Ученые любят придумывать всякие "сферы". Тут и биосфера, и гидросфера, и литосфера. Но больше всего, конечно, развелось различных сфер в науках об атмосфере - метеорологии и аэрономии. Тут и хорошо известные понятия (кто не слышал о стратосфере или ионосфере!), и понятия, используемые лишь узкими специалистами (например, метасфера), и давно устоявшиеся слова (та же стратосфера), и термины, рождение которых происходит на наших глазах (эксайтсфера, которой нет еще и пяти лет отроду).
Давайте пройдемся по атмосфере снизу вверх и постараемся разобраться в лабиринте хоть части "сферических" терминов - ведь большинство их связано как раз с основными параметрами, определяющими структуру атмосферы (структурными параметрами),- давлением, плотностью, температурой и составом газа.
Структура атмосферы
Атмосферу можно делить на области (или сферы) по разным признакам: температуре, составу или доминирующим физическим процессам. Поскольку каждая такая система деления дает несколько терминов, то и набирается целое семейство атмосферных "сфер".
Наиболее распространена стратификация атмосферы по температурному признаку. Именно она вводит широко известные понятия "тропосфера" и "стратосфера". С нее мы и начнем свой поход по небесным сферам, в котором - в качестве карты можно использовать приведенный рисунок.
Мы стартуем, как обычно, с поверхности Земли. Пусть у нас лето и температура 27° С. Это будет 300° по шкале Кельвина. Двигаясь вверх, мы обнаружим, что температура резко падает (это знают все, кто поднимался в горы). Иначе говоря, наблюдается отрицательный градиент температуры с высотой. Область атмосферы, где мы сейчас находимся, называется тропосферой. Верхняя граница тропосферы лежит там, где прекращается падение температуры с высотой и начинается ее рост (очевидно, в этом месте градиент температуры равен нулю). Выше расположена уже стратосфера, где градиент температуры положителен. Граница между тропосферой и стратосферой (или узкий слой, где градиент температуры равен нулю) называется тропопаузой. Двигаясь вверх по тропосфере, мы успеем основательно замерзнуть, ибо температура тропопаузы всего около 200 К. Что же касается ее высоты, то последняя меняется от экватора к полюсу и на средних широтах равна 12 - 13 км.
Чтобы согреться, давайте активно подниматься дальше по стратосфере. Теперь чем выше, тем теплее. И так до самой стратопаузы - области, где наблюдается второй излом на высотном профиле температуры.
Здесь (высота около 50 км) температура почти равна (270 - 280 К) той, с которой мы начинали.
А дальше - снова в холод. Температура вновь падает с высотой, вновь отрицательный градиент температуры. Это - мезосфера. Ее верхняя граница - мезопауза - лежит на высоте 85 км (конечно, как и другие граничные высоты, она может меняться примерно на 5 км в ту или другую сторону). Это последний излом на температурной кривой. И одновременно область самой низкой температуры - в мезопаузе она может понижаться до 150 К. Дальше температура будет только возрастать - мы вступаем в область термосферы. В термосфере температура сначала резко возрастает - за каких-нибудь 30 - 40 км мы проскакиваем весь интервал от 150 до 300 К, в котором находились до сих пор, и продолжаем подниматься. На высоте 150 км температура уже перевалила за 500 К. И здесь нам надо решать, день сейчас или ночь. Ибо от этого зависит дальнейший рост температуры. Если дело происходит днем, температура будет продолжать подниматься до значения 1500 - 2000 К. Если сейчас ночь, температура будет расти значительно слабее - до 700 - 1000 К. В обоих случаях с высоты 200 - 250 км рост температуры прекратится и далее она не будет изменяться с высотой. Мы вступили в область изотермии.
Что же дальше (или выше)? Во что переходит термосфера? Обычно говорят, что термосфера переходит в экзосферу, хотя последний термин родился в результате деления на "сферы" не по температурному признаку, а по признаку доминирующего процесса, определяющего состав атмосферы.
Стратификация по этому признаку гораздо проще, чем по температурному. До высоты 105 - 110 км вязкость газа достаточно велика, и потому все движения в атмосфере происходят как движения атмосферного газа в целом. Невозможно выделить движение, скажем, молекул азота или кислорода - частицы разных типов непрерывно перемешиваются. Такой процесс называется турбулентным перемешиванием или турбулентной диффузией. Ясно, что турбулентная диффузия стремится сохранить постоянный состав атмосферного газа с высотой. Именно поэтому до указанных высот состав основных компонент атмосферного газа остается неизменным. Вариациям подвержены лишь относительные концентрации химически активных малых компонент, таких, как окись азота, озон и т. д. Область атмосферы от поверхности Земли до 105 - 110 км называется гомосферой, т. е. областью постоянного состава.
Выше кончается царство турбулентной диффузии, которая ставила все газы в одинаковые условия и тем обусловливала неизменный состав воздуха, и начинается царство молекулярной диффузии - гетеросфера. Область перехода (105 - 110 км) обычно называют турбопаузой.
Над турбопаузой дружба между различными атмосферными газами нарушается. Теперь каждый идет сам по себе: более легкие частицы устремляются вверх, а более тяжелые отстают. Иначе говоря, чем выше мы поднимаемся в гетеросфере, тем больше доля легких частиц (скажем, Н и Не) по сравнению с тяжелыми (скажем, О2 и N2).
Приведем здесь одну несложную формулу, которая важна для понимания многих вопросов, обсуждаемых дальше. Концентрация частиц [X]h данного сорта (скажем, атомов О или молекул N2) на некоторой высоте h связана с концентрацией этих же частиц [Х]0 на другой высоте h0, которую можно рассматривать как условное начало отсчета, следующим образом:
Формула (1). Условие начало отсчета
где H - очень важное понятие, правильно называемое "высота однородной атмосферы". Встречается и неправильное название "шкала высот", которое явилось результатом ошибочного перевода английского термина "scale height" - буквально "приведенная высота".
Что понимается под H в формуле (1)?
Формула (2)
Здесь R - универсальная газовая постоянная, Т - температура газа, М - его молекулярный вес, g - ускорение свободного падения. Физический смысл высоты однородной атмосферы очень прост. Она показывает, на сколько километров надо подняться от данного уровня, чтобы концентрация рассматриваемого газа упала в е раз. В гомосфере, где концентрации всех основных составляющих атмосферы уменьшаются с высотой одинаково, естественно, и величина H будет для всех частиц одинакова. А вот в гетеросфере...
В гетеросфере вступает в силу закон: чем легче, тем больше. Ибо в знаменателе (2) стоит молекулярный вес данного газа М. Чем больше М, тем меньше H. А чем меньше H, тем быстрее падает с высотой концентрация этого газа. Пусть, например, высота однородной атмосферы для молекулярного азота (М = 28) на уровне турбопаузы (скажем, 110 км) равна 8 км. Для гелия (M = 4) она тогда составляет 56 км. Значит, при переходе от ПО к 166 км абсолютная концентрация гелия упадет в е раз. Но концентрация N2 в том же интервале высот успеет упасть 7 раз по е раз, так как подъем на каждые 8 км будет означать для [N2] уменьшение в 2,7 раза. Таким образом, концентрация гелия относительно N2 возрастет со 110 до 166 км в е6≈400 раз! Вот что такое независимый закон распределения частиц, или так называемое диффузионное разделение.
Обратим внимание еще на одно обстоятельство в формуле (2). В числителе там стоит температура. Значит, чем выше Т, тем больше Н. И соответственно тем медленнее (в масштабе высот) происходит падение концентрации, а значит, и диффузионное разделение легких и тяжелых газов. Чем температура ниже, тем сильнее выражены все эффекты.
До каких же высот будет справедлива формула (1)? До тех высот, где частицы атмосферы еще испытывают достаточно соударений, чтобы обмениваться кинетической энергией. Область атмосферы, где это уже не так, называется экзосферой. Там на смену уравнениям гидростатики, одним из следствий которых является формула (1), приходят уравнения гидродинамики, учитывающие убегание легких атомов водорода и гелия из земной атмосферы. Гетеросфера на высотах, больших 1000 км, переходит в экзосферу, однако переход этот, конечно, не имеет четкой границы и зависит от многих геофизических факторов.
Мы знаем теперь, как меняется с высотой температура атмосферы- один из основных ее параметров. Другим таким параметром является плотность атмосферы, обычно обозначаемая Q, т. е. масса газа, заключенного в единичном объеме (обычно в одном кубическом сантиметре). Поведение плотности с высотой гораздо проще, чем поведение температуры. Если последняя возрастает, убывает или остается постоянной в зависимости от области высот, или "сферы", то первая неуклонно уменьшается с ростом высоты. Скорость уменьшения определяется все той же высотой однородной атмосферы Н. У поверхности Земли Н равна 7-8 км и выше меняется в соответствии с описанным ранее изменением температуры. На высоте 100 км величина g уже примерно в миллион раз меньше, чем в приземном воздухе. В термосфере падение плотности с высотой замедляется, так как из-за роста температуры и уменьшения молекулярного веса газа М растет Н. На высоте 300 км величина Н уже составляет 50 - 60 км. Соответственно плотность на этой высоте равна примерно 10-10величины q у поверхности Земли.
На этом мы заканчиваем пока нашу экскурсию по "небесным сферам". В следующей главе мы вернемся к делению на сферы по признаку распределения заряженных частиц, а в главе б подробнее расскажем о понятии "эксайтсфера".
Сейчас нам надо обратиться к области рассмотренной нами гетеросферы и поговорить об изменении нейтрального состава, поскольку это очень нужно для всех дальнейших бесед. А главным в проблеме нейтрального состава является соотношение атомы - молекулы.
Атомы - молекулы
Состав гомосферы хорошо известен. Это - состав приземного воздуха. Отличие может быть лишь в небольших примесях - малых составляющих, таких, как О3, NO, N, Н20. С основными же составляющими все ясно: 78% молекулярного азота, 21% молекулярного кислорода и около 1 % аргона. Остальное как раз и есть малые составляющие, которые в сумме дают меньше 0,1% общего количества частиц.
Эта картина остается на удивление неизменной, пока мы движемся по атмосфере вверх примерно до 100 км. Здесь в число основных составляющих начинает активно вторгаться атомный кислород. Откуда он взялся в гомосфере? Конечно, из молекул O2. Ведь чем выше мы поднимаемся, тем сильнее действует на окружающие молекулы кислорода солнечное ультрафиолетовое излучение, способное диссоциировать молекулу O2, разрушить ее на два атома. Из-за этого-то процесса диссоциации и появляются начиная с высот 80 - 90 км в заметном количестве атомы О. (О том, почему этого же не происходит с молекулами N2, мы поговорим в главе 6.) На высоте турбопаузы концентрация атомов кислорода может составлять 10-20% концентрации O2.
А дальше вступает в игру молекулярная диффузия, которая правит выше уровня турбопаузы. И теперь все карты в руках более легких атомов О. Поэтому их относительная концентрация, а значит, и роль в различных процессах начинают быстро расти с высотой.
Со своими "родителями", молекулами О2, атомы О расправляются быстро. Уже на 120 - 130 м величины [О] и [O2] сравниваются, и выше атомов кислорода много больше, чем молекул. С молекулами азота дело несколько труднее, поскольку они не так подвержены разрушению в результате диссоциации, как O2. Но неумолимые законы диффузионного разделения приводят к тому, что на высотах 160 - 180 км сравнивается концентрация О и N2. Выше у атомного кислорода нет конкурентов среди молекул - он основная (доминирующая) компонента атмосферы. Его концентрация определяет общую плотность атмосферы, ионизация атомов О является основным процессом ионизации, высота однородной атмосферы Н для атмосферного газа равна величине Н для атомного кислорода и т. д.
Все это происходит на высотах от 160 - 180 до 600 - 700 км. Ну а выше? Кто может конкурировать с атомами О, если с молекулами O2 и N2 покончено еще внизу? Только другие атомы. Мы уже приводили в качестве примера некоторые данные о скорости возрастания концентрации гелия (напомним, что гелий в четыре раза легче кислорода - его атомный вес равен 4). На уровне турбопаузы количество гелия ничтожно мало - примерно один атом Не на 104 окружающих молекул. Но по законам молекулярной диффузии его относительная концентрация непрерывно и быстро растет. И вот выше 600 км он вступает в борьбу с атомным кислородом. И конечно, побеждает. Но и его царству приходит конец. Его вытесняет еще более легкий газ - водород, который в четыре раза легче гелия. Водорода в области турбопаузы еще меньше, чем гелия (около 10-9 общего числа частиц), но диффузионное разделение к нему еще более благожелательно. Поэтому в конце концов он становится основной атмосферной компонентой (концентрации Н и Не сравниваются на высотах 1500 - 2000 км).
С водородом уже конкурировать некому - это самый легкий газ. Поэтому он и остается основной компонентой атмосферы до самого ее "конца", т. е. до той весьма размытой границы, где экзосфера переходит в межпланетный газ, тоже, кстати, состоящий в основном из водорода.
Итак, все, что мы рассказали в этом параграфе, можно сформулировать очень кратко. До высоты 105 - 110 км атмосфера перемешана и ее состав постоянен. Выше начинает расти доля более легких газов. До 160 - 180 км доминируют молекулы (в основном N2), которых сменяют атомы кислорода (180 - 600 км). На высотах от 600 до 1500 км основной компонентой атмосферы является гелий, а выше - водород.
Казалось бы, все просто и ясно, и на проблеме состава атмосферы можно поставить точку. И это действительно было бы так, если бы не сильная изменчивость состава.
Эти бесчисленные вариации...
Как следует из предыдущего параграфа, общая картина изменения плотности и состава атмосферы с высотой нам теперь ясна. Но общей картины еще не достаточно. Для практических целей необходимы конкретные цифры. Мало знать, что атомный кислород является основной компонентой атмосферы, скажем, на высоте 300 км. Нужно знать, сколько атомов О в кубическом сантиметре газа там имеется. И сколько молекул N2. Иначе говоря, каково отношение [0]/[N2].
Выясняется, что ответить на эти вопросы в общем нельзя. Необходимо указать точно, в каких условиях: в какой сезон, в какое время суток, на какой широте, при какой активности Солнца и магнитной активности. Вот, оказывается, сколько различных факторов влияет на изменение нейтрального состава верхней атмосферы!
Но мало понимать, что они влияют. Надо еще знать - как. Сегодня главная проблема строения верхней атмосферы - как и в зависимости от каких внешних факторов изменяются ее основные параметры (плотность, температура и состав) на каждой высоте.
Проблема эта очень сложна, и, поскольку она находится в стадии решения, нет недостатка в противоречивых данных, не до конца обоснованных предложениях и недоказанных заключениях. Рассмотрим поэтому здесь картину вариаций атмосферных параметров лишь в самом общем виде.
Какие же факторы могут (или должны) влиять на состояние нейтрального газа верхней атмосферы на данной высоте?
Прежде всего, очевидно, время суток. Ведь освещенность атмосферы Солнцем зависит главным образом от этого параметра. А Солнце - основной поставщик энергии, поступающей в атмосферу. По этой же причине следует ожидать и изменения состояния верхней атмосферы с изменением солнечной активности. И все с тем же Солнцем связана зависимость параметров верхней атмосферы от сезона - ведь освещенность зимнего полушария много меньше, чем летнего. Эта зависимость дает так называемые годовые вариации, скажем, максимум зимой, минимум летом или наоборот.
Далеко не так очевидна причина появления "полугодовых" вариаций, дающих максимумы в периоды равноденствий, а минимумы в периоды солнцестояний (или наоборот). Тем не менее из экспериментов известно, что такие вариации существуют.
Наконец, верхняя атмосфера должна реагировать на различные возмущения, прежде всего геомагнитные, поэтому говорят о вариациях атмосферных параметров с магнитной активностью.
Давайте посмотрим, что же известно сегодня о влиянии всех этих факторов на плотность, температуру и состав верхней атмосферы, опуская детали и спорные вопросы.
Плотность атмосферы на высотах, больших 120 - 150 км, различна днем и ночью. Днем она больше - максимум g в суточном ходе наступает около 14 - 16 часов местного времени. Если бы мы могли посмотреть на Землю из космоса и при этом увидеть верхнюю атмосферу, мы обнаружили бы, что последняя несимметрична: чуть восточнее подсолнечного меридиана (меридиана, где сейчас полдень) вся атмосфера слегка выпучена - наблюдается вздутие. В аэрономии так и говорят: "дневное вздутие атмосферы". Насколько атмосфера вздута (т. е. каково отношение плотности g в максимуме и минимуме суточной кривой) и на какое точно местное время приходится максимальное вздутие - это вопросы сложные и выходящие за рамки нашего изложения. Заметим только, что, по современным представлениям, параметры вздутия сами зависят от нескольких факторов - широты, сезона, солнечной активности.
Глядя на Землю извне, мы обнаружим, что верхняя атмосфера несимметрична и вдоль меридиана. Характер широтного распределения g зависит от сезона и времени суток. Например, в период равноденствия днем плотность от экватора к средним широтам будет спадать, а ночью, наоборот, расти. При этом ночью в широтном ходе g могут наблюдаться один или два минимума - в районе экватора и на широте около 70°.
Зависимость плотности от солнечной активности в целом известна, пожалуй, лучше всего. Упрощенно ее можно сформулировать так: чем выше активность, тем выше плотность, и чем больше высота, тем амплитуда этого изменения больше. (Так, на высоте 150 км среднее значение g меняется от максимума к минимуму солнечного цикла на 10 - 20%, а на высоте 400 км g изменяется уже в несколько раз.) Но, конечно, наличие других вариаций, и прежде всего суточных и сезонных, существенно усложняет нарисованную простую картину.
Больше всего дебатов вызвала изменчивость плотности верхней атмосферы в течение года. Какие вариации преобладают в годовом ходе g - годовые или полугодовые? Когда плотность на заданной высоте больше - зимой или летом?
На первый вопрос однозначно ответить, видимо, нельзя. Оба типа вариаций накладывают свой отпечаток на кривую изменения g в течение года, причем относительный вклад годовой и полугодовой составляющих меняется с высотой, уровнем активности и т. д. В среднем на этой кривой наблюдаются два максимума в периоды около равноденствий и два минимума, соответствующие дням солнцестояния. Однако значения этих минимумов различны. Зимой - самые низкие за год. Это и есть годовой минимум д. Летние значения соответственно выше, причем разница, видимо, растет с высотой. Это ответ на наш второй вопрос о соотношении g зимой и летом.
Наконец, плотность верхней атмосферы не остается безразличной к возмущениям геомагнитного поля. После сильных магнитных бурь на высотах 300 - 400 км несколько раз наблюдали увеличение g в 1,5-2 раза. Однако это явление отмечается не всегда и не на всех широтах. Точный ответ на вопрос о том, как отзывается плотность верхней атмосферы на различные возмущения, еще предстоит найти.
Сложным образом изменяется в зависимости от условий и температура верхней атмосферы. Обычно вариации температуры рассматривают в области изотермии (выше 150 - 160 км), где она считается постоянной и обозначается T∞. Часто ее называют температурой экзосферы.
Наиболее четко зависит температура экзосферы от солнечной и магнитной активности. Существуют эмпирические формулы, по которым можно найти T∞ для данного момента времени, зная значение потока радиоизлучения Солнца Р10 для этого момента и среднюю величину Р10 за солнечный цикл.
Аналогично установлена достаточно надежная эмпирическая связь между приростом T∞ во время магнитных бурь и величиной планетарного геомагнитного индекса КР.
Суточные вариации T∞ подобны суточным вариациям плотности - максимум днем и минимум ночью. Однако время наступления максимумов на суточных кривых и T∞ не совпадает. Максимум температуры наблюдается на 0,5-1 час позже, чем максимум (вздутие) плотности. Это различие (его иногда называют фазовой аномалией суточного хода) до сих пор не имеет физического объяснения. Найти это объяснение - одна из насущных задач теоретического моделирования верхней атмосферы.
Многие детали вариаций температуры верхней атмосферы еще находятся в стадии изучения. Поскольку измерять температуру гораздо сложнее, чем плотность или нейтральный состав, количество надежных данных о поведении T∞ значительно меньше, чем, скажем, о поведении g. А потому меньше и ясность в вопросах о различных вариациях. Так, очень сложной и запутанной выглядит картина распределения T∞ по земному шару - многоплановая комбинация широтных, сезонных и суточных изменений экзосферной температуры. Надежно можно лишь утверждать, что верхняя; атмосфера в летнем полушарии всегда теплее, чем в зимнем, и что этот контраст составляет 300 - 400 К.
Трудности исследования поведения температуры в верхней атмосфере в последние годы усугубились. Долгое время использовали для определения T высотные профили той или иной нейтральной компоненты (скажем, Аr, N2, О). По профилю находили o высоту однородной атмосферы Н (т. е. скорость уменьшения данной концентрации с высотой), а по H с помощью формулы (2) легко вычисляли Г. При этом автоматически предполагалось, что температуры, найденные по профилям разных компонент, должны совпадать - в этом ведь суть барометрического закона распределения.
Однако оказалось, что это не так. В ряде случаев (особенно сильно эффект проявляется в возмущенных условиях) температуры, соответствующие вертикальному распределению разных газов (например, T∞(N2) и T∞ (О)), бывают различными. Из этого теперь, увы, установленного факта следуют по меньшей мере два огорчительных следствия. Во-первых, ясно, что нельзя определять истинную Tоо таким способом, а следовательно, надо отказаться от многих выводов и о глобальном распределении температуры, полученных, скажем, по поведению высотных профилей [N2]. Во-вторых, различие T∞ (N2) и T∞ (О) означает, что не выполняется барометрический закон и на распределение концентраций атмосферных газов действуют какие-то другие силы, связанные, видимо, с горизонтальной динамикой атмосферы.
Наибольший интерес для аэрономии представляет, несомненно, изучение вариаций нейтрального состава верхней атмосферы, т. е. абсолютных и относительных концентраций основных составляющих атмосферного газа, и в первую очередь О и N2. Как мы не раз увидим далее, именно с этими вариациями связан целый ряд важных ионосферных проблем - изменение эффективного коэффициента рекомбинации, объяснение поведения области F2 и т. д. Как и в случае с вариациями g и T∞, здесь много спорных вопросов и нерешенных проблем.
Прежде всего, говоря о вариациях состава, надо понять, как он изменяется в течение суток. Будет ли отношение [0]/[N2] на данной высоте неизменно днем и ночью и если нет, то когда оно выше? Напрашивается ответ: днем должно быть больше атомов О, так как они образуются в результате воздействия на атмосферу солнечного излучения. Но при аккуратных расчетах получается, что это не так. Время жизни атомов кислорода (см. главу 4) на высотах 100 - 200 км составляет много дней и даже недель. В этом случае концентрация О просто не успевает заметно измениться ото дня к ночи, хотя в ночное время и "выключается" солнечный источник фотодиссоциации.
Зато другой фактор должен приводить к разнице между дневным и ночным составом. Этот фактор - температура. Днем она выше, чем ночью. А чем выше Т, тем больше тяжелых молекул N2 по сравнению с легкими атомами О (см. простую формулу в начале главы). Значит, по теории диффузионного разделения днем отношение [O]/[N2] должно быть меньше, чем ночью. На этом принципе построены все теоретические модели атмосферы.
Диффузионное разделение
Однако когда попробовали сравнить измеренные на ракетах величины [O]/[N2] в разное время суток, пришли к прямо противоположному выводу: дневные значения [O]/[N2] выше ночных. В чем же дело?
Этот вопрос не решен и по сей день. Измерение атомов кислорода в верхней атмосфере с помощью масс-спектрометров связано с большими трудностями. Атомы О могут рекомбинировать на стенках прибора и регистрироваться уже как молекулы O2. В таком случае мы будем измерять меньше О и больше O2, чем есть на самом деле. Чтобы уменьшить этот эффект, в последние годы стали прибегать ко всяческим ухищрениям - делать стенки прибора из специальных материалов (например, титана), на которых атомы О рекомбинируют "неохотно", устраивать искусственное охлаждение анализатора, чтобы максимально уменьшить "подвижность" атомов, и т. д. Однако сомнения по части аккуратности ракетных измерений атомного кислорода, особенно в отношении первых экспериментов, проводившихся в 60-х годах, все еще остаются. А потому остается открытым вопрос о суточных вариациях отношения [О]/[N2].
Очень важную роль играет отношение концентраций атомов и молекул (все то же [0]/[N2]) в области F2, где расположен основной ионосферный максимум. Законы фотохимии приводят к тому (мы расскажем об этом в главе 4), что в области ионосферного максимума (250 - 300 км) равновесная концентрация электронов прямо пропорциональна этому отношению. Значит, оно непосредственно определяет состояние ионосферы.
Именно поэтому все вариации концентрации электронов в максимуме слоя F2, наблюдаемые в виде изменения критических частот этого слоя f0F2 при наземном радиозондировании ионосферы, пытались объяснять в первую очередь вариациями нейтрального состава. О проблемах, связанных с объяснением поведения области F2 изменениями нейтрального состава, мы поговорим подробно в главе 4.
Что же известно сегодня о других вариациях нейтрального состава? На высотах 300 - 400 км абсолютная концентрация атомов кислорода в течение суток меняется слабо; небольшой плоский максимум наблюдается около 14 - 15 часов. Концентрация N2 имеет более выраженные суточные вариации с максимумом около 14 часов. Наложение этих двух суточных кривых и определяет вариации общей плотности g с послеполуденным вздутием.
Хуже обстоит дело с изменением нейтрального состава в течение года. Проблема выглядит несколько по-разному для спутниковых высот (h>250 км) и высот, меньших 200 км, где измерения проводятся в основном на ракетах.
Попробовали сопоставить результаты ракетных измерений, проведенных в различное время года, и получить ход [О]/[N2] на заданной высоте. И получили... Увы, разные группы авторов получили разные результаты. Одна группа пришла к выводу, что в течение года наблюдаются один минимум (весна - лето) и один максимум (зима), т. е. существует годовая вариация отношения [О]/[N2]. Исследователи другой группы пришли к выводу, что в течение года наблюдаются два максимума (около времени весеннего и осеннего равноденствия) и два минимума (летом и зимой), т. е. существуют полугодовые вариации этого отношения.
Если для малых высот преобладающая роль годовой или полугодовой компоненты в вариациях состава до конца не ясна, то относительно спутниковых высот сомнений нет - там доминирует именно полугодовая компонента. Более четко полугодовые вариации выражены на этих высотах у концентрации О, амплитуда изменения которой может составлять 3 - 4. Абсолютные концентрации молекулярного азота таких заметных полугодовых вариаций не обнаруживают. Поскольку выше примерно 200 км [O]>[N2], полугодовые вариации атомного кислорода на спутниковых высотах проявляются и в полугодовых вариациях плотности, о которых мы уже упоминали. Здесь концы с концами сходятся.
Однако неприятности, и очень существенные, имеются и на этих высотах. В то время как ниже 200 км величины [О] и [N2] зимой выше, чем летом, на спутниках обнаружена прямо противоположная картина. Что это означает? Прежде всего, что имеется некая высота, где происходит изменение знака сезонной вариации абсолютных концентраций О и N2. Какова точно эта высота и каков механизм такого изменения, еще предстоит установить.
Преобладание зимних концентраций О над летними на высотах 300 - 400 км порождает и другую трудность. Ведь, как мы говорили выше, зимние величины плотности атмосферы всюду на высотах, больших 100 км, ниже летних. Ниже 200 км это вполне согласуется с сезонными вариациями [О] и [N2]. А вот выше... Выше получается вопиющее противоречие. Ведь основная компонента на высотах 300 - 400 км - это атомный кислород. Он-то и обеспечивает "общую" плотность атмосферы. Как же эта плотность может меняться в противофазе с [О]!
Здесь налицо явное противоречие двух групп экспериментальных данных: о q - по торможению спутников и о концентрации N2 и О - по масс-спектрометрическим измерениям. И пока это противоречие не устранено, нельзя, конечно, говорить о законченной картине вариаций параметров верхней атмосферы в течение года.
Очень важной современной проблемой строения верхней атмосферы является проблема граничных условий, или проблема турбопаузы. Мы уже говорили, что до высоты 105 - 120 км (турбопауза) атмосфера перемешана, а выше вступает в силу закон диффузионного разделения. Во многих моделях атмосферы считалось, что условия в турбопаузе неизменны (параметры атмосферы на h≈120 км брались обычно в качестве граничных условий) и не зависят от внешних факторов - сезона, солнечной и магнитной активности и т. п. В таких моделях все изменения состава верхней атмосферы происходили лишь за счет изменения температуры экзосферы и соответствующего перераспределения концентраций атомов и молекул по барометрической формуле.
Однако наблюдения последних лет показали, что характеристики турбопаузы не остаются неизменными - и абсолютные и относительные концентрации газов меняются в зависимости от условий. Не все эти вариации изучены до конца. Но уже ясно, что особенно остро реагирует состав газа на уровне турбопаузы на геомагнитные возмущения. Мы еще вернемся к этому вопросу в главе 4, говоря о поведении области F2 во время магнитных бурь.
Откуда ветер дует?
Исторически развитие аэрономии шло таким образом, что строение и фотохимию атмосферы рассматривали сначала в полном отрыве от атмосферной динамики. Даже область F2, более всего, как выяснилось позже, подверженную влиянию динамических процессов, первоначально считали результатом действия только процессов ионизации и рекомбинации. Лишь в конце пяти- десятых - начале шестидесятых годов стало ясно, какую большую роль играет в формировании слоя F2 амбиполярная диффузия. Еще через десятилетие подошли к пониманию роли другого динамического фактора - потоков плазмы из протоносферы в ионосферу и обратно. И наконец, в самое последнее время стали привлекать для объяснения особенностей поведения области F2 систему нейтральных ветров.
Различные динамические процессы - ветры, дрейфы, волны - привлекаются в последние годы для объяснения многих явлений в верхней атмосфере. Дальше мы увидим, как тесно связано состояние ночной ионосферы на высотах 100 - 200 км с профилем горизонтального ветра. Горизонтальные ветры могут быть причиной полугодовых вариаций нейтрального состава атмосферы и изменения количества окиси азота в нижней ионосфере, гравитационные волны влияют, видимо, на распределение профиля свечения атмосферных эмиссий и т. д.
Сколь-нибудь подробное описание (или даже классификация) динамических процессов в верхней атмосфере выходит за рамки данной книги. Равно как описание методов их исследования и связанных с этим проблем. Ограничимся здесь лишь краткой формулировкой основных положений, которые могут помочь при чтении дальнейших глав.
Когда говорят о ветрах в верхней атмосфере, то имеют в виду, как правило, движение нейтрального газа, глобальное по масштабу и медленно меняющееся во времени. На рассматриваемых здесь высотах нейтральный ветер в основном связан с тепловыми эффектами, т. е. с тем, какие географические области сильнее нагреты.
В области Е зональный ветер (ветер вдоль параллели) направлен с востока на запад зимой и с запада на восток летом. Это связано, видимо, с тем, что зимой полярная область на высотах 80 - 100 км теплее приэкваториальной, а летом - наоборот.
Меридиональная компонента ветра на этих высотах менее регулярна. В среднем зимой ветер дует к экватору на всех широтах, а летом - только на низких. В высоких широтах летом ветер чаще дует к полюсам.
Выше 200 км ветер в среднем направлен к полюсу вблизи полудня и к экватору - ночью. Скорость ветра составляет около 200 - 300 м/с на ночной стороне и 50 - 100 м/с - на дневной. Образно можно себе представить, что атмосферный газ растекается от послеполуденного вздутия к самой холодной (раннее утро) части атмосферы, как через полюс, так и зонально, вдоль параллели (на низких широтах). Ниже, в параграфе про область F, мы увидим, как эта картина нейтральных ветров используется для объяснения изменчивости высоты и формы слоя F2 в течение суток.
Вертикальные движения нейтрального газа (вертикальные ветры) измерять очень трудно, поэтому информации о них пока мало. Ясно, однако, что, во-первых, вертикальные ветры должны быть много слабее горизонтальных и, во-вторых, скорость вертикальных ветров должна расти с высотой. Современные оценки дают скорости около 1 см/с в области D и 2 - 3 м/с на высоте 300 км. Такие скорости слишком малы, чтобы вертикальные ветры могли влиять на рассматриваемые в этой книге ионизационно-рекомбинационный баланс и равновесные концентрации различных частиц. Однако в других важных проблемах верхней атмосферы (например, в проблеме теплового баланса) вертикальные ветры могут играть существенную роль даже и при небольших скоростях, приведенных выше.
Необходимо отметить здесь одну особенность системы горизонтальных нейтральных ветров на высотах 100 - 200 км. Это появление большой изрезанности профиля ветра, особенно в ночное время. В соседних слоях атмосферы, отстоящих друг от друга на 5 - 7 км, ветер может дуть в разные стороны. Ниже мы поговорим подробно о том, как это влияет на распределение ночной ионизации на этих высотах.
Для характеристики упорядоченного движения заряженных частиц в верхней атмосфере используют термин "дрейф". Дрейф ионизации может вызываться различными причинами. Прежде всего, это нейтральный ветер. На интересующих нас высотах плазма (заряженные частицы) вкраплена в достаточно плотную среду нейтральных частиц и при движении последних, естественно, движется вместе с ними. Однако присутствие в верхней атмосфере магнитных и электрических полей вызывает собственные движения заряженных частиц, поэтому дрейф последних далеко не всегда совпадает с нейтральным ветром.
Так, при движении ионосферной плазмы за счет нейтрального ветра под углом к силовым линиям магнитного поля появляется дополнительная компонента дрейфа вверх (или вниз, смотря куда, направлен нейтральный ветер). Этот вертикальный дрейф играет большую роль в формировании узких слоев в ионосфере (так называемый механизм ветрового сдвига) и в изменениях, происходящих в течение суток в области F2.
Очень активно изучаются в последнее время различные волновые процессы в верхней атмосфере. Чаще упоминаются при этом "внутренние" (низкочастотные аналоги звуковых) волны, распространяющиеся, в отличие от "внешних", не горизонтально, а вертикально. При периоде колебаний таких волн порядка нескольких минут природу волновых движений усложняет гравитация - появляются так называемые гравитационные волны.
Именно эти внутренние гравитационные волны и пытаются в настоящее время привлечь для объяснения многих явлений в верхней атмосфере, от эмиссий ночного неба до нейтрального состава во время магнитной бури. Но количество конкретных достижений в этом направлении пока невелико, поэтому мы почти не будем возвращаться к гравитационным волнам. Однако, вне сомнения, в недалеком будущем в книгах такого рода динамическим процессам и в том числе волнам придется уделять целые главы. Такова тенденция современного развития физики верхней атмосферы, или, иначе говоря, именно оттуда "дует ветер".