инструмента, надо миллионы порошинок превратить в компактный металл. Порошок насыпают в металлические капсулы, герметически закрывают их и прессуют. Полученные заготовки «перековываются» в любой нужный профиль. Правда, процесс этот идет не под молотом, а под скоростным гидравлическим прессом. Как тут не вспомнить о японских кузнецах, которые с древних времен аналогичным способом получали высокоуглеродистые стали для инструмента. Они дробили крицу в мелкий порошок, науглероживали его в горне и сваривали под молотом в специальную заготовку. Такие заготовки в Японии были известны под названием «уваган». Уваган в твердом состоянии приваривался к куску мягкого железа, после чего изделие подвергалось термической обработке.

Готовый инструмент имел очень твердый, износостойкий наконечник и мягкую упругую сердцевину. Вот уж поистине новое — это забытое старое. Но старое, повторенное, конечно, на более высоком уровне на современной технической основе.

Значительную роль приобретают в технике и другие изделия из металлических порошков. Подобно булату, многие из них обладают неравновесной структурой, представляющей собой относительно пластичную основу с равномерно распределенными в ней твердыми и прочными включениями.

Давно известно, что дисперсная (очень мелкая) фаза упрочняет сплав. Так, например, твердые дисперсные частицы цементита (карбида железа) упрочняют обычную углеродистую сталь. Высокая прочность никелевых жаропрочных сплавов в большинстве случаев обеспечивается наличием упрочняющей фазы — мелких частиц интерметаллического соединения никель-алюминий или никель-титан. Поэтому с увеличением в этом сплаве содержания алюминия и титана повышаются его механические свойства. К сожалению, при высоких температурах легированные никелевые сплавы разупрочняются вследствие растворения в них упрочняющей фазы. Стараний металлургов повысить жаропрочность никелевых и алюминиевых сплавов к положительным результатам не приводили до тех пор, пока на помощь не пришла порошковая металлургия.

В 1947 году было сделано сенсационное открытие: алюминиевые сплавы, полученные из чешуйчатого тонкодисперсного алюминиевого порошка путем брикетирования и горячего прессования, обладают очень высокими жаропрочными свойствами. Оказалось, что в таких сплавах упрочнение алюминиевой матрицы обеспечивается прочными и твердыми мелкодисперсными оксидами алюминия, которые отличаются высокой тугоплавкостью и стабильностью. А главное — они практически не растворяются в алюминии даже при температуре его плавления.

Алюминий, упрочненный частицами окиси алюминия, называют САП — спеченная алюминиевая пудра. В настоящее время промышленность производит несколько марок САП, которые применяются для самых разнообразных конструкций. САП сохраняет удельный вес алюминия и его высокую коррозийную стойкость. Его при меняют вместо нержавеющих сталей и титановых сплавов.

Порошковые покрытия являются эффективным способом борьбы с коррозией металлов. Коррозионная стойкость стали с такими покрытиями возрастает в 3–5 раз по сравнению с лакокрасочной защитой! Например, 1 т порошкового покрытия может защитить от коррозии в течение 25–30 лет 40 тыс. т металлических конструкций мостов, опор линий электропередач, железнодорожных вагонов и других строительных сооружений. Что же касается узлов трения машин и механизмов, то здесь 1 т покрытий экономит до 100 тыс. рублей, повышая стойкость деталей в 5–10 раз.

Каждый, кто был в механическом цехе, видел огромное количество стружки. Она струится из-под резцов токарных станков, заполняя цехи, а потом и заводской двор. 45–50 % стали при изготовлении из нее изделий традиционными способами уходит в стружку. При изготовлении деталей из порошковых сталей стружке браться неоткуда. Поэтому коэффициент использования металла составляет здесь 90–95 %! Не удивительно, что каждая тысяча тонн деталей из железного порошка в среднем дает в год около 1 миллиона рублей экономии, сберегает 2 тысячи тонн металла, освобождает 190 квалифицированных рабочих и 80 металлорежущих станков. Вот почему в нашей стране предусмотрено в одиннадцатой пятилетке увеличить производство металлического порошка более чем в 3 раза. Несомненно, что в недалеком будущем степень развития порошковой металлургии будет характеризовать металлургический потенциал страны в целом.

Получение конструкционных деталей из порошковых сталей включает следующие операции: получение железных порошков и порошков легирующих металлов, приготовление из них порошковой шихты заданного химического и гранулометрического состава, прессование (формирование) порошковой шихты для получения заготовок (прессовок) заданной формы и размеров и их спекание. После холодного формования механические свойства заготовок очень низкие. Для повышения механической прочности и придания изделиям необходимых физико-химических свойств сформованные заготовки спекают при температуре ниже температуры плавления железа. Спекание производят в среде восстановительного газа (водорода), инертного газа (аргона) или в вакууме.

В начальной стадии спекания между частицами сформованной заготовки существует неметаллический контакт. По мере удаления влаги и восстановления окислов на поверхности частичек порошка контакт из неметаллического превращается в металлический. Последнее приводит к уменьшению размеров заготовок, уменьшению ее пористости и, следовательно, изменению свойств. Особенно резко после спекания повышается прочность изделия.

Но все-таки после спекания из-за остаточной пористости механические характеристики изделий из порошковой стали получаются недостаточно высокими. Поэтому они могут применяться, как правило, только для слабо- и средненагруженных деталей, не претерпевающих во время работы значительных динамических нагрузок.

Для обеспечения необходимой плотности порошковой стали применяется горячая штамповка пористых заготовок. Этот процесс в значительной мере повторяет древний способ получения железных изделий горячей ковкой пористых криц (губчатого железа). Более того, одновременно с горячей деформацией пористых заготовок, так же как и при ковке булатных клинков, часто удается использовать эффекты термомеханической обработки, которые формируют специфичную мелкозернистую структуру стали, обеспечивающую ей высокий комплекс механических свойств. Таким образом, методом горячей штамповки или допрессовки пористых заготовок можно получать конструкционные детали из порошковой стали, не уступающие по своим свойствам выплавленным.

В настоящее время основная масса изделий из порошковой стали приготовляется на основе железных порошков и сажистого углерода. Так же как и булаты, они являются, как заметил П. П. Аносов, сплавом «железа и углерода и ничего более». Применение легированных стальных порошков обеспечивает более высокое качество как спеченных, так и горячештампованных изделий.

Так, например, в Институте проблем материаловедения АН УССР недавно разработана технология получения изделий из высокохромистой порошковой стали, которая очень напоминает один из способов получения булата. Смеси порошков железа, белого чугуна и хромистой стали, содержащей 30 % хрома, формуются двукратным прессованием и спекаются в печи с защитной атмосферой. Сравнительно невысокая температура и кратковременность спекания исключает выравнивание концентрации углеродов и хрома по всему объему металла, формируя этим самым неравновесную структуру типа булата. Эксплуатационные испытания в течение 9000 часов показали, что детали масляного насоса из порошковой хромистой стали с неравновесной структурой (микробулат) при работе в паре с закаленной быстрорежущей сталью обладают в 2–3 раза более высокой износоустойчивостью, чем эти же детали из обычной «равновесной» шарикоподшипниковой стали.

Так мудрость древних, дошедшая до нас с редкими образцами булата, сегодня воплощена в порошковых сталях, в слоистых и композиционных материалах. Материалы эти не только повторяют, но и развивают дальше идеи булата. Так же, как когда-то булат, они обладают необыкновенными свойствами, по сравнению с обычными сталями и сплавами, сочетая такие качества, как пластичность и прочность, твердость и вязкость, долговечность и огнеупорность, износостойкость и жаропрочность. Поэтому наши старые знакомые — композиционные материалы и порошковые стали по праву являются прямыми наследниками булата. Кислотоупорные и жаропрочные булаты, огнеупорные булаты, твердосплавные булаты — самые лучшие современные материалы.

В 1979 году Златоустовский завод им. Ленина отпраздновал свое 225-летие. В честь этого знаменательного события была выпущена памятная медаль. На одной стороне медали изображен памятник Павлу Петровичу Аносову, а на другой — герб завода и города. Медаль штампованная, сделанная из медного порошка. Так порошковая металлургия пришла на родину русского булата!