Популярная аэрономия

Данилов А. Д.

5. Загадочная область D

 

 

Самая нижняя - самая неясная

Мы поговорим в этой главе о самой нижней части ионосферы - области D, расположенной на высотах 50 - 90 км. Некоторое время назад для этой области использовали также термин "нижняя ионосфера". Но с развитием ракетных и спутниковых исследований выяснилось, что земная ионосфера простирается значительно дальше, чем считалось ранее: достаточно большие концентрации ионосферной плазмы наблюдаются на расстоянии нескольких тысяч километров от поверхности Земли. В связи с этим изменились и "масштабы названий". Под нижней ионосферой теперь чаще всего подразумевают часть ионосферы ниже примерно 200 км, включающую области D, E и F1. Однако и по сей день иногда говорят "нижняя ионосфера", имея в виду только интересующую нас область D.

Ни одна ионосферная область не вызывала за всю историю ионосферных исследований столько споров, как область D. Ни к одной неприменимы в такой полной мере слова "загадки", "проблемы". И это несмотря на то, что область D - нижняя, а значит, и самая близкая к нам часть ионизированной оболочки Земли!

Предметом жгучих дискуссий являлось буквально все. Строение ионосферы на этих высотах, т. е. распределение основного параметра - электронной концентрации. Состав, т. е. распределение с высотой концентраций отдельных ионов. Роль так называемых малых составляющих: окиси азота, паров воды, атомов кислорода и т. д. и последнее, возможно самое главное,- физика процессов, которые создают и поддерживают ионосферу в области D: источники ионизации, законы рекомбинации, пути преобразования одних заряженных частиц в другие. Как это ни парадоксально, но и сегодня описать область D по всем перечисленным пунктам мы можем (если вообще можем) с гораздо меньшей надежностью, чем, скажем, ионосферу на высотах от 400 - 500 километров до нескольких тысяч.

 

Почему это так трудно

В чем тут дело? Почему изучать физику заряженных частиц на расстоянии 60 км труднее, чем на расстоянии 600 км? Причины этому две. Одна связана с тем, что сама жизнь заряженных частиц в условиях плотной нейтральной атмосферы в области D неизмеримо сложнее, чем на разреженных просторах внешней ионосферы (выше максимума ионизации на 250 - 300 км). Как мы знаем, плотность нейтрального газа в атмосфере резко падает с высотой. Количество нейтральных частиц в единице объема на расстоянии 600 км во много миллионов раз меньше, чем на расстоянии 60 км. Соответственно меньше и частота столкновений заряженных частиц с нейтральными, а значит, меньше хлопот со всякими процессами, которые такие столкновения порождают.

В то же время ионы и электроны в области D вкраплены в весьма плотную (по ионосферным понятиям, разумеется) среду нейтральных частиц и непрерывно с очень большой частотой сталкиваются с последними, порождая обилие химических превращений. Отсюда и разнообразие типов положительных ионов, и появление отрицательных ионов, и весьма сложная связь с такими малыми составляющими, как NO, О, Н2О, концентрации которых сами по себе известны плохо, и т. д. Все это вместе взятое и делает сложным поведение ионосферы на высотах 50 - 90 км и трудным исследование ее физических процессов, которые определяют первую из упомянутых выше причин плохой изученности D-области. О проблемах физики и структуры этой области как раз и пойдет дальше речь.

Область D

Вторая причина, тормозящая прогресс в исследовании D-области, касается экспериментальных трудностей и связана, как и первая, с расположением этой области в достаточно плотных слоях атмосферы.

Сколь-нибудь подробный разбор различных методик ионосферных измерений выходит за рамки этой книги, поэтому ограничимся здесь лишь самым общим описанием проблемы.

Прямые измерения ионосферных параметров (концентраций ионов, электронов, электронной и ионной температур) выполняются различными методами. Скажем, на ракете устанавливается специальный прибор - зонд, который измеряет количество заряженных частиц в окружающем ракету атмосферном газе, анализируя изменение электронной проводимости этого газа между двумя электродами, на которые подано высокое напряжение. Этот метод дал много сведений о распределении ионов и электронов в ионосфере выше 100 км. Пытались применять его и для измерений на меньших высотах. Но вот беда, в условиях высокой плотности нейтрального газа он становится ненадежен. Абсолютные значения измеряемых параметров начинают зависеть от многих факторов: плотности газа, образования пленки на электродах, так называемой подвижности ионов в газе и т. д. И точно учесть эти факторы очень и очень трудно. Когда сравнили зондовые измерения в области D с другими, более надежными результатами, оказалось, что величины, например, общей концентрации положительных ионов [Х+] в зондовых измерениях сильно завышены (в 3 - 5, а то в 10 раз). К чему это привело с точки зрения аэрономических проблем, мы поговорим ниже. Сейчас отметим, что в последнее время практически отказались от абсолютных измерений зондовой методикой в области D и используют ее лишь для относительных измерений, т. е. для того, чтобы судить, как выглядит форма высотного профиля концентрации положительных ионов или электронов.

Очень много полезных сведений о строении ионосферы дает так называемый метод некогерентного рассеяния. Метод этот очень дорогостоящий и требует создания огромных радиолокаторов, посылающих в атмосферу мощные импульсы (несколько мегаватт) радиоволн. Тем не менее в мире сейчас существует и успешно работает около десятка таких установок. Но вновь та же беда. В плотных слоях атмосферы из-за частых столкновений электронов и ионов с нейтралами этот метод неприменим. Нижняя граница, с которой еще можно получить сведения об ионосферных параметрах, лежит сейчас на 100 - 150 км. В решении проблем D-области, таким образом, некогерентное рассеяние помочь не может.

По всему земному шару разбросана сеть ионосферных станций. Эти станции регулярно патрулируют состояние ионосферы - следят за отражением радиоволн различных частот от ионосферных слоев. Каждые 15 минут на каждой станции получают и фотографируют картинку-ионограмму, где видно, на каких высотах отражаются радиоволны каких частот. Богатейший материал накоплен таким образом о поведении главного ионосферного максимума в области F2 (250 - 300 км). Часто появляется на ионограммах слой F1 (180 - 200 км), днем хорошо видна ионизация в области Е (100 - 120 км), в виде яркого следа проявляется узкий спорадический слой Es (≈105 - 110 км). А вот область D вновь оказывается не охваченной этим методом исследования. На ионограммах ей нет места: радиоволны, испущенные ионосферной станцией, не отражаются от области D. Правда, нельзя сказать, что оператор на ионосферной станции совсем не видит этой области. Время от времени она проявляется, но в негативном плане. Некоторые частоты исчезают с ионограммы. Они застряли по дороге от станции к отражающим слоям и обратно - частично или полностью поглотились на высотах до 100 км. Эффект D-области налицо. Но говорит ли это нам что-нибудь о структуре самой D-области? К сожалению, очень мало. При вертикальном ионосферном зондировании (так называется описанный выше метод), как и в других случаях, когда измеряется интегральный (суммарный) эффект прохождения радиоволн через D-область, очень трудно перейти от этого интегрального эффекта к реальному распределению концентраций электронов (а именно они определяют поглощение радиоволн) по высоте и к абсолютным значениям этих концентраций. Ведь нам, во-первых, ничего неизвестно, как распределено само поглощение с высотой, а во-вторых, это поглощение зависит не только от концентрации электронов, но и от того, сколь часто они сталкиваются с нейтральными частицами, т. е. от частоты соударений. А этот параметр порождает в D-области уже свои проблемы, обсуждение которых увело бы нас далеко в сторону. Отметим лишь грустный факт, что и вертикальное зондирование не дает желаемых сведений о строении ионосферы на высотах 50 - 90 км.

Эффект D-области

В предыдущих главах мы уже видели, как важно знать ионный состав ионосферы на разных уровнях и как много дали масс-спектрометрические измерения этого состава в Е- и F-области. Ну а что же в D-области? Та же картина. Различные типы масс-спектрометров, успешно применяемые выше 100 км, ниже работать не могут. Они "захлебываются" в плотной нейтральной среде и либо совсем выходят из строя, либо отказываются измерять нужные параметры.

Чтобы спасти положение, придумали, как "обмануть" масс-спектрометры и заставить их работать на малых высотах. Перед анализатором прибора стали помещать камеру с вакуумным насосом. Насос непрерывно откачивает воздух, поступающий из атмосферы, окружающей ракету, и создает в камере пониженное давление, которое масс-спектрометр способен "пережить". Прибор работает и дает сведения об относительном содержании различных ионов в окружающем газе, но, естественно, не об их абсолютном количестве.

Ясно, что описанная процедура делает масс-спектрометрические эксперименты на малых высотах значительно более сложными и громоздкими, чем на высотах Е- и F-области. Именно поэтому активное исследование ионного состава D-области задержалось по сравнению с более высокими областями почти на 10 лет.

Масс-спектрометрический эксперимент

Но это еще не все. Специфика самого ионного состава области D вносит дополнительные трудности в процесс его измерений. Сложные положительные ионы-связки, играющие, как выяснилось, большую роль в физике D-области, очень неустойчивы. Образно говоря, они могут развалиться от малейшего прикосновения. А ведь прикосновение ракеты, налетающей на неподвижный газ со скоростью 1 км в секунду, трудно назвать "малейшим". Возникла опасность, что те ионы, которые масс-спектрометр измеряет в нижних слоях,- не что иное, как жалкие осколки значительно более сложных (и соответственно более громоздких и неустойчивых) ионов-связок, реально существующих в атмосфере и распадающихся при встрече с прибором под действием различных факторов (ударная волна движущейся раке ты, электрическое поле прибора и т. д.). Значит, одной лишь откачной системы мало - нужны еще специальные ухищрения, чтобы избавиться от разрушения сложных ионов.

А отрицательные ионы. Ведь проблемы их измерения не стояло при исследованиях состава ионосферы выше 100 км. Значит, здесь для масс-спектрометристов вообще "terra incognita". Да плюс те же самые трудности с возможным распадом сложных отрицательных ионов-связок на более простые в самом процессе измерений.

Нужно ли, учитывая все это, удивляться, что в области D мы далеки от того положения с исследованием ионного состава, которое имеется в других ионосферных областях.

Итак, сложность получения экспериментальной информации о строении и составе ионосферы ниже 100 км очевидна. Несмотря на это, естественно, делаются все новые и новые попытки изучать D-область различными методами. Используют радиоволны, излученные с ракеты, модифицируют идею поглощения радиоволн, усовершенствуют зондовую методику, применяют методы, основанные на тонких эффектах распространения радиоволн, таких, как перекрестная модуляция, частичное отражение, взаимодействие с ионосферной плазмой сверхдлинных радиоволн и т. д. И нет недостатка в профилях, скажем, электронной концентрации, измеренных в разных местах различными приборами в разных условиях. Но беда состоит в том, что, получая в разных измерениях сильно отличающиеся результаты, мы каждый раз должны решать, является ли это отражением реальной изменчивости самой D-области или результатом ошибочности одного из примененных методов.

 

Ищем источник ионизации

"Одинокой области D нужен приличный источник ионизации для воздействия в дневное время. Обращаться по адресу: Земля, ионосфера, высота 65 - 85 км". Так, вероятно, должна выглядеть проблема, если перевести ее на язык доски объявлений.

Ну а если говорить серьезно, то поиски источника ионизации в D-области доставили исследователям немало хлопот.

Мы уже знаем, что солнечное ультрафиолетовое излучение с λ<1000 Å не проникает в атмосферу ниже 120 - 140 км. Оно является главной причиной существования основной части ионосферы. Его ближайший помощник - рентген с длиной волны 10 - 100 Å - ионизует нейтральные частицы на высотах 90 - 120 км, обеспечивая тем самым существование области Е. Но и он не может пробиться сквозь толщу нейтральных частиц на меньшие высоты.

Остается еще более коротковолное излучение с λ<10 Å. Кванты этого излучения благодаря своей высокой энергии способны пробиться несколько глубже в толщу атмосферы и вызвать ионизацию на 80 - 90 км. Но и в этом случае интенсивность очень резко падает с уменьшением высоты из-за сильного поглощения. Скорость ионизации, которую может обеспечить рентген, составляет на высоте 80 км 0,004%, или 4×10-5 скорости ионизации на высоте 100 км, а на 70 км эта величина уменьшается до 10-7. Реально оказывается, что эта скорость ионизации способна обеспечить лишь образование самой верхней части области D, лежащей выше 85 км. Очевидно, если бы за ионизацию D-области отвечал только рентген, то эта глава просто не понадобилась бы, так как не было бы ни проблем, ни загадок, ни самой D-области. Но она есть, со всеми своими проблемами. Значит, есть и другие источники, ее питающие, помимо рентгена. Один из таких источников - галактические космические лучи. Последние суть ядра тяжелых элементов прилетающие из просторов галактики и вторгающиеся в атмосферу. Энергия этих частиц столь велика, что они свободно достигают поверхности Земли или, во всяком случае, низколежащих плотных слоев. Ни о каком поглощении космических лучей на ионосферных высотах, которые интересуют нас, нет и речи.

Коротковолное излучение

Казалось бы, Космические лучи - кандидат номер один на роль создателя области D. Но и у них есть свои трудности. Поток космических лучей мал. А посему требуется много нейтральных частиц, чтобы произошло достаточное число актов ионизации (напомним, что q пропорционально потоку частиц n и концентрации нейтралов [М]). Значит, вклад космических лучей в ионизацию в атмосфере будет возрастать вниз и падать вверх. Оценки показывают, что предельная высота, на которой этот вклад еще существен,- 65 км. Ниже вся ионизация в атмосфере обязана своим происхождением именно космическим лучам. Выше... Выше они бессильны, так как мала плотность нейтральных частиц.

Итак, источники ионизации в D-области выше 85 км и ниже 65 км известны. А кто же отвечает за поддержание ионизации в основной части D-области между 65 и 85 км? Вот на этом-то "участке фронта" и разгорелись основные бои.

Для решения проблемы нам нужен источник (излучение или потоки частиц), который без существенного поглощения проникает на высоты 70 - 80 км. Солнечное излучение короче 1000 Å мы уже рассмотрели. Оно не может проникнуть так глубоко в атмосферу. Излучение с λ>1000 Å? Но оно маломощно для наших целей. Один квант этого излучения несет слишком мало энергии (меньше 12 эВ), чтобы оторвать электрон от молекулы азота или кислорода, из которых на 99% состоит атмосфера на этих высотах. (Напомним, что потенциал ионизации 02 и N2 составляет соответственно 12 и 15 эВ). Значит, единственная надежда - поиск не основной, малой составляющей, которая бы не была столь привередлива, как азот и кислород, и поддалась бы воздействию более мягкого излучения. Такая компонента нашлась. Это окись азота NO, потенциал ионизации которой равен 9,6 эВ. Разница с 02 вроде бы и не очень большая, но какая принципиальная! Чтобы оторвать электрон от нейтральной молекулы NO, хватает энергии кванта излучения в линии Lα (λ =1216 Å). Один квант этого излучения несет энергию около 10 эВ (т. е. чуть-чуть больше, чем необходимо для ионизации молекулы NO, но совершенно недостаточно для ионизации молекулы 02 или тем паче N2), причем общее количество этих квантов, или интенсивность линии, очень велико и составляет около 3×1011 на квадратный сантиметр в секунду. Это большое число. Оно больше, чем полное количество квантов в области длин волн короче 1000 Å, ответственное, как мы знаем, за ионизацию всей ионосферы выше 90 - 100 км. Никаких неприятностей с поглощением у Lα тоже нет. Это излучение проникает почти без поглощения в столь волнующую нас область 70-80 км.

Получается, что подходящий ионизующий агент найден. Найдена и компонента, которая готова ионизоваться под действием этого агента. Вроде бы есть хороший источник ионизации: Lα плюс окись азота. В чем же, собственно, проблема? В количестве NO.

Проблема окиси азота тесно связана со многими обсуждаемыми здесь вопросами. Мы поговорим о борьбе мнений по поводу количества NO в следующей главе, однако частично коснуться этого мы должны уже сейчас.

Для простоты рассмотрим одну какую-нибудь высоту, скажем, 80 км. (Для других высот - 70, 75 или 85 км - проблемы принципиально останутся теми же, только сдвинутся все цифры). На этой высоте для поддержания дневной ионосферы необходимо иметь примерно 1 - 10 актов ионизации в 1 см3 в 1 с. Как получены эти цифры, станет ясно из дальнейшего. Такая скорость ионизации q при заданном потоке излучения в линии Lα (опять же для простоты станем считать его хорошо известным и неизменным во времени) на рассматриваемой высоте требует концентрации окиси азота порядка 107- 108 см-3. Много это или мало?

В этом и есть суть проблемы. Как увидим в следующей главе, именно вокруг этих величин и крутятся экспериментальные оценки количества NO в D-области, колеблясь от 106 до 109 см-3. Ясно, что наша проблема источника ионизации очень зависит от этих цифр. Если [NO]≈106 см-3 и меньше, как давали первые теории и эксперименты, ионизация окиси азота является слабым процессом и проблема источника ионизации на высотах 65 - 85 км встает во весь рост.

Именно эта ситуация подтолкнула ученых в середине шестидесятых годов к поискам новых путей поддержания ионизации в средней части D-области. Поскольку казалось, что все возможности электромагнитного излучения Солнца уже исчерпаны, обратились к потокам корпускул. Могут ли потоки энергичных заряженных частиц проникать в область D и вызывать там ионизацию? Выяснилось, что могут. И наиболее вероятный кандидат для этого - электроны с энергиями в десятки килоэлектронвольт. Такие электроны должны свободно проходить через более высокие слои атмосферы и тратить свою энергию (в основном на ионизацию) как раз на высотах 60 - 80 км. Дело лишь в том, существуют ли достаточные потоки таких электронов в атмосфере.

Некоторое время вопрос этот оставался открытым к соответственно оставалась нерешенной проблема ионизации области D. Затем провели измерения на ракетах (а это, конечно, далеко не просто) и получили, что потоки электронов с энергиями в десятки килоэлектронвольт существуют, но... их интенсивность в спокойных условиях на средних широтах недостаточна для поддержания ионосферы. На высоте 80 км, например, они способны обеспечить скорость ионизации около 0,1 акта см-3×с-1, а нужно, как мы знаем, 1 - 10 актов см-3×с-1.

Значит, в чистом виде идея не прошла. Но она, как и многие идеи такого рода, не была бесплодной. Потоки электронов указанных энергий признаны основным источником ночной ионизации в области D, когда отсутствует солнечное излучение. Эти потоки важны и для объяснения ионизации на высотах 60 - 80 км в возмущенных условиях, т. е. в полярной ионосфере и во время геомагнитных бурь в средних широтах. В этих случаях потоки электронов, тесно связанные с магнитным полем Земли, могут возрастать в десятки и сотни раз, что, видимо, и объясняет возрастание ионизации в D-области во время таких возмущений.

Американские ученые Хантен и Мак Элрой предложили еще один механизм ионизации в области 65 - 85 км, о котором ранее не думали. Мы знаем, что излучение с λ>1000 Å не в состоянии ионизовать обычную молекулу азота или кислорода - не хватает энергии кванта. Ну а если молекула необычная? Если она находится в возбужденном состоянии, т. е. сама несет некий запас энергии? Оказывается, в этом случае энергия кванта, способного ионизовать такую молекулу, может быть меньше, так как дефицит покрывается за счет внутренней энергии возбужденной молекулы.

Именно на этом простом принципе построена идея Хантена и МакЭлроя. В солнечном спектре есть интервал длин волн 1027 - 1118 Å, излучение которых относительно легко проникает на высоты области D. Само по себе это излучение не может ионизовать ни О2 ни N2 - не хватает энергии. Но от энергии кванта этого излучения (в среднем 11,5 эВ) до порога ионизации молекулы кислорода (около 12 эВ) относительно недалеко. Разница составляет менее 1 эВ. Чтобы ее компенсировать, нужна молекула О2, сама запасшая примерно такую энергию. Для этой роли вполне подходит молекулярный кислород, возбужденный в состояние 1Δg. He вдаваясь сейчас в детали, отметим, что энергия возбуждения для состояния 1Δg, т. е. энергия, которую запасает молекула кислорода, находясь в этом состоянии, чуть меньше 1 эВ. Вполне достаточно, чтобы покрыть дефицит и "поддаться" ионизации излучением 1027-1118 Å.

Роль описанного механизма в образовании области D зависит, естественно, от количества окиси азота. Мало NO - слаб механизм N0 плюс Lα, значит, ионизация О2 (1Δg) выходит на первое место. Много окиси азота - ионизация О2 (1Δg) играет более скромную роль.

По современным представлениям, окиси азота все-таки "много"- как раз те 107 - 108 молекул на кубический сантиметр, которые необходимы, чтобы объяснить ионизацию D-области механизмом N0 плюс Lα.

Однако, какова бы ни была роль ионизации молекул О2(1Δg) в общем ионизационном бюджете на высотах 65 - 85 км, этот механизм является в дневное время основным поставщиком ионов О2+, тогда как ионизация в линии Lα способна порождать лишь ионы N0+. Как мы увидим ниже, вопрос о том, какие именно ионы рождаются в первичном акте ионизации, может быть очень важен для понимания всего дальнейшего цикла ионных превращений.

Все, о чем мы говорили в этом параграфе, справедливо для, так сказать, нормальных условий, т. е. для области D в дневное время не в полярных районах и без особых возмущений. Ночная среднеширотная область D изучена пока плохо. И причина лежит прежде всего в трудностях измерений. Ведь ночью концентрации ионов во всем интервале высот 50 - 90 км много меньше (в 10 - 100 раз), чем днем, а концентрации электронов ниже некоторого уровня практически равны нулю. В этих условиях все трудности экспериментального характера, упомянутые в начале главы, возрастают во сто крат. Соответственно мы очень плохо представляем себе и фотохимию ночной области D. Ясно лишь, что основным кандидатом на роль главного источника ионизации являются потоки электронов, о которых .мы уже говорили выше. Так ли это, достаточно ли энергии этих потоков для поддержания ночной области D или, может быть, нужны какие-либо дополнительные источники вроде предложенной индийскими учеными ионизации коротковолновым излучением звезд? Это вопросы, над которыми специалисты по аэрономии работают сегодня.

Перейдем теперь к возбужденной D-области. Во время солнечных вспышек электронная концентрация на высотах 70 - 90 км возрастает в десятки, а иногда и в сотни раз. Не вызывает особых сомнений, что указанный эффект связан с сильным возрастанием интенсивности рентгеновского излучения Солнца во время вспышки. Эта интенсивность (особенно для самой жесткой, т. е. самой коротковолновой, части спектра) при сильной вспышке может увеличиться в тысячи раз и более. При этом, естественно, во много раз увеличивается проникновение рентгеновских лучей в область D, и они становятся главным источником ионизации на высотах 70 - 80 км, где в обычных условиях они "тушуются" на фоне более сильных механизмов NO плюс Lα и О2(1Δg) плюс излучение 1027-1118 Å.

Последнее обстоятельство крайне важно для изучения физики области D. Ведь рентгеновское излучение умеют достаточно надежно измерять с помощью искусственных спутников. И механизм ионизации таким излучением не требует присутствия экзотических компонент (NО или 02 (Å)) - он легко ионизует основные атмосферные невозбужденные компоненты азот и кислород. Что означает: в случае вспышки мы можем иметь достаточно точные и надежные величины скорости ионизации q для тех высот, где в обычных условиях в силу трудностей, описанных выше, таких величин пока нет. Как удается использовать этот факт, мы увидим ниже.

Рентгеновское излучение

Другой вид возмущения, характерный только для высокоширотной области D, - так называемое поглощение в полярной шапке. Это возмущение производят протоны высоких энергий, приходящие к Земле от Солнца. Магнитное поле Земли направляет такие протоны вдоль силовых линий в околополюсные зоны, где они и вторгаются в верхнюю атмосферу. Обладая высокой энергией (десятки миллионов электронвольт), протоны без особых эффектов проходят верхнюю часть ионосферы и резко увеличивают ионизацию на высотах D-области. И опять, как и в случае солнечных вспышек, важным является то обстоятельство, что ионизация протонами не зависит ни от N0, ни от О2 (рентгеновское излучение ), ни от других малых компонент - протоны ионизуют все частицы (в том числе и основные - N2 и О2), так сказать, невзирая на лица.

Вот как обстоит дело с источниками ионизации. Но знать источники (и даже скорости) ионизации еще не достаточно, чтобы понять поведение данной области ионосферы. Ионы и электроны, рожденные в первичном акте ионизации, оказываются затем вовлеченными в сложную сеть фотохимических процессов: реакции образования ионов-связок, рекомбинационных процессов и реакции с участием отрицательных ионов.

 

Не связывайтесь с ионами-связками!

Ох уж эти мне связки! Право, если бы от ученых, занимающихся той или иной проблемой, зависело, какие вопросы должны в эту проблему входить, стоило бы посоветовать специалистам по области D: "Не связывайтесь с ионами-связками!" Так спокойно было с ионизационно-рекомбинационным циклом процессов, пока в нем участвовали только обычные ионы. А со связками не оберешься хлопот!

Но совет советом, а эти самые ионы-связки так плотно вошли в физику D-области, что изучение последней без них немыслимо. Приходится все-таки ими заниматься, со всеми вытекающими отсюда трудностями...

Первые успешные измерения ионного состава (мы говорим пока только о положительных ионах!) в области D были проведены с помощью масс-спектрометра американским ученым Нарциси более 10 лет назад. И дали эти измерения весьма неожиданные результаты. Оказалось, что ниже 82 км (граница получилась довольно четкая) основными ионами являются не обычные молекулярные ионы N0+ (30 а. е. м., расшифровывается - атомных единиц массы) и О2+ (32 а. е. м.), а ионы с массовыми числами 19 а. е. м., 37 а. е. м., 55 а. е. м. и т. д. Что же это за ионы?

"Паспорта" этих ионов расшифровали не сразу. И далеко не сразу поверили в реальность их существования в ионосфере. Всегда ведь есть опасность, что то или иное химическое соединение может занести в верхнюю атмосферу сама ракета, на которой установлен масс-спектрометр. И мы будем напрасно ломать голову, объясняя природу это o соединения в атмосфере, а оно к атмосфере-то и отношения не имеет, а имеет отношение к какой-нибудь там смазке. Такое тоже бывает.

Но в случае данных Нарциси все оказалось не так. Результаты подтвердились в последующих экспериментах, скептицизм рассеялся, и стали искать расшифровку химических паспортов. Нашли. Выяснилось, что эти ионы представляют собой сочетание протонов и молекул воды: 19 а, е. м. = Н3О+ = Н+(Н20); 37 а. е. м. = Н502+ = Н+(Н20)2; 55 а. е. м. = Н702+ = Н+(Н20)3 и т. д. Получается последовательность ионов типа. Н+(Н20)n, где n=1, 2, 3, ..., причем, как мы видим, эти ионы состоят из протона (иона водорода) и связанных с ним одной или нескольких молекул воды. Отсюда и название: протоногидратные связки, или просто ионы-связки.

Позднее были обнаружены ионы-связки с другими составляющими, помимо Н+ и Н20,— NO+(H20), NO+(C02), NO+×N2 и т. д., затем стали обнаруживать совсем тяжелые ионы-связки типа Н+(Н20)n и NO+(H20)n с высокими (порядка 5 - 7) n и соответственно массовыми числами больше 100 а. е. м., а потом...

Потом возникло сомнение в том, что вообще все эти ионы - действительно те ионы, которые существуют в D-области. Появилось подозрение, что на самом деле в ионосфере на высотах 60 - 70 км присутствуют в основном очень тяжелые ионы-связки с массовыми числами, возможно, в сотни атомных единиц массы, которые в силу своей неустойчивости легко разрушаются в процессе измерений на составляющие их молекулы и значительно более простые ионы Н30+, Н502, NO+H2О и т. д., которые масс-спектрометр и регистрирует. Стали поговаривать даже о том, что ионная химия области D должна рассматриваться не на обычном молекулярном уровне, а на уровне заряженных пылинок или кристаллов, в которые превращаются ионы в процессе образования все более тяжелых и сложных связок.

Область D

Признаемся сразу, что этот вопрос в настоящий момент не решен до конца. Одни масс-спектрометристы целиком доверяют полученным концентрациям отдельных ионов-связок, другие считают, что разрушение происходит и в атмосфере доминируют тяжелые ионы-связки, третьи хранят осторожное молчание.

Что же делать в такой ситуации? Как использовать для изучения физики D-области богатейший материал масс-спектрометрических экспериментов, если неизвестно, что в этих экспериментах измерялось? Остается единственная возможность - не заниматься концентрациями отдельных ионов-связок, но рассматривать на каждой высоте суммарное количество связок и сравнивать его с количеством обычных ионов NО+ и О2+.

Именно на этом пути и были в последние годы получены интересные результаты, помогающие разобраться в клубке проблем физики D-области.

Оказалось, что если ввести параметр f+, характеризующий соотношение на данной высоте между общим количеством ионов-связок и количеством обычных ионов (f+=[CB+]/[NO+ + О2+], и проанализировать экспериментальные данные об ионном составе, то получается интересная закономерность.

Величина f+ на фиксированной высоте очень сильно зависит от уровня ионизации, т. е. от скорости ионизации q и соответствующей равновесной концентрации электронов [ё]. На h = 80 км, например, величина f+ изменяется (см. рисунок на стр. 95) от 102 ночью или во время полного солнечного затмения (в этих случаях q и [е] очень малы) до примерно 1 днем (обычные q и [е]) и до 10-2 во время сильных возмущений типа поглощения в полярной шапке (когда q и [е] сильно возрастают). Изменение, что и говорить, существенное - на 4 порядка величины (в 10 тысяч раз)!

Концентрация электронов

Таким образом, ночью на 80 км доминируют ионы-связки, а доля ионов NО+ и О2+ не превышает 1%. Днем и те и другие существуют в примерно равной пропорции, а во время возмущений доля ионов-связок становится мала (проценты) и доминируют обычные ионы. Чем сильнее область D "освещена" ионизующим излучением, тем ниже отступает область ионов-связок. Такое впечатление, что ионы-связки "не любят" освещенный период и предпочитают "держаться в тени".

Давайте посмотрим, какие же заключения можно сделать из этих выводов, основанных на экспериментальных данных. Один из выводов касается эффективного коэффициента рекомбинации - мы поговорим о нем в следующем параграфе. А сейчас обсудим, что дает обнаруженное изменение f+ для понимания механизмов образования ионов-связок.

Как образуются ионы-связки? С какого процесса начинается цепочка "связкообразования", как одни связки переходят в другие? На все эти вопросы необходимо иметь ответы, если мы хотим (а мы, несомненно, хотим!) до конца понять физику ионосферы на высотах, где доминируют ионы-связки. Но однозначных ответов, увы, пока нет, хотя нет недостатка в очень сложных и громоздких схемах, включающих десятки реакций. Да и как могут быть однозначными ответы, если схемы преобразования ионов-связок включают такое большое число реакций, многие из которых не исследованы в лаборатории. И если сами концентрации отдельных ионов-связок известны нам плохо из-за возможных эффектов разрушения во время измерений.

И здесь снова помогает подход, о котором мы рассказывали. Рассмотрим просто все ионы-связки вместе, как нечто единое, не занимаясь их внутренними "проблемами", но противопоставляя их обычным ионам NО+ и O2+.

Ионные связки

Чтобы не говорить все время "обычные ионы N0+ и О2+, назовем их еще "первичными ионами". Ведь именно они образуются в результате первичных актов ионизации, а ионы-связки - с другой. Теперь схема преобразований положительных ионов приобретает вполне читаемый вид (см. рисунок) - на ней показаны процессы, которые мы встречали. Стрелки gNO+ и gО+ олицетворяют образование соответствующих ионов в актах ионизации. Стрелка NO, N2 соответствует перекачке О2+ в NО+ по ионно-молекулярным реакциям с N2 и N0. Диссоциативная рекомбинация N0+, O2+ и связок показана соответственно αNO+, αО2+, αсв+. И наконец, два канала образования ионов-связок (из О2+ и N0+) обозначены как ВО2+ и BNO+. Cхема получилась действительно простая. И соотношения, которые легко из нее вывести, тоже оказываются несложными.

Не приводя их здесь, отметим лишь выводы, которые из них следуют.

Во-первых, в рамках этой схемы величина f+ получается обратно пропорциональной электронной концентрации. Вот и качественное объяснение уменьшения f+ с ростом q и [е] обнаруженного по экспериментальным данным.

Во-вторых, выясняется, что роль каналов ВО2+ и BNO+ В образовании связок различна в разных условиях. В невозмущенных условиях образование ионов-связок идет главным образом из ионов N0+, канал ВО2+ мало существен. В возмущенных условиях(поглощение в полярной шапке, солнечная вспышка) каналы меняются ролями и на первое место выходит образование ионов-связок из О2+. Происходит это в основном потому, что эффективность канала ВO2+ не зависит от условий, а величина BNO+ уменьшается с ростом электронной концентрации (примерно, как [e]-1).

Абсолютная величина

Таким образом, из экспериментальных данных с помощью описанной схемы мы получили представление об относительной эффективности и изменчивости двух каналов образования ионов-связок из первичных ионов. Можем мы из тех же данных оценить и абсолютные величины ВO2+ и BNO+. НО вот сказать, какие конкретные химические реакции стоят за этими каналами, мы пока точно не можем. Сведений об эффективности различных реакций - возможных кандидатов на роль главных создателей ионов-связок все еще очень мало.

Это, так сказать, качественная картина, набросанная грубыми мазками. Ну а для количественного анализа, для уточнения деталей нужно еще много работы. Как с лабораторными данными, так и с результатами измерений в ионосфере.

 

Положительная сторона отрицательных ионов

Электрон - легкая частица, положительный ион - тяжелая (отношение масс иона и электрона равно примерно 104). Так уж повелось, что в большей части ионосферы положительные частицы тяжелые, а отрицательные - легкие. Но электрону не нравится быть легкой частицей. Он стремится натолкнуться на одну из окружающих нейтральных частиц и примкнуть к ней. Если это ему удается, образуется отрицательный ион. Это уже тяжелая, отрицательно заряженная частица.

В книге "Химия, атмосфера и космос" в разделе "Что такое отрицательные ионы?" рассказано о том, как в принципе образуются отрицательные ионы, какие именно первичные ионы и в результате каких процессов могут формироваться в земной ионосфере и на каких высотах. Не повторяя здесь всего этого материала, отметим лишь кратко, что отрицательные ионы образуются в области D в результате тройной реакции

Тройная реакция. Формула 32

и поскольку скорость этой реакции α [02]2[е] зависит от плотности атмосферного газа в квадрате, концентрация отрицательных ионов должна резко уменьшаться с высотой.

Коронный вопрос физики нижней ионосферы - это вопрос о λ, т. е. об отношении концентраций отрицательных ионов [Х-] к электронной концентрации [е]. Где, если мы движемся сверху вниз, кончается область легких отрицательных частиц и начинается царство тяжелых? Мы знаем, что на высоте 100 км отрицательных ионов практически нет (λ очень мало). Мы уверены, что на 50 - 60 км отрицательные ионы доминируют над электронами (λ>>1).

Но вот что происходит на этих 40 - 50 км? Где та высота, на которой сравниваются концентрации отрицательных ионов и электронов (λ =1)?

Много лет ученых занимает эта проблема. Много попыток сделано ее решить. Много в результате получено кривых распределения параметра λ с высотой. И среди них... ни одной надежной. Ибо проблема определения количества отрицательных ионов очень сложна.

В принципе возможны два пути ее решения - экспериментальный и теоретический, но...

Мы договорились не вдаваться в технические проблемы аэрономических измерений. Поэтому просто констатируем, что прямо измерить, количество отрицательных ионов [Х-] в области D еще никому не удалось. Видимо, сколь-нибудь надежного прибора для этого просто пока не существует. Но зато сколько было предпринято попыток получить [Х-] из измерений двух других концентраций: электронов и положительных ионов!

Поскольку в ионосфере всегда выполняется условие нейтральности, т. е. равенства количеств положительно и отрицательно заряженных частиц в единичном объеме

Условие нейтральности. Формула 33

достаточно измерить [Х+] и [е], чтобы получить [Х-].

Но с измерением электронной концентрации и особенно концентрации положительных ионов имеются трудности. Единственный метод измерения [Х+]- зонды, устанавливаемые на ракете. О проблемах интерпретации таких измерений мы уже говорили. Ну а к чему приводят результаты зондовых измерений [X+], если мы им верим?

Оказывается, зондовые измерения свидетельствуют в пользу высоких величин λ в области D. Если мы сопоставим средние значения полученных зондовым методом величин [Х+] со средними значениями электронной концентрации, скажем, для дневных условий, то получим (см. рисунок), что [Х+] заметно превышает [е] до высот 85 - 90 км. Но это означает, что практически во всей области D доминируют отрицательные ионы и величина λ много больше 1. Так, получается, что на высоте 80 км λ≈10 (электронов на порядок меньше, чем отрицательных ионов), на высоте 75 км К колеблется от 13 до 62 (!) и т. д.

Зондовое измерение

Так обстояло дело несколько лет назад. Высокие величины [Х+] и X были приняты многими учеными и обсуждались даже возможные процессы образовавания столь большого количества отрицательных ионов. Однако в последние годы концепция высоких λ терпит поражение. С одной стороны, все, что мы знаем о физике D-области, говорит против высоких концентраций Х- выше 70-75 км. Целый ряд косвенных оценок (например, по эффективному коэффициенту рекомбинации) показывает, что днем в невозмущенной ионосфере концентрации электронов и отрицательных ионов сравниваются (λ≈1) на высоте около 75 км. В силу довольно быстрого падения величины λ с ростом высоты это означает, что днем в спокойных условиях уже на 80 км роль отрицательных ионов мала (λ<<1).

В то же время на высоте 70 км отрицательные ионы уверенно доминируют (λ>1). Высоты 80 и 70 км обычно используют как своего рода характерные высоты в фотохимии D-области без учета отрицательных ионов (так мы делали в предыдущем параграфе) или с учетом таковых (так мы будем делать здесь и в следующем параграфе).

Пошли навстречу концепции низких X и экспериментаторы. В последние годы с помощью усовершенствованной зондовой методики стали получать более низкие величины (Х+], не дающие такого сильного различия между [Х+] и [е], а значит, и не требующие таких высоких λ.

Впрочем, относительно высокие величины λ возможны в ночное время, в сумерках и во время затмений. Поскольку в этих условиях разрушение отрицательных ионов идет медленнее, чем днем, возможно накопление Х- до более высоких, чем днем, концентраций. Так, в сумерках на высоте 80 км величина λ может быть близка к 1, а ночью и во время полной фазы солнечного затмения может составлять даже несколько единиц.

Мы видим теперь, как обстоит дело с общим количеством отрицательных ионов, т. е. с абсолютными концентрациями Х- в области D. Но кроме общего количества хорошо бы еще знать и химический состав отрицательных ионов.

Увы, дело с измерением состава отрицательных ионов обстоит плохо. Ко всем трудностям исследования ионного состава в случае положительных ионов добавляется еще то, что теперь речь идет об отрицательных ионах, а измерять концентрации тяжелых отрицательных частиц труднее, чем положительных.

Тем не менее первые масс-спектрометрические эксперименты по измерению состава отрицательных ионов были проведены, и даже не одной, а сразу двумя группами ученых - в ФРГ (Арнольд и Кранковский) и в Соединенных Штатах (Нарциси). Что же они обнаружили?

Обнаружили очень сложную картину. Гораздо более сложную, чем ожидали. Было очевидно, что в D-области должны быть ионы О2- поскольку они образуются в первичной реакции (32). Ожидали в небольшом количестве ионы О-. Можно было ожидать и появления таких ионов, как NO2-, NO3-, CO3-.Ho кто мог предсказать существование в ионосфере ионов НСО3-, 02-(Н2О)2, N02-(HN02) и т. д.! В таблице приведен список всех ионов (с указанием массового числа и вероятного химического отождествления), зарегистрированных в одном из экспериментов группы ФРГ. Как видим, коллекция более чем экзотических ионов весьма внушительная.

Состав отрицательных ионов, обнаруженных в ионосфере

Дело, однако, не только в необычности и сложности обнаруженных отрицательных ионов. Плохо то, что нет повторяемости, воспроизводимости результатов. Измерения Нарциси дают в основном другие массовые числа (а значит, и другое отождествление) сложных ионов, чем измерения Арнольда и Кранковского. Результаты обеих групп расходятся и в том, какие ионы доминируют на каких высотах. Есть различие и в высотном ходе. У Арнольда и Кранковского выше 75 - 77 км наблюдается падение концентраций отрицательных ионов, а Нарциси видит слои отрицательных ионов на высотах 88 - 92 км. Наконец, нет единства даже в вопросе о том, все ли зарегистрированные отрицательные ионы относятся к атмосфере. Например, ионы с массовыми числами 35 и 37 немецкая группа отождествляет с изотопами хлора и считает ионами атмосферного происхождения (при этом возникает очень интересная проблема - откуда этот хлор взялся на 60 - 70 км), тогда как Нарциси относит эти ионы к загрязнению ракетой.

Словом, картина пока довольно безрадостная. Нет согласия между экспериментаторами, значит, нет надежных экспериментальных данных, и мы не имеем ни достоверной картины состава отрицательных ионов, ни даже опорных точек, чтобы проверить теоретические модели Х-.

Разобравшись в том, как обстоит дело с экспериментальными данными, уместно теперь задать вопрос, а что гласит теория образования отрицательных ионов -можем ли мы что-либо добавить на основании фотохимии отрицательных ионов?

Признаемся сразу, что проблема фотохимии отрицательных ионов пока далека от своего решения. Многие реакции еще не исследованы в лаборатории. А многие даже неизвестны. Ведь в существующие сегодня схемы не включаются некоторые ионы (в основном тяжелые ионы-связки), приведенные в таблице. Но эти ионы существуют, а значит, существуют и соответствующие реакции их образования и гибели. Просто мы о них пока ничего не знаем. Тем не менее интенсивно ведутся попытки построить теоретические схемы преобразования отрицательных ионов и понять, какие из наблюдаемых экспериментальных фактов эти схемы могут объяснить.

Мы рассмотрим теперь возможности фотохимической теории отрицательных ионов. Как и в случае положительных ионов, мы опишем упрощенную схему, позволяющую наиболее острые вопросы обсудить, избегая громоздких схем со множеством реакций, требующих детальных пояснений.

В нашей схеме будут фигурировать наряду с электронами два типа отрицательных ионов: "ионы кольца" и "стабильные ионы". Эти названия были введены несколько лет назад автором по следующим причинам. Ионы первой группы очень быстро переходят друг в друга по ионно-молекулярным реакциям (например, О2- - в О3-; и в О4; О3- - в СО3-; СО- - снова в О2- и т. д.). При этом все время идут быстрые реакции прилипания и отлипания, поэтому электроны как бы движутся по кругу: от свободного состояния к иону О2-, затем О3-, затем к СОГ, затем снова к О2- и вновь к свободному состоянию. При этом указанные реакции столь эффективны, что именно они определяют время жизни (а следовательно, и концентрации) ионов кольца, а, скажем, процессы взаимной нейтрализации на их концентрации не влияют. Как показывают оценки, концентрации таких ионов, по крайней мере в дневной области D, малы - не они выступают в роли основных отрицательных ионов, однако их роль как промежуточного этапа всего ионизационно-рекомбинационного цикла процессов очень велика.

Стабильные ионы названы так потому, что для них, видимо, нет столь быстрых процессов перехода друг в друга или отделения электрона (отлипания). Основным процессом гибели для них является взаимная нейтрализация с положительными ионами. Стабильные ионы должны составлять подавляющее большинство отрицательных ионов в D-области. Наиболее вероятные кандидаты в стабильные ионы - NO2-, NO3- и отрицательные ионы-связки, о которых пока известно мало.

В нашу схему включены четыре принципиальных процесса. О прилипании мы уже говорили. Оно идет в основном по реакции (32). На всякое прилипание должно существовать отлипание. Есть оно и в нашей схеме. Его обеспечивают два очень важных процесса отлипания от ионов О2- в реакциях с атомным кислородом и возбужденными молекулами кислорода.

Здесь уместно сделать маленькое отступление. Что значит "отлипание"? Это значит отрыв электрона от нейтральной частицы. Но электрон в отрицательном ионе не просто приложен к нейтральной частице, он с ней связан некоторой энергией. Эта энергия связи называется электронным сродством S данной нейтральной частицы и выражается обычно в электронвольтах. Следовательно, чтобы произошло отлипание, нужно затратить энергию, равную S. Но где ее взять? Если отлипание происходит под действием излучения (фотоотлипание), необходимую энергию обеспечивает квант излучения. В случае включенной в схему реакции

Формула 34

для отрыва электрона используется энергия возбужденной молекулы О2* (в правой части реакции возбужденных частиц нет - энергия ушла на разрушение О2-).

Ну а в реакции С2- с О? У атома О ведь нет дополнительной энергии. Оказывается, в этой реакции

Формула 35

отрыв электрона происходит за счет энергии диссоциации молекулы О3.

Действительно, ведь, чтобы разрушить молекулу озона на О2 и О, надо затратить энергию. А при создании (ассоциации) О3 эта энергия должна выделиться. Вот она-то и расходуется на отлипание электрона, а вся реакция носит поэтому название ассоциативного отлипания.

Итак, "вернемся к нашим баранам". Следующий тип процессов в рассматриваемой схеме - ионно-молекулярные реакции. Они аналогичны ионно-молекулярным реакциям положительных ионов, хорошо нам теперь известным, и играют в схеме ионных преобразований примерно такую же роль, т. е. в конечном итоге переводят первичные ионы ОГ во вторичные, более стабильные ионы (NО2-, NО3- и т. д.), которые участвуют в процессах рекомбинации и образования ионов-связок. И наконец, последний тип процессов - взаимная рекомбинация положительных и отрицательных ионов. Наибольшие трудности связаны с поиском ионно-молекулярных реакций, эффективно переводящих ионы кольца в стабильные ионы. В качестве решения проблемы предложены две похожие реакции:

Формула 36

Формула 37

Их главное достоинство состоит в том, что в них участвует молекулярный азот - основная нейтральная компонента на высотах области D. Их главный недостаток в том, что этих реакций никто никогда не регистрировал в лаборатории. Но достоинство в данном случае оказывается сильнее. Молекулярного азота так много, что для нашей схемы достаточно, чтобы реакции (36) и (37) шли с очень низкими константами скорости (≈10-14-10-15 см3×с-1). А реакции отрицательных ионов с такими низкими константами в лаборатории пока измерять не могут - это ниже чувствительности обычных лабораторных методов. Так что приходится принять реакции (36) и (37) "на веру", исходя из логики самой схемы. Верно ли наше предположение, должно ответить будущее.

Таково на сегодня положение дел с фотохимической теорией отрицательных ионов. Много неясностей, есть элемент произвола, есть белые пятна (например, реакции образования ионов-связок). Возникает естественный вопрос: ну а есть ли основания все же об этой схеме говорить? Есть ли хоть какие-нибудь экспериментальные подтверждения ее разумности?

Мы знаем, что на масс-спектрометрические измерения ионного состава в данном случае надеяться нечего. Слишком неясно все у самих экспериментаторов. Но есть другие экспериментальные факты, которые косвенно поддерживают разумность отдельных элементов нашей схемы. Самый интересный из них связан с отождествлением основного отрицательного иона в области D. Эта проблема описана в книге "Химия, атмосфера и космос" под рубрикой "Загадочный икс минус". Из наблюдений во время поглощения в полярной шапке следует, что основной отрицательный ион на высотах 60 - 80 км должен иметь высокое электронное сродство, больше 3 эВ. И следовательно, ни 07, который в те времена считался главным претендентом на роль основного иона, ни ряд других ионов (О4-, О3-, СО4-) этому требованию не удовлетворяют. В нашей схеме этой проблемы нет. Основными ионами (ионами с наибольшей концентрацией) являются ионы NО2- и NО3-, а их электронное сродство, согласно лабораторным измерениям, как раз достаточно высоко (3,5 - 5 эВ).

"Другой экспериментальный факт - соотношение день-ночь. Ночью на фиксированной высоте λ выше, чем днем (это известно надежно). Почему? Схема дает ясный ответ. Потому, что ночью резко уменьшается концентрация О и О2* (это тоже известно надежно), а именно эти нейтральные компоненты отвечают в нашей схеме за отлипание электронов. Меньше [О] и [О2*]→ слабее разрушение отрицательных ионов- больше [Х-] и меньше [е]- выше величины λ.

В книге "Химия, атмосфера и космос" описана еще одна загадка (в то время) отрицательных ионов в области D. Она тоже связана с отлипанием электронов. Из экспериментов во время поглощения в полярной шапке давно установили, что отлипание электронов происходит с высокой эффективностью, которая в 1000 раз выше, чем эффективность известного тогда процесса отлипания в реакции О2- с молекулой О2 (невозбужденной). В этом и состояла проблема в 1968 году. Наша сегодняшняя схема полностью решает эту проблему. Отлипание от О2- в реакции с возбужденными О2 и ассоциативное отлипание с атомами О вполне обеспечивают наблюдаемую во время поглощения в полярной шапке скорость отлипания электронов.

Последний пример хорошо иллюстрирует одно важное обстоятельство. Не будь проблемы отлипания в D-области, вряд ли стали бы так активно исследовать в лаборатории реакции отлипания от 07. И возможно, еще долго науке ничего не было бы известно о таких процессах, как 02-+О2* или О2-+О, равно как и о ряде других процессов, позволивших построить рассмотренную здесь схему. А сейчас, поскольку в ракетных экспериментах обнаруживают отрицательные ионы с большой массой, активно ведутся поиски процессов связкообразования с участием отрицательных ионов. Таким образом, аэрономические проблемы физикохимии отрицательных ионов в области D стимулируют развитие экспериментальных и теоретических исследований ионной кинетики. И в этом, так сказать, положительная сторона существования в земной ионосфере отрицательных ионов. Отрицательные же стороны должны быть очевидны для всех, кто прочтет эту главу...

 

И вновь о коэффициенте рекомбинации

Мы уже знаем о "важном параметре с длинным названием" - эффективном коэффициенте рекомбинации α'. До сих пор он интересовал нас только выше 100 км, в областях Е и F. Настало время поговорить об этом параметре в сложных условиях D-области. В том, что условия сложные, убеждает все сказанное ранее в данной главе. Насколько при этом все непросто и с эффективным коэффициентом рекомбинации, должен показать этот параграф.

Прежде всего, сложности начинаются с обозначений. Выше 100 км эффективный коэффициент рекомбинации обозначают α' или в худшем случае (если есть проблемы с печатанием штриха) αэф. И никому не придет в голову называть его, скажем, φ или k.

А вот в области D существуют два обозначения: α' (или, что то же, αэф) и ψ. Но дело, конечно, не в самом факте существования двух букв - символов для одного параметра (это-то пережить можно!), а в том, что разные авторы вкладывают разный смысл в само понятие "эффективный коэффициент рекомбинации" и связывают различие в смысле с различием в обозначениях. Чтобы объяснить это подробнее, вернемся на время к простенькой математике уравнения непрерывности.

Уравнение непрерывности для электронов в случае отсутствия отрицательных ионов и при пренебрежении динамическими процессами имеет вид

Формула 38

Здесь за α' стоит совокупность процессов диссоциативной рекомбинации, приводящих к гибели заряженных частиц.

В области D время жизни заряженных частиц за счет очень быстрых фотохимических процессов мало. А значит, динамика не может угнаться за фотохимией и в уравнении (38) ее можно не учитывать. Но вот отрицательные ионы... Они-то и порождают, как мы знаем, добрую половину проблем D-области. Как они повлияют на вид уравнения (38)? Ведь теперь существуют уже два процесса гибели заряженных частиц: известная нам диссоциативная рекомбинация и взаимная нейтрализация положительных и отрицательных ионов.

Оказывается, уравнение непрерывности теперь выглядит несколько иначе:

Формула 39

Здесь все обозначения нам знакомы, кроме авз - коэффициента скорости той самой реакции взаимной нейтрализации между Х- и Х+. Уравнения (38) и (39) очень похожи по форме. Разница лишь в том, что в последнем случае перед множителем [е]2 стоят два множителя, а не один. И если один из множителей обозначить α', то подобие двух формул будет почти полное. Вот только какой из множителей назвать эффективным коэффициентом рекомбинации и как обозначить? Тут-то и зарыта собака. Одни исследователи, сохраняя единство формы записи уравнения непрерывности для всех ионосферных областей, называют эффективным коэффициентом рекомбинации и обозначают α' все выражение (1+λ) (α*+λαвз), стоящее перед [е]2. В этом случае, естественно, уравнение (39) просто превращается в уравнение (38). Другие же исследователи всю величину (1+λ) (α*+λαвз) обозначают ψ, а под α' понимают только(α*+λαвз), причем разные авторы, использующие эти обозначения, не сходятся в том, какой из параметров (α' или ψ)) следует считать (и называть) эффективным коэффициентом рекомбинации. Представляете, какая получается путаница! Чтобы избежать ее по крайней мере на этих страницах, мы будем следовать первой из описанных точек зрения и считать, что эффективный коэффициент рекомбинации α' равен (1+λ) (α*+λαвз).

Покончив для себя с терминологической путаницей, давайте вернемся к физике. О чем говорят нам уравнения (39) и (38)? О том, что в равновесных условиях (d[e]/dt=0) электронная концентрация на заданной высоте в области D должна быть пропорциональна корню квадратному из g. Если, конечно, эффективный коэффициент рекомбинации на этой высоте не меняется с изменением условий. Долгое время так и считали, поскольку по сути своей α должен являться константой, характеризующей данную высоту. Однако новые данные принесли и новые идеи...

Попробовали сопоставить изменения во времени g и [е] на фиксированных высотах (естественно, для этого надо уметь одновременно измерять оба параметра - задача очень непростая!). И, о ужас, получили совсем другую связь между [е] и g, чем ожидалось. Не g∞[e]2 (как дает (39) при d[e]/dt=0 и α' = const), а g∞[e]. И вывод с большой точностью получился одинаковый, хотя разные авторы, проводившие такие сравнения, использовали разные условия и различные наборы данных о g и [е]. Никуда не денешься, для высот 65-85 км получается линейная связь между скоростью ионизации и электронной концентрацией. Как же это увязать с уравнением (38)? Возможность только одна - предположить, что α' не постоянен, а зависит от условий и изменяется (на заданной высоте) примерно обратно пропорционально электронной концентрации (α'∞1/[е]).

Вывод, на первый взгляд, весьма одиозный. Однако, оглядевшись вокруг, ученые нашли этому выводу ряд подтверждений среди других фактов. Например, во время солнечных вспышек.

Известно, что на солнечные вспышки сильнее всего реагирует именно область D. Испущенное во время вспышки мощное рентгеновское излучение относительно свободно проходит основную часть ионосферы, но, поглощаясь на высотах 70 - 90 км, приводит к резкому увеличению ионизации на этих высотах. Сам эффект был известен давно. Но лишь относительно недавно, когда стали контролировать поток рентгеновского излучения Солнца на искусственных спутниках Земли, удалось сделать количественное сравнение степени возрастания g и [е] (большой вклад в это внесли индийский ученый А. Митра и его сотрудники).

Оказалось, что эффективный коэффициент рекомбинации, вычисленный из

Эффективный коэффициент рекомбинации

по наблюденным g и [е], во время вспышки не остается постоянным. Величина α=g/[e]2 падает с развитием эффекта вспышки (см. рисунок) и достигает минимума примерно тогда же, когда наблюдается максимум электронной концентрации. Значит, мы приходим к тому же выводу, что и раньше (но теперь для специфических условий вспышки, где надежность экспериментальных данных выше), - с увеличением [е] падает α'. Значит, изменчивость α' и обратная зависимость его от изменения [е] - факт, видимо, реальный.

Вспышка

Как всегда, обнаружив экспериментальный факт, обратились к теории. Что она может на это сказать? Может ли (и если да, то чем) быть вызвано изменение α' в зависимости от условий? Теория ответила, что этот вопрос должен по-разному решаться на высотах, где есть отрицательные ионы и где их практически нет. Следуя за ней, и. мы рассмотрим вопрос отдельно для верхней и для нижней частей области D, взяв, как мы договорились, в качестве характерных высот 80 и 70 км соответственно.

Итак, 80 км. Отрицательных ионов (по крайней мере, днем) нет - λ≈0. Из всех членов в выражении

Формула 40

остается только α*.

Вполне естественно, эффективный коэффициент рекомбинации определяется константой диссоциативной рекомбинации положительных молекулярных ионов (чему же еще рекомбинировать, если нет отрицательных ионов!). Но каких именно "положительных молекулярных" ионов? Ведь на высоте 80 км наряду с обычными ионами N0+ и О2+ есть и ионы-связки!

Здесь-то и лежит ключ всей проблемы. Ионы-связки, согласно лабораторным данным, рекомбинируют с электронами гораздо охотнее ионов NO+ и О2+, причем чем сложнее связки, тем выше соответствующая константа а*. В пределе при массе ионов-связок около 100 а. е. м. и выше величина α* стремится к 10-5 см3×с-1. Напомним, что в реальной D-области существуют, скорее всего, именно сложные ионы-связки, поэтому можно эту величину α*св =10-5 см3×с-1 принять для наших рассуждений как характерную величину константы диссоциативной рекомбинации ионов-связок.

Ну а величины α* для обычных ионов обсуждались в предыдущих главах. С учетом температуры области D величина α* для нормальных ионов будет равна примерно 5×10-7 см3×с-1. Разница в константах диссоциативной рекомбинации нормальных ионов и ионов-связок, как видим, очень велика - в 20 раз.

Вот где возможное объяснение изменчивости α' на 80 км! Оно - в изменчивости ионного состава, т. е. соотношения между ионами-связками и нормальными ионами. Захватят власть ионы-связки ([св+]≈[Х+])- и эффективный коэффициент рекомбинации определяется диссоциативной рекомбинацией этих ионов α'≈α*cв =10-510-5 см3×с-1. Доминируют нормальные ионы ([NO+ + O2+]=[Х+])- и α'≈α*нор=5×10-7 10-5 см3×с-1. Между этими крайними случаями возможны, конечно, все промежуточные. Насколько реальна подобная изменчивость, мы уже знаем, поскольку об этом рассказывалось ранее. Правда, измерить ионный состав D-области во время вспышки пока никто не мог (да и не пытался, вероятно, слишком сложно это - поймать нужный момент). Но вот анализ всех измерений ионного состава в разных условиях нам тут весьма поможет. Ведь этот анализ как раз выявил падение относительного количества ионов-связок f+ с ростом электронной концентрации. Качественно это именно то, что нам нужно. Чем выше [e], тем меньше ионов-связок, а значит, тем меньше α'. И наоборот.

Доминмрывание ионов

Итак, все очень хорошо сходится. И уменьшение g/[e]2 во время вспышек, и линейная связь между g и [е] в верхней части области D объясняются наблюдаемым экспериментaльно изменением ионного состава - уменьшением количества быстро рекомбинирующих ионов-связок при увеличении g и [е]. Это очень важный вывод. Он позволяет теперь всю совокупность данных о g, [e] и ионном составе рассматривать под единым углом зрения, соединить их в одну проблему. Решение проблемы упирается, очевидно, в вопрос о том, почему соотношение между обычными ионами и ионами-связками меняется так, а не иначе. А это в свою очередь связано с поиском путей образования ионов-связок из О2+ и NO+, о чем мы уже рассказывали в этой главе. Таким образом, изучение фотохимических реакций образования ионов-связок становится ключевым моментом для всей проблемы цикла ионизационно-рекомбинационных процессов в верхней части D-области.

Ну а может ли α' на высоте 80 км быть больше 10-5 см3×с-1? Оказывается, может. Но только если в игру вступят отрицательные ионы. Они, как мы говорили, могут играть некоторую роль на этой высоте в сумерках и ночью. Если λ>1, то, согласно уравнению (40), эффективный коэффициент рекомбинации будет в (1+λ) раз больше, чем величина α*. Таким образом, в некоторых случаях не без помощи отрицательных ионов величина а! на высоте 80 км может достигать 10-4 см3×с-1.

Внимательному читателю уже, вероятно, ясно, как должен решаться вопрос о причинах изменения эффективного коэффициента рекомбинации α' в нижней части D-области. Изменением состава положительных ионов тут делу не поможешь. Практически при всех условиях доминируют ионы-связки, поэтому α* в выражении (40) можно считать почти постоянным и равным α*св. Но зато появляется другой фактор, который может изменяться, - λ. Вот его то и обвиняют в наблюдаемой изменчивости α' на высоте 70 км. Конкретно это означает, что во время солнечной вспышки на высоте 70 км величина λ должна (чтобы объяснить уменьшение α') падать примерно в 5 раз.

Следующий естественный вопрос: что же вызывает падение величины Я? Но для ответа на него необходимо построить полную схему преобразования отрицательных ионов. А это, как мы знаем из предыдущего параграфа, дело, увы, пока далекое от завершения...