ПЕРЕГРУЗКИ — сила, с которой тело прижимается к своей опоре при ускорении его система поступательного движения. При торможении сила действует в обратном направлении. Единицей измерения перегрузок является ГАЛ, в котором выражается и нормальное ускорение на поверхности Земли. Значительные перегрузки возникают в первую очередь во время старта и в фазе приземления космических летательных аппаратов. В свободном безмоторном падении космического объекта перегрузки равны нулю. В серии о Перри Родане проблема перегрузок на космических кораблях с высокими значениями ускорения решается путем использования АБСОРБЕРОВ ПЕРЕГРУЗОК.

АБСОРБЕР ПЕРЕГРУЗОК — при ускорении космического корабля возникают перегрузки, которые зависят от величины ускорения. Возникающие перегрузки измеряются единицей граво, при этом один граво равен действующей на человека нормальной силе тяжести Земли. Большинство людей выдерживают нагрузку в несколько граво только в течение непродолжительного времени; нынешние, особо подготовленные астронавты также могут выдерживать ускорение в 8 или 15 граво только в течение очень непродолжительного отрезка времени. В литературе научной фантастике используются поэтому абсорберы перегрузки, работающие по принципу антигравитации, которые даже при самых высоких значениях ускорения удерживают силу тяжести на космическом корабле постоянно равной одному граво или другому желаемому значению силы тяжести.

АНТИГРАВИТАЦИЯ — уменьшение гравитации в результате противоположно направленной силы с давних пор было мечтой многих людей. В международной литературе научной фантастики антигравитация создается с помощью так называемых антигравитационных генераторов, в результате чего в соответствующем объеме возникает состояние невесомости.

ЭНЕРГЕТИЧЕСКИЙ ЭКРАН — это понятие из литературы научной фантастики. Оно обусловлено сегодняшними возможностями защиты прочной материи от воздействия высоких температур с помощью создания точно рассчитанного электромагнитного поля. Этот способ находит применение прежде всего в физике плазмы, занимающейся подготовкой к получению регулируемого непрерывного ЯДЕРНОГО СИНТЕЗА. Там полученная плазма, имеющая температуру Солнца, спрессовывается сильным магнитным полем внутри металлических труб, в которых проводятся опыты. Тем самым избегают, с одной стороны, разрушения материала труб, а с другой стороны, толщина плазменного шнура может произвольно регулироваться, в результате чего можно значительно повысить температуру. Так что используемый в литературе научной фантастики энергетический экран — это экстраполяция сегодняшних возможностей. Поскольку это предполагает доступ к регулируемому ядерному синтезу и к создаваемым при этом чудовищным массам энергии, с помощью одного только увеличения количества могут быть созданы магнитные поля, устойчивые к бомбардировке из лазерных или импульсных пушек и даже к малым атомным взрывам. Если дополнительно к этому происходит заряд магнитного поля тепловой энергией или сильным электрическим током, то соответствующий энергетический экран дополнительно к пассивному эффекту производит еще и разрушительное действие. Теперь описываются или упоминаются — в первую очередь в серии о Перри Родане — защитные экраны, действие которых распространяется вплоть до пятимерного континуума ГИПЕРПРОСТРАНСТВА или паракосмоса, так что они защищают как от обычного оружия (к которому относятся атомные бомбы и энергетические излучатели), так и от ТРАНСФОРМ-БОМБ или ТЕЛЕПОРТАНТОВ, средой перемещения которых является гиперпространство. При этом речь идет в большинстве случае о том же эффекте, какой вызывает ПОЛЕВОЙ ДВИГАТЕЛЬ или парагравитационный двигатель (парадвигатель): об изменении геометрической структуры поля космически-временного континуума (ПОЛЕВАЯ ГЕОМЕТРИЯ/ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ). В серии о Перри Родане используются, кроме того, высокоэнергетические перегрузочные экраны, называемые кратко ВП-экранами. При этом имеются в виду пятимерные защитные поля со стабильной вибрационно-перегрузочной зоной. В перегрузочном состоянии эти ВП-экраны создают эффект, окружающий защищаемый объект практически межпространственной зоной, подобной ЛИНЕЙНОМУ ПРОСТРАНСТВУ.

ВЧВ — от «Extrasensory perception» (внечувственное восприятие); сюда причисляют телепатию, ясновидение, вещие сны, видения и т.д. Речь при этом идет не о восприятии в обычном смысле этого слова, а о более или менее конкретных видениях зачастую о некоем виде рассеянных отождествленных событий; это касается в первую очередь телепатии. Внечувственное восприятие называли прежде «интеллектуальным феноменом». Головной мозг человека достигает иногда непосредственного контакта с другими лицами, не прибегая к помощи органов речи или других частей тела, а также контакта с процессами и явлениями, которые выходят за рамки зоны досягаемости обычных чувственных восприятий и еще не стали настоящим. ТЕЛЕКИНЕЗ, материализация и призрак относятся к внечувственному восприятию. Внечувственные восприятия исследовались с конца 19-го века, а в последние десятилетия — и с помощью точных научных методов. Особые заслуги в этой области принадлежат в Америке Дж.П. Райну, в Германии Х. Бендеру. Райн объясняет наблюдаемые феномены тем, что в основе их лежит особая способность сознания (пси-фактор).

ГАЛАКТИКИ — отдельная галактика; астрономическое определение напоминающих Млечный путь звездных систем, часто называемых СПИРАЛЬНЫМИ ГАЛАКТИКАМИ, хотя только около 80 процентов из них имеют типичную спиральную структуру. Также применяемое определение ЭКСТРАГАЛАКТИЧЕСКАЯ ТУМАННОСТЬ не точно, поскольку в вопросе о галактиках речь идет не о туманности, а о системе звезд. Вплоть до 1926 года вопрос о том, идет ли речь в отношении туманных образований, которые можно было видеть старыми подзорными трубами, о газовых туманностях внутри нашего Млечного пути или об экстрагалактических звездных системах, не был решен окончательно. Тем не менее, философ Иммануэль Кант уже в 1755 году считал, что эти образования являются далекими звездными системами, по размеру не уступающими Млечному пути. После того, как Хаббл в 1926 году сумел с помощью телескопа-рефлектора диаметром 2,5 метра обсерватории Маунт-Вилсон разделить внешние ветви Туманности Андромеды и некоторых других систем на отдельные звезды, вопрос был прояснен. С тех пор с помощью 5-метрового телескопа-рефлектора Маунт Пэломар значительное число звездных систем удалось частично раделить на отдельные звезды. Это одновременно создало предпосылку для определения расстояния, при котором все-таки еще имеют место некоторые факторы неопределенности, поэтому сегодняшние данные о расстояниях до других галактик не могут рассматриваться как окончательные. Кроме отдельных звезд, с помощью новых технических средств оказалось возможным наблюдать также и другие, уже известные в связи с собственным Млечным путем объекты: рассеянные звездные скопления, шаровые скопления, переменные звезды, светлые газовые туманности, темная светопоглощающая межзвездная материя, новые и сверхновые. Типовая классификация ГАЛАКТИК: по их внешнему виду звездные системы разделяются на следующие типы и подклассы:

Тип Подкласс

Е эллиптические галактики

Е0 абсолютно шаровой формы.

Е1 очень слабо сжатые.

Е7 очень сильно сжатые.

S спиральные галактики

Sа очень большое центральное сгущение.

Sb среднее центральное сгущение.

Sс слабо заметное центральное сгущение.

SВ пересеченные спиральные

SВа большое, в форме перемычки, галактики центральное сгущение, ветви соединены почти кольцеобразно.

SВb ярко выраженные ветви, слабое центральное сгущение.

SВс ветви слабо загнуты в форме буквы S, центральный сектор только слегка уплотнен.

SО и SВО центральное сгущение и внешняя форма, как у S или SВ, но без спиральной структуры и без абсорбирующей материи.

Ir — Неправильные галактики, зачастую имеют похожую на облако структуру, чаще всего с большим количеством свободной межзвездной газо— и пылеобразной материи.

ЭЛЛИПТИЧЕСКИЕ ГАЛАКТИКИ — эллиптические галактики (Тип Е) имеют очень сильно увеличивающуюся концентрацию плотности к центру и равномерный спад плотности к наружным секторам. У них нет внутренних структур, они не содержат или содержат только ограниченное число газообразной материи, они несколько краснее, чем спиральные галактики. Их звезды относятся к популяции II, что указывает на то, что это очень старые звезды; более молодые звезды в эллиптических галактиках не наблюдались. Подкласс указывает на степень сжатия. Если а большая ось, а b малая, то получают (а-b)/а и округляют до десятичного знака. Таким образом, это значение определяет подкласс. Пример: большая ось а = 54, малая ось b = 33, (а-b)/а = 21/54 = 0,389, округленно = 0,4 означает Е4. Самые сильные наблюдаемые до сих пор сжатия — это примерно 3:1, то есть Е7. Эта астрономическая терминология ничего, однако, не говорит о фактических соотношениях, поскольку мы можем определить форму галактик только с одного направления взгляда. Так, например, шаровая каталогизированная галактика может оказаться в действительности абсолютно плоским диском, который мы случайно видим точно «сверху». Статистические исследования показывают, что действительно шаровые галактики очень редки. Эллиптические галактики очень близки шаровым заездным скоплениям и центральным сгущениям спиральных галактик, но они значительно крупнее. Круглые галактики несколько меньше в диаметре, однако, приплюснутые галактики имеют такой же большой размер, как и диаметр спиральной галактики. СПИРАЛЬНЫЕ ГАЛАКТИКИ: около 80 процентов всех зарегистрированных до сих пор галактик и спиральных галактик. Почти две трети их относятся к типу S (обычные спиральные галактики), около одной трети — к типу SВ (пересеченные спиральные галактики). Они разделяются на подклассы а, b и с. Галактики типа S имеют светлое, слабо сжатое центральное сгущение, занимающее у типа Sа почти всю галактику, у Sb оно почти вполовину меньше, а у Sс почти пропадает. Центральное сгущение содержит в себе старые звезды популяции II и очень малое количество газа. Плотность резко возрастает к центру сгущения. Чем слабее сгущение, тем сильнее проявляется дискообразная форма галактики. В «диске» находятся спиральные ветви, которые зачастую отходят непосредственно от сгущения и раскручивающиеся наружу. Относительно часто имеются две большие ветви, расположенные примерно симметрично. В некоторых случаях длина ветви достигает более одного полного оборота. Во многих галактиках, напротив, различают большое число более мелких ветвей, закрученных мельче и уже, которые при виде сверху имеют форму розетки; вполне возможно, что наш Млечный путь относится к последнему типу. В спиральных ветвях имеется большое число очень ярких звезд, светящихся газовых туманностей и полос светопоглощающей материи. Они редко имеют правильную форму, чаще всего они неравномерны, похожи на вытянутые облака. ВОЗНИКНОВЕНИЕ СПИРАЛЬНЫХ ВЕТВЕЙ: возникновение галактических спиральных ветвей выяснено еще не до конца. Согласно фон Вейцзеккеру, вращающийся вокруг центрального сгущения газ находится в турбулентном движении, в результате чего тут и там образуются большие плотные облачные скопления. Вследствие дифференциального вращения (внутри быстрее, чем снаружи) эти скопления рассредоточиваются по спирали и, таким образом, образуют спиральные ветви. «Прожив» некоторое время, продолжительность которого зависит от внутренней турбуленции, они снова распадаются, возникают новые облачные скопления и снова рассредоточиваются в спиральные ветви. Возможно, вытянутые межзвездные магнитные поля играют значительную роль при соединении ветвей. Проводимые до сих пор наблюдения позволяют сделать вывод, что закон вращения спиральных галактик кардинально отличается от жесткого вращения. Если бы ветви были такими же старыми, как и сами соответствующие галактики, то они должны были бы за это время множеством оборотов опоясать центральное сгущение. Но этого не произошло; поэтому продолжительность жизни спиральных ветвей значительно короче, чем продолжительность жизни соответствующих галактик. Спиральные ветви составляют лишь малую часть всей массы галактического диска; они только потому так сильно заметны, что в них имеется много ярких молодых звезд и освещаемых ими газовых туманностей. Более старые звезды, представляющие собой гораздо большую массу галактики, распределены по диску почти равномерно; вследствие закономерно наблюдаемого развития звезд к ним, однако, уже не относятся яркие звезды. Подобно нашему Млечному пути, другие галактики также окружены внешним, слабо приплюснутым ореолом, который, однако, различим только у ближайших звездных систем местной группы. Там, кроме межзвездного водорода, имеется много шаровых звездных скоплений (в Туманности Андромеды около 200). ПЕРЕСЕЧЕННЫЕ СПИРАЛЬНЫЕ ГАЛАКТИКИ: у пересеченных спиральных галактик типа S (обычные спиральные галактики) ветви отходят непосредственно от почти шаровидного центра сгущения и расходятся от него сильно закрученными. В отличие от них спиральные галактики типа SВ (пересеченные спиральные галактики) имеют в своем центре почти линейно проходящую «перемычку», более яркую и плотную в середине, чем по обоим своим концам. Зачастую вся перемычка выглядит оптически как вытянутое центральное сгущение; в других случаях она производит скорее впечатление дополнительного центра сгущения, от которого отходят две расположенные точно друг против друга прямые ветви. В подклассе SВ от обеих концов центральной перемычки почти под прямым углом отходит по одной спиральной ветви; обе эти ветви почти образуют кольцо. В спиральных галактиках типа SВb перемычки и ветви без излома переходят друг в друга, и образуя форму слегка приплюснутой в середине большой буквы «S».

УДАЛЕНИЕ ГАЛАКТИК — ОПРЕДЕЛЕНИЕ ПО ОБЪЕКТАМ С ИЗВЕСТНОЙ ЯРКОСТЬЮ. а) дельта-цефеиды (М приблизительно от минус 1 до минус 5). Речь идет при этом о переменных звездах. Поскольку период колебания яркости известен, то из соотношения период-светимость можно сделать вывод об абсолютной яркости. Галактика Андромеды содержит (согласно проведенным до сих пор наблюдениям) 40 дельта-цефеидов. Всего до сих пор дельта-цефеиды были обнаружены в 15 галактиках. Хотя метод определения удаления по данному типу звезды является самым точным, результаты постоянно сильно отличаются друг от друга в ходе совершенствования методов наблюдения. Это зависит от того, что цефеиды встречаются редко. В окружении нашего Солнца их, например, вообще не найдено, в результате чего затрудняется градуировка шкалы. б) ЯРКИЕ ЗВЕЗДЫ О И В (М равна приблизительно 6,3). Только самые яркие звезды О и В годятся для определения удаления. Их до сих пор можно было наблюдать более чем в 100 галактиках. Результаты в достаточной мере неопределенны, поскольку абсолютные яркости сильно расходятся. в) ШАРОВЫЕ СКОПЛЕНИЯ (М равна приблизительно минус 6,8). Проведенные до сих пор наблюдения позволяют сделать вывод, что шаровые скопления имеются во всех типах галактик. В галактике Андромеды известно, например, свыше 200 шаровых скоплений, в М 31 — до сих пор 15, а в М 101 — пока 6. Определение удаления при помощи шаровых скоплений пока ненадежно, что частично обусловлено светопоглощающим и искажающим влиянием межзвездных туманностей в нашей Галактике и в других галактиках. Расчет с помощью средних значений также дает ненадежный результат вследствие неравномерно распределенной межзвездной материи. г) Новая (М равна приблизительно минус 7,0). В чужих галактиках можно было до сих пор наблюдать 130 новых звезд — всего в 35 галактиках. В большинстве случаев новые звезды появляются в галактических центрах сгущения. Соседняя с нами галактика Андромеда имеет в среднем 30 новых звезд за год; в большинстве случаев их число, однако, гораздо меньше. Поскольку абсолютная яркость новой звезды сильно рассеяна, относительно точный расчет возможно осуществить только тогда, когда можно наблюдать наибольшую часть кривой света. д) Суперновая (М равна приблизительно минус 14,0). В среднем каждая галактика дает в течение примерно 360 лет одну суперновую звезду. До сих пор было обнаружено 46 суперновых звезд в 40 галактиках. Абсолютные яркости суперновых звезд, тем не менее, особенно сильно разбросаны. Отдельные методы обладают, естественно, различными зонами досягаемости, обусловленными разрешающей способностью средств наблюдения. Например, дельта-цефеи можно наблюдать только внутри местной группы галактик. Самые яркие звезды, шаровые скопления и новые звезды можно было до сих пор раздельно воспринимать на расстоянии до 1000 килопарсек. Только суперновые звезды можно наблюдать с любого расстояния, на котором вообще еще могут быть обнаружены галактики, поскольку они в большинстве случаев сияют так ярко, как вся звездная система. Но они появляются редко и, кроме того, сильно разбросаны. Галактики типов SО и SВО — речь идет о галактиках, центр сгущения которых и внешние формы одинаковы с типом S (спиральные галактики) или BS (пересеченные спиральные галактики), которые, однако, не имеют ни спиральных ветвей, ни светящихся газовых туманностей, ни темных полос светопоглощающей материи. Их яркость равномерно уменьшается от центра сгущения к краю; в отдельных случаях их свет распределяется вокруг центра сгущения как средней точки в виде множества колец. Отсутствие характерных структур, молодых звезд и межзвездного газа позволяет сделать вывод, что галактики типов S-ноль и SВ-ноль очень стары и уже израсходовали свой запас газа для образования звезд или же что межзвездный газ был потерян в результате прохода через вторую звездную систему.

ГУККИ — персонаж из серии о Перри Родане. Гукки — это имя мышиного бобра с планеты ТРАМП. Внешне Гукки выглядит, как большая, длиной в метр, мышь, но у хвост него приплюснутый, как у бобра; нижняя часть его тела сильно утолщена, мех имеет красновато-коричневую окраску. Характерным признаком является его единственный большой резец, который он во всю его величину показывает, когда ему бывает весело. У Гукки круглые уши и нежные лапки. — Племя мышиных бобров обладает малоразвитыми сверхъестественными способностями, прежде всего способностью ТЕЛЕКИНЕЗА. Гукки, который с самого начала обладал этими способностями в большей степени, полностью развил их, только примкнув к землянам. Кроме телекинеза он владеет ТЕЛЕПАТИЕЙ и ТЕЛЕПОРТАЦИЕЙ. О предполагаемой продолжительности жизни Гукки и других мышиных бобров известно только то, что она очень велика; точных данных нет.

ИМПУЛЬСНЫЙ ДВИГАТЕЛЬ — понятие «импульсный двигатель» взято из технических данных серии о Перри Родане. Он представляет собой ЭКСТРАПОЛЯЦИЮ современного уровня развития РЕАКТИВНЫХ ДВИГАТЕЛЕЙ. К реактивным двигателям относятся все двигатели, работающие по принципу ОТДАЧИ. Этот принцип, сформулированный Исааком Ньютоном в его третьем законе сохранения энергии, гласит, что действие и противодействие силы постоянно велики, но противоположны по направлению, что означает: действующая между двумя подвижными массами сила разгоняет их в противоположных направлениях, например, в сегодняшнем ракетном двигателе регулируемый взрыв горючего отбрасывает излучаемую массу в одну, а ракетную массу в другую сторону. Если раньше, кроме турбореактивных двигателей были известны только химические ракеты, то уже продолжительное время проходит практические испытания так называемый ионный двигатель и научно-теоретически описан так называемый фотонный двигатель. Импульсный двигатель можно представить себе таким образом, что поток корпускуляров из электрически заряженных частиц ПОЛЕВЫХ КОМПРЕССОРОВ сжимается и спрессовывается в полевые проводники, в которых они ускоряются до скорости света и выбрасываются через ПОЛЕВЫЕ СОПЛА двигателей. В результате этого возникают ускорения до 700 километров на секунду в квадрате и максимальная скорость, достигающая непосредственно границы скорости света.

ЯДЕРНАЯ ЭНЕРГИЯ — также атомная (ядерная) энергия, внутренняя энергия атомного ядра, в первую очередь энергия, освобождаемая во время (искусственных) ЯДЕРНЫХ РЕАКЦИЙ. Точное определение ядерных масс показывает, что создание среднетяжелых ядер из нуклеонов, а также расщепление самых тяжелых ядер на две приблизительно равные части должно быть связано с потерей массы (ДЕФЕКТ МАССЫ). Согласно закону Эйнштейна об энергии и массе, ему соответствует энергия Е = Мс2 (где с = скорость света), которая освобождается во время соответствующих реакций. Обычно во время ядерной реакции ядерная энергия либо становится свободной (например, также и при естественном радиоактивном распаде тяжелых химических элементов в виде кинетической энергии испускаемых частиц или квантов), или связанной (при некоторых искусственных ядерных превращениях, во время которых кинетическая энергия компонента топлива связывается как ядерная энергия в ядре); следствием этого является соответственно незначительное изменение полной массы всех компонентов топлива. — Если все изменения энергии атомарных систем, например, ионизационная энергия, энергия диссоциации и т.д., настолько малы (в порядке величин нескольких электрон-вольт на частицу), что связанные с этим изменения массы не заметны, то преобразования энергии во время ядерных реакций больше примерно на фактор 10 в 6-й степени. Их измеряют в МеV (= мегаэлектрон-вольт = 10 в 6-й степени еV). Из формулы пересчета между массой и энергией следует, что приблизительно 1000 МеV соответствует массе одного протона или 1/2 МеV — массе одного электрона. Поскольку массы элементарных частиц и ядер определяются с большой точностью (МАСС-СПЕКТРОСКОПИЯ), то по изменениям массы системы во время ядерной реакции можно сделать вывод об энергообмене. Он составляет для единичной реакции величину порядка 5 МеV. Это хотя и невероятно много для единичной реакции, но в целом это очень малая энергия (2 . 10 в 13-й степени калорий); ядерная энергия приобретает значение только тогда, когда могут обмениваться очень много ядер. Если в отдельной частице освобождается 1 МеV, то при обмене всех ядер грамм-молекулы освобождается энергия теплоты сгорания 23 . 10 в 16-й степени килокалорий; это приблизительно в 10 в 6-й степени больше тепла, чем получается при расходе одной грамм-молекулы каменного угля (приблизительно 12 г). (моль = грамм-молекула, столько граммов химического соединения, сколько показывает молекулярный вес). Большинство ядерных превращений, осуществляемых в лаборатории искусственно путем бомбардировки ядер с высококалорийными частицами, приводили только к единичным процессам. В 1938 году Хан и Штрассманн открыли совершенно новый тип ядерной реакции: при бомбардировке (редкого) изотопа урана с массовым числом 235 медленными нейтронами ядро распадалось на два приблизительно равных новых тяжелых ядра, которые были обоими носителями освобождаемой энергии; кроме того, испускались от двух до трех нейтронов, как вскоре после этого доказал Жолио-Кюри. Тем самым реакция саморепродуцировалась, так как эти нейтроны могли привести к распаду последующие урановые цепочки и так далее. Такая ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ, если она протекает без помех, приводит при наличии достаточного количества радиоактивного вещества к лавинообразному нарастанию процессов распада (ЯДЕРНОЕ ОРУЖИЕ). При соответствующем размещении и регулировании освобождающаяся энергия технического применения может быть использована в мирных целях (ЯДЕРНЫЙ РЕАКТОР). Такое расщепление ядра (бомбардировка изотопа урана с массовым числом 235 медленными нейтронами) имеет большое значение, кроме того, и потому, что освобождаемая энергия при этом значительно больше (приблизительно 200 МеV на отдельный процесс), чем при других ядерных реакциях. Возможность расщепления ядра была открыта также и у других тяжелых ядер, прежде всего у плутония и у среднетяжелых ядер. — Во время ТЕРМОЯДЕРНОЙ РЕАКЦИИ освобождается энергия приблизительно до 20 МеV на каждый отдельный процесс. — Считается, что энергетических запасов Земли, включая уголь и нефть, хватит на 1000 лет, энергии от расщепления ядра на 20 000 лет и энергии от термоядерных реакций более чем на 500 миллионов лет. — Ядерная энергия играет решающую роль также и в энергетическом балансе Солнца и неподвижных звезд. Излучаемая ими в течение миллионов лет огромная тепловая и световая энергия вырабатывается, вероятно, исключительно в результате теромоядерной реакции. Внутри звезд господствуют температуры приблизительно в 20 в 7-й степени градусов Кельвина. В результате этого могут возникать различные циклы ядерных реакций, которые приводятся в действие путем проникновения протонов в атомные ядра; это прежде всего цикл Бете-Вейцзеккера, то есть слияние ядер водорода с ядрами гелия при участии ядра углерода 12С, далее реакция Бете-Критчфилда, то есть образование дейтериев из протонов при освобождении позитронов.

ТРАНСМИТТЕР МАТЕРИИ — трансмиттер материи, как он описан в международной литературе научной фантастики и в первую очередь в серии о Перри Родане, представляет собой умозрительную экстраполяцию нашего нынешнего телевидения. По аналогии с телевидением, где отдельное изображение переносится не как единое целое, а подобно естественному процессу зрения разлагается сначала на отдельные маленькие точки изображения ( около 10 миллионов), трансмиттер материи принимает все отдельные составляющие перемещаемой материи вплоть до структуры отдельного атома, преобразует ее в образ и посылает со сверхсветовой скоростью на приемник, где образ снова превращается в твердое тело. В большинстве романов научной фантастики тело-оригинал или обречено на смерть, или должно смириться с тем, что в другом месте существует абсолютное идентичный дубликат его самого. В серии о Перри Родане трансмиттеры материи посылают не только структурный образ соответствующего человека или предмета, но и перемещаемый объект в виде энергии высшего порядка, которая в приемнике снова преобразуется в материю и формируется в первоначальный образ. Поскольку трансмиттер материи посылает как образ, так и энергосодержание объекта сквозь ГИПЕРПРОСТРАНСТВО, перемещение происходит без потерь времени. В любом случае для перемещения необходимы передатчик и приемник.