Дикий мир нашего тела. Хищники, паразиты и симбионты, которые сделали нас такими, какие мы есть

Данн Роб

Часть III

Чем занят ваш червеобразный отросток вместе с миллионами бактерий в вашем кишечнике и как они изменились в ходе эволюции

 

 

Глава 5

Несколько вещей, которые хорошо известны вашему кишечнику, но которые игнорирует ваш мозг

Стоит нам научиться убивать, как мы тут же начинаем претворять это умение в жизнь. Мы вонзали копья с каменными наконечниками в мастодонтов. Мы преследовали саблезубых тигров, свирепых волков и американских гепардов, охотившихся на вилорогих антилоп. Преследование горячило нашу кровь. С появлением ружей мы стали делать эту работу еще более качественно, уменьшив популяцию волков и медведей до одной сотой от ее прежней величины. Истребив крупную дичь, мы стали охотиться на животных помельче – например, на странствующих голубей. Мы убивали их так, как некоторые до сих пор продолжают убивать голубей и ворон, – во-первых, потому что это легко, а во-вторых, потому что мы просто имели возможность это делать. Страсть к охоте намного сильнее потребности в еде. Потом мы взялись за уничтожение совсем мелких организмов – мы изобрели пестициды и засыпали ими миллионы акров. Мало того, мы начали опрыскивать дустом собственные тела. Мы любовно втирали ДДТ в волосы собственных детей. Придумав химические соединения для уничтожения микробов, мы начали заполнять этими смесями свои тела. С одной стороны, мы не чужды живописи и охотно умиляемся нарисованным пейзажам, мы даже не прочь полюбоваться живой природой, но, с другой стороны, нет ничего более естественного для нашего мозга, чем стремление к избавлению от всякой живой природы.

Каждая новая технология, использованная нами в борьбе с другими видами, была, если можно так выразиться, антибиотиком (точный перевод этого термина с греческого – «против жизни»). Правда, надо сказать, что ни одна технология не позволила нам уничтожить все живое, за которым мы охотились. Всегда находились виды, которые мужественно противостояли нашим усилиям и даже получали преимущество перед другими видами – например, сорняки перед культурными растениями, сильные животные перед слабыми. Убив камнями, копьями и ружьями крупных хищников, мы облегчили жизнь хищникам мелким.С помощью ДДТ мы убили вредителей на полях, в лесах и в наших домах, но в то же время посодействовали размножению более коварных и устойчивых видов других вредителей. Ради уничтожения сорняков мы поливали пестицидами поля и дворы, но на грядках и в трещинах цемента остались расти невероятно устойчивые и выносливые растения – одуванчики и амброзия, растения, процветающие наперекор трудностям и лишениям, тянущиеся к солнцу, стряхивая асфальт со своих листьев.

Если вилорогие антилопы – результат эксперимента с удалением из среды хищника, то мы сами – результат куда более обширного эксперимента. Эксперимента, в ходе которого из окружающей нас среды были удалены не только хищники, но также змеи, кишечные глисты и даже микробы, и теперь остается только наблюдать, что же из этого получится. По силе внутреннего и внешнего воздействия на наши организмы этот эксперимент не имеет себе равных. Первым делом мы избавились от глистов, а сравнительно недавно мы принялись избавляться (или пытаться это делать) от бактерий и других одноклеточных форм жизни – на этот раз с помощью антимикробных средств. Эти средства и есть то, что мы обычно имеем в виду, произнося слово «антибиотик». В узком смысле антибиотики – это соединения, продуцируемые грибами, например хлебной плесенью, антибактериальные свойства которой были случайно открыты великим Александром Флемингом. Было бы справедливо разобраться, какие виды одноклеточных антибиотики убивают, а какие виды благодаря их применению начинают процветать. В конце концов, все мы принимаем антибиотики. Если даже вы не делаете этого в связи с заболеванием, вы все равно употребляете их внутрь. Антибиотики содержатся в пище и напитках. Их добавляют к съедобным растениям, кормят ими коров, свиней и других домашних животных – как для лечения инфекций, так и профилактически. Антибиотики присутствуют везде. Ежегодно люди потребляют около 200 тысяч тонн этих препаратов, причем потребление растет как в абсолютных величинах, так и в пересчете на душу населения. Намыльте руки. Сполосните. Снова намыльте и сполосните. Убейте то, что могло размножиться, и добейте то, что успело это сделать. Именно так поступали наши предки, так делаем сейчас мы и, если не произойдет никаких изменений, будем делать и впредь. Для нас это вполне естественное состояние.

Мы начали использовать антибактериальные препараты, потому что испытывали в них крайнюю нужду. Открытие антибиотиков удостоилось трех Нобелевских премий и избавило человечество от гонореи, туберкулеза и сифилиса.Пенициллин оказался самым эффективным лекарством, спасающим жизни, за всю историю человечества; соперничать с ним в этом могут только другие антибиотики. Но использование антибиотиков для лечения смертельно опасных болезней в наши дни составляет ничтожную долю от всего объема назначаемых пациентам антибиотиков: их прописывают для лечения незначительных насморков, легких отитов и даже с профилактической целью – предупредить рост микробного «зла». («Доктор, я как-то странно себя чувствую; думаю, я подцепил что-то такое, что требует, может быть… ну, не знаю… антибиотиков».) О таких историях мы теперь слышим на каждом шагу. Мы охотно глотаем пилюли и сиропы с амоксициллином, ампициллином, со старым добрым пенициллином и другими антибиотиками. Мы обращаемся к ним, как обращались прежде к ружьям, – для самозащиты. Вопрос заключается не в том, помогли ли нам антибиотики, а в том, тщательно ли мы прицелились, прежде чем спустить курок.

За всю долгую историю антибиотиков никто не изучал детали их воздействия на бактериальную флору человеческого организма. Основа медицинского подхода к проблеме – сначала удостовериться в эффективности, а уже потом выяснять, как и почему лекарство действует. Было известно, что антибиотики излечивают сифилис (мы знаем это потому, что если назначить антибиотики больному сифилисом, то он выздоровеет). Но никто не задавался вопросом, что происходит с другими бактериями и нами самими после того, как погибают возбудители сифилиса. Впрочем, раньше для этого не существовало ни технологий, ни методик. Но здесь надо оговориться, что для медицинского сообщества главное – это излечить конкретную болезнь. Многие болезни по своей природе являются бактериальными, а значит, все бактерии плохи (эту идею увековечил король выращенных в лабораторных условиях крыс Джеймс Рейнирс, к которому мы еще вернемся). Бактерии считались такими же плохими и ужасными, как леопарды и волки, пожиравшие наш скот и наших детей, или как сорняки и вредители, уничтожавшие наши урожаи и обрекавшие нас на голодную смерть. «Сначала убей их всех, а потом задавай вопросы» – таково было медицинское решение проблемы. Этот подход (по крайней мере, поначалу) представлялся вполне разумным, ведь тысячи людей погибли из-за различных инфекций – точно так же, как тысячи их пали жертвами хищников.

Я вполне понимаю склонность к крайностям в случае изобретения нового орудия. К таким изобретениям нас подталкивала необходимость – ведь даже знакомые вещи, будучи неконтролируемыми, убивали нас. Как только появлялась возможность эти вещи контролировать, мы незамедлительно использовали ее. В это же самое время мы научились отделять зерна от плевел, смертоносное от безвредного, а потому стали учиться убивать выборочно. Проблема нашего организма заключается в том, что вплоть до недавнего времени мы не отличали злодеев от праведников и даже не знали, какие именно бактерии убивает наше оружие – антибиотики. Точнее сказать, этого не знал наш мозг, так как наши внутренности, в частности аппендикс (червеобразный отросток), с самого начала знали, что происходит, но не могли никому об этом сообщить.

Причины нашего невежества относительно того, что происходит в организме, лежат на поверхности. Наш кишечник и прочие внутренности известны нам приблизительно в такой же степени, что и гигантские шатры тропических лесов, но, в отличие от последних, внутренности менее живописны. Если вы занимаетесь изучением тропических лесов, то на каком-нибудь званом обеде ваши собеседники поделятся своими сокровенными планами когда-нибудь посетить Бразилию или Коста-Рику. «О, Коста-Рика, я слышал, там неплохая рыбалка!» Если же вы специалист по толстому кишечнику, то в лучшем случае вам напомнят об обеде, ну, а в худшем… Впрочем, вы и сами понимаете. Дело здесь не в том, что кишки непривлекательны и несексапильны. Они также и трудны для изучения. Организмы, живущие в тропических лесах, можно поймать, привезти в лабораторию, ощупать и исследовать. Мы можем понаблюдать за их поведением и пищевыми привычками. Совершенно иначе обстоят дела с кишечными бактериями, большую часть которых невозможно культивировать, не говоря уже о том, что их нельзя рассмотреть невооруженным глазом. В человеческом кишечнике было найдено более тысячи видов микроорганизмов, а еще тысячи обитают в других частях нашего организма. В большинстве своем они поддаются культивированию только в месте своего естественного обитания. Мы не можем выращивать их в лабораторных условиях и слишком мало о них знаем. Нам известно, что они живут в нас, но их невероятно трудно обнаружить, идентифицировать и изучить.

Правда, за последнее десятилетие ситуация немного изменилась к лучшему. Достижения генетики позволили нам получить новые инструменты исследования – например, своего рода «геноскоп», такое же революционное орудие, каким стал когда-то телескоп, но геноскоп позволяет исследовать не окружающий нас мир, а мир внутренний. С помощью этого новейшего инструмента мы получили возможность исследовать РНК (соединение, похожее на ДНК, но являющееся в наших клетках посредником между ДНК и белком) в капле дождевой воды и сделать заключение о живущих в ней организмах или, скажем, взять на анализ образец кала и хотя бы косвенно, взглянув на присутствующие там гены, узнать, что они могут рассказать об обитателях этого образца. Теперь, когда микробы можно идентифицировать по их РНК, нам нет необходимости их культивировать (хотя иногда это необходимо делать из практических соображений, которых мы здесь не будем касаться). Эти генные методики стали в наши дни настолько простыми и дешевыми, что ими может воспользоваться любой студент или лаборант для того, чтобы ответить на некоторые насущные и важные для всего человечества вопросы, как, например, сделала это Эми Кросвелл, работавшая под руководством Ниты Зальцман и троих ее коллег.

Кросвелл была лаборанткой у Зальцман, микробиолога и иммунолога педиатрического факультета медицинского колледжа штата Висконсин. Зальцман и Кросвелл планировали первый эксперимент для изучения того, что происходит с микробами нашего организма, когда мы принимаем антибиотики. В качестве подопытных животных ученые использовали обыкновенных лабораторных мышей, кишечник которых просто переполнен самыми разнообразными микробами. Одним мышам вводили антибиотики, а другим – нет. Мыши, получавшие антибиотики, были разделены на группы, и каждая группа получала свой «коктейль» из препаратов. Некоторые животные получали смесь из четырех высокоактивных антибиотиков, которые, как было известно из работ других ученых, убивают всех бактерий в кишечнике. Другие получали только один антибиотик, похожий на тот, который назначают детям для лечения инфекционного среднего отита. Работа была очень простая и по своему масштабу едва ли соответствовала масштабу проблемы – так, маленькая научная жемчужина величиной с лабораторную мышку.

По большей части работа Кросвелл и Зальцман была легкой и необременительной. Мышей используют в качестве подопытных животных во всех лабораториях мира. Скрещивания и генетические усовершенствования на протяжении поколений в результате дали протоколы, которые – хоть и не были особенно изящны – хорошо себя зарекомендовали. Мыши, которых использовали в своих опытах Зальцман и Кросвелл, были потомками семейства, выведенного для лабораторных работ десятки поколений тому назад. Клетки были для этих мышей такой же естественной средой обитания, какой являются для нас наши города и квартиры; эти условия сильно отличались от среды обитания их (как, впрочем, и наших) предков. Мыши рождались в лабораториях с помощью кесарева сечения, выращивались по раз и навсегда выработанной технологии, а в возрасте пяти недель шли на опыты. В данном случае именно в этом возрасте их начали кормить антибиотиками.

Давайте на секунду отвлечемся и постараемся представить себе возможные результаты этого эксперимента. Вероятно, интуитивно мы понимаем, что в начале лечения в организмах мышей обитало некоторое количество как «плохих», так и «хороших» бактерий. По крайней мере, такое суждение вполне укладывается в контекст современной медицины. Как вы думаете, что происходит, когда вы принимаете антибиотики? Проще всего предположить, что кто-то все-таки знает ответ, но в данном случае его не знал никто. Некоторые биологи, также работавшие с мышами, полагали, что коктейль из антибиотиков убьет в кишечнике мышей всех бактерий. Кросвелл и Зальцман растворили лекарства в воде, напоили мышей и принялись ждать. Через несколько дней ученые взяли у этих мышей кал на анализ, а потом, выражаясь юридическим языком, добавили к оскорблению физическое насилие – забили животных, изучили их ткани, а трупы поместили в пластиковые контейнеры, которые на время оставили в лаборатории.

Изучив под микроскопом фрагменты мышиных тел, ученые, как и ожидалось, обнаружили, что в организмах мышей, получавших чистую воду, было полно нетронутых микробов. В их кишках, простите за тавтологию, кишела жизнь. Совсем другая история произошла с мышами, получавшими антибиотики. Эти мыши, которых, согласно терминологии наших органов здравоохранения, можно назвать получавшими препарат здоровыми испытуемыми, тоже сохранили в своем кишечнике микробов (само по себе это является очень важным результатом), но микробов было существенно меньше, особенно в толстом кишечнике. Этот эффект был особенно сильно выражен у мышей, получавших смесь из четырех антибиотиков, но он наблюдался и у мышей, которым давали только один препарат, стрептомицин. Короче говоря, антибиотики оказались способными уничтожить в организме мышей миллиарды микробов. Так как разные препараты убивают разные виды бактерий, то нельзя сказать, что они нацелены только на «плохих» микробов. С помощью лекарств были уничтожены бактерии самых разнообразных видов. Кишечник мышей очень похож на человеческий, поэтому можно считать, что, когда вы или я принимаем антибиотики, в нашем кишечнике происходит, в принципе, то же самое. Убивая наших микробов антибиотиками, мы оставляем в живых «сорняки», самые устойчивые виды, которые затем начинают формировать новый микробиологический ландшафт нашего кишечника. Раньше об этом никто не догадывался, но теперь, когда мы знаем, становится еще более важным понять, что же эти микробы (большую часть которых, хотя и не всех, мы уничтожили антибиотиками) делают в нашем организме. Для ответа на этот вопрос вспомним некоего молодого человека, огромную стальную стерильную камеру и одну ошибку.

Вопрос о том, что и как для нас делают микробы, существует, вероятно, столько же времени, сколько люди их изучают. Несмотря на то, что Луи Пастер выступал сторонником уничтожения микробов в молоке (результатом стала пастеризация) и других пищевых продуктах, он также считал, что существа, живущие внутри нас и на нас, необходимы, ибо без них мы умрем. Пастер полагал, что в ходе эволюции развилась взаимозависимость людей и микроорганизмов. Убейте микробов, говорил он, и вы убьете человека. Другими словами, Пастер считал микробов, живущих в кишечнике человека, нашими облигатными симбионтами. «Облигатные» значит обязательные, а термином «симбионт» мы обозначаем организмы, которые существуют совместно и получают от этого взаимную выгоду. С другой стороны, инфекционная теория заболеваний исходит из противоположной точки зрения – большинство (если не все) живущих в нас и на нас микробов приносят нам больше вреда, чем пользы. Никто не пытался проверить справедливость этих точек зрения на опыте, хоть и очевидно, что ответ очень важен для человечества. Более того, в наши дни, когда мы интенсивно избавляемся от большинства микробов, этот вопрос стал актуальным, как никогда прежде. Что же на самом деле происходит, когда вы протираете руки салфеткой, пропитанной антибиотиками?

Стоит заметить, что этот вопрос сходен с вопросом, которым задавался Джон Байерс в отношении вилорогих антилоп: что происходит, если исчезают хищники? Это тот же вопрос, который задавал себе Вейнсток в отношении глистов: что происходит, когда мы от них избавляемся? Этот вопрос периодически задают разные ученые в разные времена и эпохи, занимаясь самыми разнообразными проблемами, имеющими отношение к живым организмам и прежде всего – к человеку.

Джеймс Рейнирс (для друзей – просто Арт) родился в 1909 году и был обычным парнем – сыном автомеханика и добропорядочным католиком. Рейнирс ничем не отличался от других молодых людей до тех пор, пока по неизвестной причине не заинтересовался вопросом, занимавшим Луи Пастера. Рейнирс хотел узнать, можно ли удалить абсолютно всех микробов из организма крысы или, например, морской свинки. Несмотря на то, что все живые существа на планете покрыты микробами, никто не хочет знать, хорошо это, плохо или безразлично, – Джеймса раздражала даже сама мысль об этом! Перефразировав, вопрос можно поставить так: являются ли микроорганизмы, обитающие в нас и на нас, симбионтами (организмами, от сосуществования с которыми и мы, и они получают выгоду), комменсалами (организмами, которым мы приносим пользу, а они на нас никак не влияют) или патогенами (получающими пользу за наш счет). Рейнирс считал, что ответом может быть либо «да», либо «нет». Либо черное, либо белое. Микробы могут быть либо симбионтами, либо патогенами. Третьего не дано. Никаких полутонов. Микроорагнизмы могут либо приносить пользу, либо причинять вред; если они причиняют вред, от них необходимо избавиться. Если от микробов мы не получаем ничего, кроме вреда, то прием антибиотиков стопроцентно оправдан. Это будет такой же прогресс, как изобретение земледелия, уничтожение глистов или приручение коров.

Для Рейнирса проблема была чисто механической. Для него весь вопрос заключался в том, возможно ли отделить тело человека от микробов, как отделяют золото от песка. Рейнирс грезил о крысе без микробов и своей славе. К 1928 году он, как ему показалось, нашел способ получить животное, свободное от любых микроорганизмов. До Рейнирса все, кто пытался это сделать, просто удаляли из организмов подопытных животных уже обитавших там микробов – словно в химчистке.Этот подход мы практикуем ежедневно, так как знаем, что на поверхности нашего тела обитают триллионы микробов (их больше, чем клеток в нашем организме), и это знание побуждает нас тереть кожу еще сильнее. Все такие попытки закончились неудачей – так же как терпят фиаско наши попытки избавиться от микробов хотя бы с рук. Удаление «почти всех» микробов из организма животного – это отнюдь не то же самое, что убрать всех микробов без исключения. Дело в том, что только одна пропущенная бактериальная клетка может породить миллиарды подобных ей организмов.

И по образованию, и в силу семейных традиций Рейнирс был добросовестным механиком, а не биологом, и поэтому выбрал иной путь. Для того чтобы отделить животное от микробов, он решил воспользоваться металлом, пластмассой, резиной и слесарными инструментами. Кстати, в то время изобрели железное легкое и первого робота. Рейнирс думал: если бы мне удалось с помощью подобной технологии создать мир, свободный от микробов, я бы смог дать матерям возможность рожать детей в этом стерильном мире. И почему нет? Смог же Ной поместить в свой ковчег всякой твари по паре. Рейнирс верил, что ему удастся теперь их разделить.

Если бы Джеймсу удалось достичь поставленной цели, то он стал бы первым в истории человеком, которому удалось получить животное, полностью свободное от микроорганизмов – бактерий, простейших, протистов, грибков и даже вирусов. Это было бы интереснейшее и донельзя современное животное. Кроме того, оно было бы и полезным. Ученые получили бы возможность, которой у них никогда прежде не было, – одного за другим вернуть этому животному микробов и узнать все об их воздействии на организм. К тому времени на мышах, морских свинках, крысах и даже курах были проведены тысячи опытов, в ходе которых этим животным прививали патогенные микроорганизмы (этим занимались и занимаются в биологических лабораториях едва ли не в промышленных масштабах). Но дело в том, что в организмах этих подопытных животных уже обитают миллиарды других микробов, действие которых никому не известно. Рейнирс был уверен, что ему удастся изменить все существующие знания о том, как работает наш собственный организм, и подтолкнуть вперед исследования поражающих нас болезней.

Вскоре стало ясно, что Рейнирс планирует нечто большее, чем создание свободного от бактерий животного. Он хотел создавать их тысячами, даже сотнями тысяч. Еще перед тем, как впервые взять в руки живую морскую свинку или крысу, Рейнирс воображал себе целое биологическое царство, населенное свободными от бацилл животными. Этакий стерильный зоопарк. Он предложил свой проект биологическому факультету местного университета Нотр-Дам. Рейнирс утверждал, что для выполнения этого плана понадобится пятьдесят лет – не для того, чтобы просто получить свободное от микробов животное, но для того, чтобы поставить их производство на промышленную основу и изучать их целыми поколениями. Такова была его мечта – немыслимая, если учесть, что Рейнирс не был штатным профессором. Мало того, он не был даже вторым профессором, аспирантом или выпускником университета. Это был девятнадцатилетний студент, худенький мальчик, одетый как мужчина.

Я не знаю, что бы я сам ответил моему студенту, если бы он попросил у меня разрешения использовать большой зал и тысячи фунтов железа для проведения рассчитанного на пятьдесят лет эксперимента, в ходе которого он планировал избавить от бактерий множество морских свинок, крыс, кур и обезьян. Ни в одном из приходящих мне на ум ответов нет слов «да» или «ладно». (Первое, что приходит в голову, – это «когда морские свинки начнут летать» или «когда рак на горе свистнет».) Но, вероятно, Рейнирс обладал незаурядным даром убеждения, ибо в ответ на его просьбы выделить помещение, металл и сварочный аппарат декан факультета дал добро. Наверное, декан чего-то недосмотрел; а может, он принял Рейнирса за профессора. Тем не менее начало было положено. Этот мальчик начал работу над самым, пожалуй, дерзким проектом за всю историю микробиологии.

Рейнирс планировал извлекать новорожденных морских свинок с помощью кесарева сечения, причем так, чтобы детеныши не контактировали с бактериями, находящимися на руках исследователя, в полости его рта и даже в выдыхаемом им воздухе. Рейнирс твердо знал, что плод млекопитающего, будь то человек или животное, стерилен. Он полагал, что сможет сохранить это состояние, избавившись таким образом от необходимости истреблять бактерии, уже попавшие в организм подопытного животного. После этого животные будут расти, созревать, спариваться, производить потомство и умирать в мире, лишенном бактерий. Рейнирс приступил к осуществлению мечты, занявшись делом всей своей жизни, оптимистично рассчитывая, что сможет закончить работу, когда ему будет всего шестьдесят девять лет.

Воспользовавшись навыками, приобретенными в отцовской мастерской, и помощью двух своих братьев, которые тоже выбрали профессию механиков, Рейнирс начал создавать металлические конструкции – большие камеры, в которые были вмонтированы рукава с перчатками; с их помощью можно было выполнять хирургические манипуляции. Рейнирс создал несколько образцов – иногда с помощью братьев, но чаще всего самостоятельно. Эти камеры представляли собой нечто среднее между подводной лодкой и больничной палатой. Днем и ночью каждый, кто проходил мимо этого зала, мог видеть Рейнирса с работающим сварочным аппаратом в руках. В эти мгновения Рейнирс был похож на скульптора или вдохновенного живописца. Временами он отступал на несколько шагов, чтобы полюбоваться своим творением. «Смотрите, какой ровный герметичный шов!» Должно быть, иногда его все же обуревали сомнения, но история их не сохранила. Конструкции чаще отказывали, нежели работали, и так продолжалось годами. Несмотря на множество неудач, Рейнирс не унывал и не падал духом. Иногда он даже спал рядом со своим творением – маленький человек рядом с огромными металлическими сферами, похожими на земной шар.

Часть плана Рейнирса была довольно легко выполнима. С самого начала Рейнирс понял, что ему вполне по силам стерилизовать поверхность тела матери будущего стерильного животного. Для этого самку надо побрить, выщипать оставшиеся волоски (бактерии любят мех; к этому вопросу мы еще вернемся), окунуть животное в антисептический раствор, а затем поместить в пропитанную антибиотиками оболочку. Это было легко. Такое дело по силам каждому, хотя мне думается, что найдется немного людей, которым бы не терпелось проделать это на практике. Следующий шаг Рейнирса был связан с куда большими сложностями. Он хотел перенести беременную самку, обернутую в стерильную оболочку, в металлический цилиндр и там выполнить операцию кесарева сечения. Изготовить цилиндр, в полости которого не было бы ни одной бактерии, – задача практически невыполнимая. Для этого надо было изготовить абсолютно герметичные перчатки, а это чертовски трудная работа. Шлюзы и переходники давали течь; мало того, воздух внутри цилиндра тоже надо было каким-то образом стерилизовать. Наконец, оставался еще один вопрос – какое животное взять для проведения опытов? Сначала Рейнирс пытался использовать кошек, но они царапались, кусались, рвали перчатки и портили герметичные соединения. Однако это ни в коей мере не поколебало его решимость – он зашел уже слишком далеко, чтобы поворачивать назад.

История умалчивает об эмоциональном состоянии Рейнирса во время этой титанической работы. Легко догадаться, что временами он впадал в тяжелую депрессию. К двадцати годам он так и не смог создать стерильную герметичную камеру. К двадцати шести годам он наконец сделал камеру, но так и не смог получить ни одного свободного от микробов животного – несмотря на все свои старания. Животные: морские свинки, кошки, мыши, крысы и даже куры – мерли как мухи. Животные погибали из-за операций – тяжелых и технически трудных (трудности усугублялись тем, что на начальном периоде приходилось пользоваться перчатками из толстой резины), а кроме того, на каждом этапе операции надо было контролировать стерильность. Все это было настоящим испытанием для животных, хирургов, техников и биологов. Вероятность провала явно перевешивала возможность успеха. Я бы на месте Рейнирса, наверное, сошел с ума, но он держался и в 1935 году, в возрасте двадцати семи лет, наконец, добился своего. После того как в герметичной стерильной камере появились первые живые зверьки, в организмах которых не было ни одного микроба, Рейнирс за одну ночь стал знаменитым. Он даже не потрудился написать статью. Он просто дал объявление в журнале Time о том, что 10 июня 1935 года Джеймсу Артуру Рейнирсу впервые в истории удалось получить животных, полностью свободных от микроорганизмов. Теперь оставалось только выяснить, как скоро погибнут эти абсолютно стерильные животные.

Рейнирс работал над своим проектом так долго, что за это время успел защитить диплом и был назначен профессором без защиты диссертации. Можно было подумать, что за столь долгое время Рейнирс успел забыть, ради чего он предпринял этот героический эксперимент. Но нет, он ничего не забыл. Первое, что сделал Рейнирс, закончив первый этап работы, – он сравнил животных, живших в стерильных камерах, с животными, обитавшими в реальном мире. Если Пастер был прав, то морские свинки в камере должны были скоро погибнуть. Если микробы в кишечнике и на коже так важны для жизнедеятельности, то в их отсутствие организмы подопытных животных начнут угасать.

Но стерильные, свободные от всех бактерий морские свинки и не думали умирать, если их не забывали кормить. Мало того, они отличались поистине зверским аппетитом и были более активны, чем их обычные сородичи. Это был успех! Также выяснилось, что подопытные животные отличаются большей продолжительностью жизни, к тому же ни у одного из них не было зубного кариеса. Для Рейнирса эти животные были моделью будущего, которое может наступить и для человека. В статье, опубликованной в журнале Popular Science в 1960 году, эти камеры описывали как миниатюрный футуристический мир, в котором живые существа более не подвержены капризам микробов. Казалось, на старый вопрос дан окончательный, не подлежавший пересмотру ответ. Высказывались мнения о необходимости отправки в космос свободных от бактерий людей или по меньшей мере обезьян. Идея о том, что и мы можем обустроить свое жизненное пространство по образцу камер Рейнирса, казалась для всей читающей публики столь очевидной, что никто даже не высказывал возражений. Здесь, в стерильных камерах, мы воочию видели будущее – не только науки, но и всей нашей жизни. Речь уже не шла о биологическом разнообразии, никто уже не собирался отправлять в будущее ковчег, где будет «всякой твари по паре». Нет, этот ковчег теперь предназначался только и исключительно для нас самих. Рейнирс сумел не только достичь поставленной им цели, он смог воспламенить воображение масс, внушить им веру в то, что и мы – подобно морским свинкам – сможем когда-нибудь насладиться практически вечной жизнью без микробов.

Со временем масштабы работ Рейнирса росли. Нотр-Дам предоставлял ему для работы все более просторные помещения и в конце концов выделил в его распоряжение целый институт. Рейнирс совместно с отцом запатентовал несколько стерильных камер, которые до сих пор используются учеными во всем мире, и – что самое главное – подход Рейнирса вместе с его стерильными животными распространился по всему земному шару. Конструкции камер со временем усложнились (теперь они больше похожи на прозрачные мыльные пузыри, чем на подводные лодки), но суть их осталась прежней. Все они являются потомками первых камер Рейнирса, частично сохранившими свой чудовищно-морской облик.

Рейнирсу сказочно повезло – он смог воплотить в жизнь то, о чем мечтал в девятнадцать лет. Сделать это ему удалось благодаря дару предвидения и самоотверженным помощникам – таким, как Филипп Трекслер, сумевший позднее сконструировать камеры более дешевые и меньшие по размерам, чем субмарины Рейнирса. Сам он не дожил до шестидесяти девяти лет, чтобы отметить пятидесятилетие своего проекта, но это и неважно. Он все равно добился фантастического успеха. Изучение инфекционных заболеваний на стерильных животных моделях позволило спасти миллионы жизней. В то же время наблюдения за этими животными привели биологов всего мира к выводу о том, что микробы, живущие в наших организмах, в целом все же вредны. Но Рейнирс упустил из вида одну важную вещь. Этот недосмотр, в принципе, не сыграл никакой отрицательной роли (да и теперь остается второстепенным) в использовании стерильных животных для изучения заболеваний. Здесь ценность подвига Рейнирса остается непреходящей. Допущенная ошибка имеет отношение к вопросу, заданному Пастером: что произойдет, если мы лишим животное или (что то же самое) человека всех бактерий?

В контексте вопроса Пастера – вопроса, непосредственно касающегося наших организмов и того, что микробы делают с нами, и что мы, в свою очередь, должны делать с ними, – недостаток работы Рейнирса имел отношение не к его экспериментам (они были безупречны), а к трактовке их результатов. Рейнирс был механиком. Он воспитывался среди молотов, наковален и железа, а не среди пробирок и чашек Петри с культурами живых клеток. Он не изучал эволюцию, экологию и другие науки, которые могли бы поместить его работу в нужный контекст. Квалификация Рейнирса со временем, конечно, росла, но он больше занимался поиском средств и менеджментом, нежели вопросами жизни. Мы можем простить Рейнирсу, что он не уделял должного внимания биологическим нюансам, простить погибших кошек и морских свинок. Основная беда заключалась в том, что профессиональные биологи начали смотреть на свободных от бактерий животных глазами Рейнирса. Он часто выступал и весьма авторитетно и весомо рассказывал о работах и достижениях своего института. Голос Рейнирса звучал так громко, что постепенно его интерпретации, как истину в последней инстанции, стали повторять и другие. Каждое новое исследование заканчивалось победной барабанной дробью и рефреном: «Убей бактерию!» Убив бактерии, мы навсегда освободимся от своего мрачного прошлого. Мы станем здоровее и счастливее – как морские свинки в их гигантских железных мирах.

Основываясь на работах Рейнирса и на работах его последователей, мы привыкли считать все бактерии вредоносными существами, от которых надо очиститься, чтобы наша жизнь стала напоминать существование морских свинок в герметичных ящиках. Если изначально эксперимент Рейнирса был рассчитан на пятьдесят лет, то социальный эксперимент по освобождению людей от микробов продолжался намного меньше. Совсем недавно мы не принимали никаких антибиотиков, а теперь, по прошествии всего нескольких десятилетий, мы поглощаем их тысячами тонн. Но антибиотики – это не камеры. Они так и не смогли убить все населяющие наши организмы бактерии, хотя мы воображали, что это возможно. Морские свинки и крысы в камерах Рейнирса жили долго, и мы тоже хотели для себя такой судьбы. Мы хотели войти в камеры, в которых смогли бы навсегда избавиться от своего мрачного инфекционного прошлого. Уверенность в лучезарном безмикробном будущем была так сильна, что некоторых детей воспитывали в условиях абсолютной стерильности, лишив их возможности общаться с другими людьми. Это были дети, страдавшие врожденным отсутствием иммунитета, без стерильной камеры у них не было бы никаких шансов выжить. Они жили в стерильной среде, потому что не могли жить иначе. Мы сделали это в надежде и с расчетом на то, что такая стерильная жизнь – как раз то, к чему мы все должны стремиться. Непроницаемая камера, в которой они жили, представлялась если не необходимым, то неизбежным будущим, куда всем нам придется со временем войти. Во всяком случае, тогда казалось именно так.

Рейнирс знал о некоторых проблемах, связанных с экспериментом, знал и о том, насколько трудно противостоять неумолимому натиску жизни. Оказалось, что существуют вирусы, передающиеся непосредственно от матери потомству, поэтому избавиться от них невозможно даже теоретически. Некоторые формы жизни «вмонтированы» в материнскую ДНК. Другими словами, морские свинки, мыши и куры были свободны от всех микроорганизмов, за исключением тех, от которых освободиться нельзя. Строго говоря, в мире до сих пор нет животных, полностью свободных от микроорганизмов, если не считать нескольких чистых линий крыс. Более того, передача по наследству некоторых элементов бактериальных ДНК жизненно необходима. Без микробной ДНК в наших митохондриях мы бы давно вымерли, поскольку митохондрии – это потомки бактерий, внедрившихся в наши клетки и научивших их более эффективно использовать энергию. По крайней мере в этом отношении Пастер был прав.

Мало того, некоторые животные, которые, казалось бы, на самом деле лишены микроорганизмов, часто были неспособны надолго сохранить это состояние. Периодически бактерии все же проникают в стерильные камеры. Одной-единственной бактериальной или грибковой клетки вполне достаточно для того, чтобы инфицировать всю камеру. Существуют тысячи способов и путей проникновения бактериальных клеток и вирусов в камеры, а оказавшись там, клетки и вирусы тотчас принимаются бесконтрольно размножаться и завоевывать новое пространство. Природа обожает вакуум. Микробы же обожают запечатанных в герметичных камерах морских свинок. В некоторых случаях (скорее, даже в большинстве) животным после столкновения с бактериями становилось хуже. Но почти настолько же часто после заражения микробами животным становилось лучше. Эта разница очень интересна, но она, кроме всего прочего, напомнила нам о том, что по мере усовершенствования герметичных стерильных камер микробы будут совершенствовать свою способность в них проникать. Однажды Рейнирс лишился плодов десятилетнего труда, когда патогенная бактерия проникла в одну из камер и убила всех содержавшихся в ней животных (в интервью одной газете Рейнирс по этому поводу заметил, что он, как и большинство людей, не имеет возможности легко разбрасываться десятилетиями). Именно такие коварные и вездесущие микроорганизмы убили воспитанного в стерильной камере мальчика, самого знаменитого из всех детей, выросших таким образом. Этого ребенка поместили в камеру сразу после рождения, так как он страдал врожденным отсутствием иммунитета. Он рос в стерильных условиях под наблюдением врачей до двенадцатилетнего возраста, после чего изъявил желание выйти в реальный мир. Естественно, его жизнь надо было менять, и врачи пересадили мальчику костный мозг его матери в надежде, что операция поможет восстановить (или, если угодно, создать заново) иммунитет. Операция прошла успешно, внушив надежду на то, что это будет уникальный случай торжества человеческой воли и медицины над врожденной болезнью. Но после операции состояние мальчика резко ухудшилось. В костном мозге матери находился вирус, который быстро убил ребенка. Постоянное присутствие повсюду патогенных организмов, будь то вирусы, бактерии или нечто более крупное, уже само по себе исключает идею о том, что мы когда-нибудь сможем осуществить утопическую мечту жизни без микробов. Конечно, мы можем строить все более объемные герметические сферы (или даже целые дома, насквозь пропитанные антибиотиками), но чем больше будет становиться мир, который мы хотим освободить от микробов, тем труднее нам будет осуществить это на практике. Хуже того – значительная часть бактерий, проникавших в камеры Рейнирса, была безвредной, но практически все микроорганизмы, преодолевающие барьеры, которые мы воздвигаем на их пути с помощью антибиотиков, являются вредоносными. Но проблема заключается не только во всепроникающих бациллах.

Впервые мысль об этой более сложной проблеме пришла в головы ученых, изучавших жизнь термитов. В высыхающих и гниющих мертвых лесах земного шара обосновалась настоящая империя термитов – триллионы насекомых, поедающих то, что не годится в пищу ни одному другому биологическому виду. Представьте себе высохшие стволы и опавшие листья деревьев всего мира. Представьте, как вся эта груда древесины и листвы громоздится вокруг вас. Но этого не происходит, потому что большую часть высохших и погибших деревьев и почти всю опавшую листву поедают термиты. К тому времени, когда на Земле появились первые млекопитающие, мир населяли миллиарды термитов с почти прозрачными телами и длинным, похожим на лапшу, кишечником.

Термиты питаются тем, что неспособны переварить никакие другие животные (за редким исключением). Питательные вещества, содержащиеся в древесине и листьях, делятся на два больших класса – лигнин и целлюлозу. Эти соединения не расщепляются в кишечнике большинства животных, особенно устойчив в этом отношении лигнин. Долгое время оставалось непонятным, каким образом термитам удается делать их трудную и необходимую работу. И вот в начале ХХ века Джозеф Лейди – человек, которому было суждено стать отцом американской микробиологии, а также отцом палеонтологии динозавров, – вскрыл кишечник термита. Никто не знает, что он ожидал там увидеть – возможно, перемолотую древесину. В действительности Лейди обнаружил, что в кишках термитов кипит разнообразная жизнь. Всевозможные живые существа толклись в кишечнике этих насекомых, как люди, гурьбой покидающие кинозал после окончания сеанса. В этой толпе были бактерии, простейшие, грибы и еще бог знает кто. Обитатели кишечника термитов за сотню миллионов лет эволюции выработали весьма полезные черты, позволявшие им переходить из организмов предыдущих поколений к термитам поколений следующих. Таким образом, все эти микроорганизмы получали неограниченный доступ к древесине и листьям. Со своей стороны, термиты тоже усовершенствовали кишечник, чтобы вся эта масса жильцов могла там вольготно себя чувствовать. В самом деле, подвиды термитов отличаются друг от друга формой и биохимией их кишечника. Термиты, в кишках которых обитают разные виды микроорганизмов, способны питаться разными видами древесины. Одни микробы лучше расщепляют перегной, другие специализируются на листьях, третьи предпочитают древесину. Некоторые термиты за счет обитающих в них микробов умеют извлекать азот из воздуха, то есть в буквальном смысле слова питаются ветками и воздухом.

Так же как в случае с морскими свинками, в отношении термитов тут же возник вопрос: полезны ли для термитов их микробы? Проверить это на насекомых было легче, чем на морских свинках. Термитов можно заморозить, это убьет микробов, но пощадит насекомых. Можно положить термитов в ледник и через некоторое время извлечь их оттуда. Термиты медленно оттаивают, а потом удивленно осматриваются, словно они впервые появились на свет. В каком-то смысле это действительно так и есть – после замораживания термиты утрачивают обоняние и теряют способность узнавать собственную матку. Собственно, вы сами можете провести этот опыт, если живете в местности, где водятся термиты, и у вас есть ледник или морозилка. Когда такой эксперимент был проведен впервые, ученые были поражены его результатом – по крайней мере, в свете работ Рейнирса. Когда с помощью холода убивали кишечную флору термитов, насекомые погибали. По инерции они продолжали питаться привычной пищей, но она проходила сквозь их кишечник, не перевариваясь. Можно сказать, что термиты умирали от жажды, стоя посреди реки. Насекомые гибли от истощения, потому что лишились микробов, которые помогали им переваривать древесину. Ни в одном из опытов, проведенных над позвоночными (крысами, морскими свинками, курами и т. д.), не учитывался результат эксперимента с термитами. Для того чтобы это сделать, ученым, работающим с позвоночными, надо было бы встретиться и поговорить с учеными, изучающими термитов. Но эти исследователи – люди замкнутые. Они неохотно общаются даже со специалистами, занимающимися пчелами и муравьями, так что уж говорить об антропологах? Специалистов по термитам на земле насчитывается всего несколько сотен, и они вполне удовлетворены предметом своих исследований. Правда, следует заметить, что и специалисты по позвоночным не проявляют особого интереса к термитам. Таким образом, обе группы ученых продолжали существовать в параллельных мирах несмотря на то, что пришли к совершенно противоположным выводам на основании практически одних и тех же экспериментов – в одном случае ценой потери железа и десяти лет драгоценного времени, а во втором случае всего лишь ценой ледника.

Разница в результатах экспериментов на морских свинках и термитах имеет чрезвычайную важность для всего человечества. Эта разница объясняет, в чем был неправ Рейнирс при попытках ответить на вопрос Пастера. Нет, я не хочу сказать, что Рейнирс совершил какую-то роковую, безумную или непоправимую ошибку. Но это был промах, типичный для всей современной медицины, – Рейнирс не смог посмотреть на интересовавшую его проблему в более широком смысле, а именно в контексте происхождения человека и его современной жизни. Он хотел сделать полезными для науки морских свинок, очистив их от микробов, и преуспел в этом. Но затем он так построил исследование конкуренции между стерильными и обычными морскими свинками, что сделал гибель первых практически невозможной.

Сейчас вы можете сделать паузу и подумать, чем эксперимент с термитами отличается от эксперимента с морскими свинками. Ответ прост: разница в составе пищи, в болезнях и шансах. История с пищей особенно занимательна – это настоящая история Тайной вечери. Термитам, очищенным от живущих в них микробов, предложили ту же еду, какой они питались и раньше. Но без микробов эта пища оказалась бесполезной. Для того чтобы расщепить целлюлозу и лигнин на усваиваемые питательные вещества, нужны целлюлаза и лигназа соответственно. В кишечнике термитов практически не вырабатываются эти ферменты, и поэтому насекомые могут усваивать только простые сахара, а вся листва и древесина, проглоченная ими, доходила до заднего прохода в неизменном виде и выводилась наружу. В отличие от термитов, морские свинки получали полноценное питание – о такой еде в другой обстановке они могли бы только мечтать. К рациону свинок добавляли все мыслимые полезные добавки, и если какая-то диета оказывалась неподходящей (то есть свинки погибали, что случалось множество раз), то ее заменяли другой. Соревнование стерильных и нестерильных морских свинок проходило в неравных условиях – стерильные свинки пользовались гарантированными преимуществами. Для Рейнирса подопытные животные были машинами, которые следовало заправлять самым лучшим топливом. Они были чем-то вроде автомобиля или парового двигателя, который нуждается в постоянной дозаправке. Но морские свинки, как и мы, не машины. Настоящая конкуренция должна проходить в равных условиях, имитирующих естественный отбор в контексте заболеваний.

При повторении опытов Рейнирса в современных пластиковых стерильных камерах подопытные животные чувствуют себя относительно неплохо. Однако здесь есть одно немаловажное «но». Стерильные свинки нуждаются в дополнительном питании, чтобы поддерживать такой же вес, как свинки – носители разнообразных микробов. Стерильных свинок нужно кормить более питательной и полезной пищей, чем обычных животных. Кишечная микрофлора морских свинок, как и микробы, обитающие в организмах термитов (и, как выяснилось, в наших организмах тоже), вырабатывают ферменты, которые отсутствуют у хозяина. Эти ферменты расщепляют поступающие в кишечник субстанции на питательные и легкоусваиваемые вещества, в частности такие, которые связаны между собой в сложные углеводы растительного происхождения – так называемую клетчатку. Например, бактерия Bacteroides thetaiotaomicron выделяет более 400 ферментов, способных расщеплять растительную клетчатку на простые сахара. Подобных ферментов нет ни в вашем, ни в моем организме. Если еды не хватает, то бактерии отчасти могут восполнить этот дефицит. Благодаря микробам в кишечнике морских свинок (и в нашем тоже), и мы, и они способны извлекать из пищи на тридцать процентов больше калорий, чем если бы у нас не было этих бактерий. Это справедливо в отношении любого вида пищи. Микробы способствуют ее более полному усвоению, извлекая из нее больше питательных веществ и калорий, – нравится нам это или нет.

Вторая причина высокой смертности стерильных морских свинок заключается в дефиците некоторых витаминов, в частности витаминов группы В и витамина К. Без микробов позвоночные (то есть и мы, и морские свинки) неспособны их вырабатывать. Витамин К играет важную роль в системе свертывания крови, и, собственно, называется так по первой букве слова «коагуляция» (во всяком случае, в немецком или русском написании). Взрослея, мы накапливаем в организме запасы витамина К, который получаем из растительной пищи и от наших микробов. На свет мы рождаемся с дефицитом витамина К, так как наш кишечник на тот момент стерилен. Грудное молоко не восполняет этот дефицит, так как оно содержит очень мало витамина К. Исторически сложилось так, что главную роль в накоплении витамина К в детском организме играет быстрая колонизация кишечника микроорганизмами. Если младенцу не удается достаточно быстро заполучить микробов в свой кишечник, возникает риск геморрагической болезни новорожденных. У таких новорожденных кровь не свертывается, что может привести к смертельно опасному кровотечению. Для профилактики этого серьезного заболевания всем новорожденным в США и Великобритании сразу после появления на свет делают инъекцию витамина К. В странах, где такая инъекция не предусмотрена законодательством, геморрагическая болезнь новорожденных распространена больше, особенно среди детей, рожденных с помощью кесарева сечения (так как эти новорожденные не контактируют с микроорганизмами родовых путей матери при появлении на свет). Точно так же, как у детей, у которых микробы еще не колонизовали кишечник, риск дефицита витамина К высок среди детей и взрослых, получающих антибиотики, так как они уничтожают кишечную флору, тем самым угнетая ее способность продуцировать жизненно необходимый витамин.

Теперь мы на время отвлечемся от морских свинок и современных младенцев и вспомним о ранних человекообразных, таких как Арди и ее потомки. Попробуем разобраться, были ли микробы только патогенными (как считал Рейнирс), или в качестве симбионтов могли приносить организму предка человека определенную пользу. Мы уже знаем, что микробы продуцировали витамин К в случае его нехватки в пище, но не менее важно и то, что микробы также помогали организму извлекать из съеденной пищи больше калорий – на целых тридцать процентов. Значительная часть этих дополнительных калорий откладывалась про запас в виде жира – очень, кстати, полезного в те далекие времена. Другими словами, микробы по большей части находились с организмами наших далеких предшественников во взаимовыгодном симбиозе. В голодные годы именно бактерии спасали первых человекообразных от смерти. Например, если для того, чтобы собрать достаточное количество еды без микробов требовалось десять часов, то с микробами рабочий день укорачивался до семи, а то и шести часов. Микробы позволяли нашим предкам более эффективно использовать съеденную пищу. Такой симбиоз характерен не только для приматов, но и для множества других видов, этому виду сосуществования десятки миллионов лет. Но преимущества симбиоза с микробами заключаются не только в этом; они также регулировали заболеваемость инфекционными болезнями. Теперь настало время вспомнить Ниту Зальцман, Эми Кросвелл и их мышей.

Как вы помните, Зальцман и Кросвелл наблюдали мышей, которым давали разные комбинации антибиотиков. Кроме того (об этом я еще не упоминал), ученые вводили некоторым мышам патогенные бактерии, вызывающие сальмонеллез. Цель исследования заключалась в том, чтобы узнать, воспрепятствует ли исходная микрофлора мышиного кишечника заражению сальмонеллами, то есть является ли кишечная флора своего рода защитной системой. У бактерий, изначально живущих в кишках мышей, не меньше причин сопротивляться сальмонеллам, чем у самих животных. Мышиный кишечник – это родной дом бактерий, где для них всегда найдется хлеб с маслом (в данном случае консервированный мышиный корм). Итог опыта: мыши, получавшие антибиотики, заболели после заражения сальмонеллами, а животные, антибиотики не получавшие, – не заболели. На фоне введения антибиотиков сальмонеллам было легче через пищевод и желудок проникнуть в полость кишечника, вероятность воспаления которого в этом случае также была выше. Как только в кишечнике мышей восстанавливалась природная микрофлора, сальмонелла больше не могла проникнуть в организм. Очевидно, что бактерии-симбионты конкурируют с сальмонеллами за место под солнцем и изгоняют их прочь. Другими словами, антибиотики убивают привычную бактериальную флору (будь то в нашем или мышином кишечнике) и облегчают вторжение чуждых микробов. Если внедрившиеся бактерии смертельно опасны, то их жертва (опять-таки неважно, мышь или человек) может погибнуть.

Самая близкая экологическая аналогия тому, что наблюдали Кросвелл и Зальцман, – это применение пестицидов в борьбе с огненными муравьями. Огненные муравьи (Solenopsis invicta) в начале ХХ века были случайно завезены из Аргентины – сначала в США, а затем и в другие страны. Когда эти тропические насекомые распространились в Алабаме, было принято решение обработать пораженные площади огромным количеством пестицидов. Как и ожидалось, пестициды уничтожили огненных муравьев, но не пощадили и местных. В долгосрочной перспективе оказалось, что уничтожение муравьев-эндемиков имело очень неприятные последствия. В тех областях, где применили пестициды, местные муравьи восстанавливали свою популяцию очень медленно, чего нельзя сказать об огненных, которые начали стремительно размножаться. Того же мы можем ожидать от полчищ «чужих» бактерий, которые, дождавшись своего часа, дружно атакуют очищенный антибиотиками кишечник.

Но работа Кросвелл и Зальцман – это еще не конец истории. Помимо сотен тысяч бактерий, населяющих наш кишечник, есть еще и микробы, которые живут у нас на коже, в волосах и полости рта. Мы с ног до головы покрыты живыми организмами. Даже в наших легких живут микроскопические грибы. Эти микроорганизмы пока плохо изучены, но уже ясно, что они (как минимум некоторые из них) помогают нам защищаться от дополнительной инфекции. В наши дни эта проблема стала острее, чем прежде, так как теперь у нас есть антибиотики – оружие, без разбора уничтожающее все бактерии подряд. Множество проведенных за последние годы исследований не выявили каких-то преимуществ от добавления антибиотиков к моющим средствам, мылу и другой бытовой химии. Но зато мы знаем, что применение таких средств имеет множество недостатков. Возможно, тщательно дезинфицируя руки с помощью антибактериальных средств, вы увеличиваете свои шансы заразиться инфекционным заболеванием – уничтожая «хорошие» бактерии, вы оставляете вакуум, который с удовольствием заполнят бактерии «плохие».

Чем же в современном мире все это грозит нашему кишечнику? По злой иронии судьбы, мы теперь больше похожи на морских свинок Рейнирса или на лабораторных крыс, чем на нашего потенциального предка Арди. По крайней мере, в развитых странах мы не испытываем недостатка в пище, а кроме того, мы сделали все возможное и невозможное, чтобы очистить наш мир от микробов и сделать его хотя бы отчасти стерильным. Разница заключается не только в том, что, в отличие от морских свинок, мы по-прежнему покрыты живыми микробами. Но при этом мы не получаем сбалансированное по калорийности и составу питание, какое получали лабораторные грызуны. В развитых странах участие микробов в извлечении дополнительных калорий из еды может стать просто катастрофой. Более того – у тех, кто страдает ожирением, в кишечнике живут более эффективные микроорганизмы. Это касается не только человека, но и мышей, крыс и свиней. В частности, обитающие в их кишечнике микробы способны лучше расщеплять сложные сахара и жиры. В одном эксперименте ученые перенесли микробов из кишечника толстых крыс в кишечник худых крыс, у которых в результате тоже развилось ожирение. Способность микробов эффективно расщеплять углеводы и жиры стала для нас вредной, ибо мы, современные люди, не страдаем от недостатка еды. С другой стороны, в государствах, где подавляющее большинство жителей голодают (а таких стран гораздо больше, чем вы думаете), способность микробов извлекать из пищи дополнительные калории приносит людям ощутимую пользу. Если вам посчастливится заполучить бактерии, умеющие эффективно расщеплять углеводы и жиры, то эти бактерии в случае наступления голода смогут спасти вам жизнь. Если же, получив этих микробов, вы будете ежедневно питаться чипсами, сыром и белым хлебом, то вам почти наверняка грозит нешуточное ожирение. Разница между жизнью современного человека и жизнью наших далеких предков изменила и роль микробов, живущих в наших кишечниках. В прошлом эти микробы делали нас выносливее, а теперь делают нас толще, но при этом, возможно, спасают нас от некоторых инфекционных болезней, вызываемых другими бактериями.

Это, конечно, прекрасно – жить под стерильным колпаком без всяких бактерий, если там нет никого, кроме вас, а все необходимое вы получаете на блюдечке с голубой каемочкой. Но совсем другая история выходит, если колпак дает течь, а вы получаете вместо нормальной еды нездоровую, а подчас и вредную пищу. У мальчика, жившего под непроницаемым колпаком, постепенно развился дикий страх перед микробами, которые могли проникнуть в его изолированный мир. Мы все точно так же напуганы окружающими нас микроорганизмами и пытаемся отгородиться от них барьером из антибиотиков. Но проблема заключается не в том, что этот барьер несовершенен, – проблема в самой идее о том, что мы можем создать для себя надежный защитный панцирь. Дело в том, что большинство живущих в нас и на нас микробов приносят пользу. Пастер был прав: без микроорганизмов наши предки вымерли бы от голода и болезней. В наши дни без микробов мы, вероятно, были бы стройнее, но лишились бы жизненно важных питательных веществ и рисковали бы предрасположенностью ко многим заболеваниям. Представляется вполне вероятным, что дальнейшее проникновение антибиотиков в нашу жизнь приведет к тому, что наша еда станет еще менее питательной, а новые штаммы патогенных бактерий найдут способ проникнуть в наш организм. С каждым новым антибиотиком вредные бактерии будут завоевывать следующий дюйм нашего желудочно-кишечного тракта. Может быть, со временем мы научимся избирательно влиять на бактерии – например, сохранять микроорганизмы, синтезирующие витамин К, и уничтожать микробы, приводящие к ожирению. Но это благословенное время пока не наступило, так что история отнюдь не закончена. Было бы полезно первым делом обратиться к иным сообществам, например колониям термитов и муравьев, а затем, вооружившись новыми знаниями, заняться изучением червеобразного отростка слепой кишки человека – отростка, который, несмотря на свое уничижительное название, сыграл огромную роль в становлении человека как биологического вида.

Надо смело взглянуть правде в глаза и задать себе неприятный вопрос: как получилось так, что мы – и как ученые, и как сообщество – упустили из вида ценность многих микробов и вместо того, чтобы изучить и сохранить их, решили одним махом убить вообще всех бактерий. Отчасти ответ заключается в том, что было время, когда микробы угрожали самому нашему существованию, и поэтому идея о том, что их всех надо уничтожить, не казалась ужасной. Сыграла свою роль и фанатичная преданность Рейнирса идее о жизни без микробов. Лично мне наиболее подходящим кажется сравнение с вавилонским столпотворением. Главное допущение, лежащее в основе экологии (и этой книги), заключается в том, что природа постоянно повторяет свою основную мелодию в различных вариациях. Если мы, например, поймем, как функционирует экологическая система глубоководных рыб, то выявленные закономерности можно будет приложить и к другим сферам экологии. Закономерности увеличения и уменьшения численности рысей, охотящихся на зайцев, очень похожи на аналогичные закономерности изменения популяции хищных клещей, поедающих пылевых клещей, которые живут в вашей подушке. Точно так же можно извлечь знания об экологии нашего кишечника, опираясь на работы экологов, наблюдающих симбиоз микроорганизмов и крупных животных. Вплоть до недавнего времени ученые, изучавшие жизнь людей, игнорировали подобные уроки независимо от того, касались ли знания муравьев, термитов или тихоходок. Это дорого нам обошлось, но проблема не в невежестве или сознательном пренебрежении. Скорее, все дело в тех разительных изменениях, которые произошли в науке в течение последних пятидесяти лет, и здесь сама собой напрашивается аналогия с Вавилонской башней. История, как и экология, повторяется. Именно поэтому Рейнирс не оценил значимость результата своего эксперимента как ответа на вопрос Пастера. И мы до сих пор не видим, где мы вторгаемся в бурлящий мир дикой жизни.

В библейской истории о Вавилонской башне рассказывается о том, как жители Вавилона решили общими усилиями построить башню, которая достигла бы неба. Эта башня стала бы свидетельством их славы и могущества. Не жалея сил, они принялись укладывать в стену кирпичи. Естественно, в первую очередь люди работали руками, но огромную роль в постройке играл их язык – один на всех. Любой каменщик мог крикнуть: «Несите мне еще кирпичи!» – и его бы поняли. Стены башни продолжали расти ряд за рядом. Язык был так же необходим людям для координации усилий, как необходимы феромоны термитам и муравьям, а пчелам – их танцы. Язык был связующей нитью. Но то, что хорошо начинается, не всегда так же хорошо заканчивается. Бог наказал людей за высокомерие, смешав их языки. Бог заставил людей говорить на сотнях разных языков и тем самым разобщил их. Мораль этой притчи такова: высокомерие не доводит до добра. Но есть еще одна мораль, вытекающая из метода, каким были разобщены люди, – к провалу приводит также и неумение найти общий язык. Нечто подобное происходит сейчас и в науке, причем темп этих изменений продолжает нарастать. При отсутствии общего языка укладывать кирпичи становится все труднее и труднее. Конечно, предыдущие ряды кирпичей остались, и на них укладываются новые, только что обожженные кирпичики идей, но на что они опираются? И, что еще важнее, куда ведет нас растущая башня? Ответить на эти вопросы становится все сложнее.

Если посмотреть на науку со стороны, то может показаться, что по мере роста нашего совокупного знания мы все лучше и лучше понимаем, как устроен наш мир. Возможно, это верно для нашего абстрактного коллективного разума. Количество информации, накопленной в библиотеках, неуклонно растет. Но каждому человеку в отдельности становится все труднее увидеть мир в перспективе. Ученые, работающие в разных сферах науки, разрабатывают для своих областей все более специфическую терминологию и концепции. В наши дни нейробиолог не понимает, о чем говорит нефролог, и наоборот. Мало того, самим нейробиологам становится все труднее понимать друг друга. Способность среднего человека понимать суть других областей науки оказалась весьма ограниченной. Для того чтобы понимать других, надо владеть их языком. Но научные полиглоты, как это ни прискорбно, реже всего встречаются среди биологов, изучающих человеческий организм. В биологии человека границы между дисциплинами определены наиболее отчетливо. Ученый может всю жизнь исследовать клетки человеческого мозга или изучать определенные свойства слизистых оболочек. Чем сильнее отрасль дробится на мелкие области, тем ниже становится вероятность по-настоящему крупного открытия. Чисто механические открытия, конечно, случаются и при исследовании каких-то крошечных участков. Например, ученые, исследующие внутреннее ухо, могут открыть что-то новое в передаче звуков в центральную нервную систему, но практически никто из этих ученых не может отступить на несколько шагов назад и взглянуть на проблему с некоторого расстояния, а ведь именно в этой способности кроется залог научного прорыва. Поэтому неудивительно, что такие прорывы совершают ученые, исследующие малоизвестные области и являющиеся в них полновластными владыками. Они могут позволить себе отстраниться и взглянуть на проблему в целом, не обращая внимания на мелкие детали. К этому племени ученых в первую очередь относятся экологи и специалисты по эволюционной биологии, однако даже они в последнее время стали утрачивать эту свою способность. Отойдя на некоторое расстояние, они могут разглядеть вещи, которые были упущены при междисциплинарном переводе. Для того чтобы по-настоящему понять, как работают биологические организмы, надо, как я уже сказал, отступить на пару шагов назад – только тогда можно разглядеть параллели, повторяющиеся закономерности, характерные для разных областей биологии и организмов разных видов. Я бы сказал, что идеальная дистанция – это та, которая позволяет одновременно видеть организм человека и организм термита, причем в контексте окружающего их ландшафта. При таком взгляде трудно упустить из вида муравьев.

Муравьи, как и все мелкие создания, вездесущи. Вероятно, классической моделью для изучения взаимодействия между организмами разных видов (например, между человеком и населяющими его кишечник микробами) является пример взаимодействия между муравьями и акациями. Акация предоставляет муравьям убежище и питание в виде маленьких грушевидных плодов в обмен на защиту своей листвы. Деревья, на которых обитают муравьи, здоровее деревьев, лишенных муравьев, и растут они гораздо быстрее, так как муравьи защищают акации от многочисленной группы травоядных насекомых. Можно провести параллель между тем, как муравьи взаимодействуют с акацией и как наши организмы уживаются с населяющими их микробами. Наши микробы тоже защищают нас и обеспечивают питательными веществами в обмен на еду, которую мы поглощаем. Впрочем, можно найти еще более тесную параллель – если присмотреться к муравьям, которые занимаются собственным сельским хозяйством.

Эти существа похожи на нас больше, чем животные любого другого вида. Колонии этих муравьев, известных как муравьи-листорезы, представляют собой колоссальные сообщества. Их образуют многие тысячи или даже миллионы стерильных особей, обеспечивающих всем необходимым свою королеву. Как и в любом обществе, некоторые отдельные особи могут быть несовершенны. Одни принимают неверные решения. Других съедают враги. Третьи притаскивают в муравейник ядовитые листья, а четвертые всегда ходят не туда, куда надо. Но в целом общее дело не страдает, муравьи беспрестанно работают. Их работа заключается в доставке в муравейник измельченных листьев, где те становятся удобрением для грибных плантаций. Грибные тела – их можно назвать плодами – богаты сахарами, и муравьи кормят ими своих личинок. Эти грибы служат муравьям как бы внешним кишечником, переваривающим листья, которые насекомые неспособны переварить самостоятельно. Разные виды листорезов разводят грибы разных видов. Короче говоря, грибы и муравьи нужны друг другу, и у насекомых существует множество разнообразных способов, как использовать грибы. Такое сельское хозяйство – занятие нелегкое, но муравьи научились делать это почти безупречно. Наверное, с точки зрения грибов, кормить личинок тоже нелегкое дело, однако грибные фермы растут, колония процветает, а муравьиная королева толстеет от невообразимого количества оплодотворенных яиц.

Колонии муравьев-листорезов, поднаторевших в выращивании грибов, выглядят со стороны как хорошо налаженное поточное производство. Муравьи-рабочие таскают в муравейник листья, на которых сидят более мелкие муравьи – в их задачу входит охранять рабочих от мух, откладывающих яйца в их головы. Солдаты, чьи мышцы развиты куда лучше, чем мозг, охраняют пути транспортировки. Листья измельчаются согласованными движениями острых пилообразных мандибул. Есть и внушительных размеров королева, которая, лежа в укромном отсеке муравейника, непрерывно откладывает тысячи яиц в день, причем каждое яйцо неповторимо, как яйца Фаберже. Множество специалистов по тропической биологии сутками и месяцами следили за этой совершенной фабрикой. Почти все наблюдатели отметили необычайное сходство между муравьиными и человеческими городами. Это сравнение напрашивается само собой, но все же муравьиная колония больше напоминает не город, а единый организм. Каждого муравья можно уподобить клетке – одни клетки заняты транспортом питательных веществ, другие обезвреживают яды, и все вместе они бескорыстно трудятся ради выживания всего муравейника.

Муравьи-листорезы так же удивительны, как и их грибы. Отношения грибов и муравьев показывают, до какой степени может дойти взаимозависимость двух биологических видов. Но ученые, изучающие кишечник человека, мало знают о муравьях, по крайней мере, не больше того, что можно узнать из просмотров научно-популярных передач канала «Дискавери». Там можно увидеть то попадающих в фокус, то расплывающихся насекомых и сравнить их размер с размером человеческого пальца. Но до недавнего времени в рассказах о муравьях-листорезах отсутствовал один ключевой элемент. Было неясно, каким образом примитивная иммунная система муравьев защищает грибы – свой наружный пищеварительный тракт – от болезней. (Вы можете заметить, что этот вопрос аналогичен вопросу о том, как наш кишечник защищается от вредоносных для него бактерий.) Если такой грибной сад, какой мы видим у листорезов, остался бы без присмотра, он был бы немедленно сожран – особенно в тропиках. Однако растущие в муравейниках грибы отлично себя чувствуют и, несмотря на свою пищевую привлекательность, остаются целыми и невредимыми. Кроме того, оставалось загадкой, как муравьям удается самим оставаться здоровыми в окружении грибов.

Если живое существо в природе никто не трогает, для этого есть веская причина – оно может отвратительно пахнуть, выделять яды или защищаться каким-нибудь иным способом. Но что же отгоняет врагов от муравьиных садов и от самих насекомых, которые ежедневно соприкасаются с множеством микробов? Недавно было высказано предположение, что муравьи и грибы защищены от патогенных бацилл «хорошими» бактериями. Кэмерон Карри, биолог, ныне работающий в университете штата Висконсин, считает, что эти бактерии образуют колонии в особых местах на теле муравьев. Бактерий становится больше, когда в колонии заводятся патогенные микроорганизмы. Карри полагает, что эти микроорганизмы помогают муравьям бороться с опасными бациллами, обитающими на хороших грибах. Давно известно, что бактерии могут вырабатывать антибиотики – большинство антибактериальных препаратов, включая пенициллин, изначально были выделены из микроорганизмов. Бактерии муравьев-листорезов могут продуцировать антибиотики, подавляющие рост вредных грибов (по-латыни их называют Escovopsis), поражающих полезные грибы муравейника. Согласно гипотезе Карри, эти бактерии являются защитниками и партнерами муравьев, они живут на телах насекомых, покрывая их словно вторая кожа. Вероятно, муравьи поддерживают существование этих бактериальных колоний, чем-то вознаграждая их и удерживая на себе. Альтернативная гипотеза гласит, что эти бактерии являются защитниками не столько грибов, сколько самих муравьев. В данном случае оба объяснения выглядят вполне разумными. Таким образом, идея о том, что наш организм специально культивирует в кишечнике полезных бактерий, пришла из биологии беспозвоночных. Так как изучать муравьев легче, чем людей, то можно надеяться, что все сложные (хотя и спорные) способы взаимодействия муравьев с окружающей природой будут раскрыты быстрее, чем тонкости наших взаимоотношений с кишечными бактериями. Прав Кэмерон или нет – покажет время, но достаточно и того, что он смог посмотреть на проблему с некоторого расстояния и обнаружить нечто очень интересное. Его находка касается муравьев, но, как выяснилось, эту идею можно применить и в изучении экологии и биологии человека.

Мы склонны воображать себя очень сложными существами. Согласно прежним воззрениям, мы – вершина творения, главное звено эволюционной цепи. В то же время нам трудно представить себе, что наши взаимоотношения с другими видами по своей сложности не уступают взаимоотношениям, скажем, тех же муравьев. Но надо сказать, что и наши отношения с «родными» микроорганизмами тоже нельзя назвать простыми. Нам просто повезло, что в последнее время мы стали больше знать о жизни колоний муравьев-листорезов. В том, как мы возделываем свои бактериальные сады, мы мало отличаемся от муравьев. Наши червеобразные отростки, если они не воспаляются, выполняют, в принципе, ту же самую работу. Вопреки тому, что говорит наш мозг относительно вредоносности всех бактерий, живущих у нас в кишках и на коже, аппендикс имеет свое мнение на этот счет. Он что-то бормочет на своем примитивном бессловесном языке, и он явно знает, что говорит.

 

Глава 6

Мне нужен мой аппендикс (как и моим бактериям)!

11 сентября 1942 года Дину Ректору из Шатокуа, что в штате Канзас, стукнуло девятнадцать. День рождения праздновали на глубине сотни футов под водой. Над головой Ректора, кроме миллионов фунтов воды, находились еще и японские эсминцы, охотившиеся за американскими субмаринами, в одной из которых и находился Ректор. Подводники надеялись, что стальной корпус убережет их и от воды, и от вражеских торпед. Дин впервые встречал свой день рождения подобным образом.

Впрочем, праздник продолжался недолго. К утру парню стало так плохо, что он подумал, что умирает. Дина Ректора и его сослуживцев окружало множество опасностей, но на этот раз восстали внутренние демоны. Боль усилилась настолько, что Дин не смог сдержать стон. Один из моряков предположил, что у Ректора просто грипп. Может быть, это ностальгия, предположил другой. Но Ректор стонал все сильнее, и в конце концов все осознали беспощадную истину – у парня был аппендицит.

Аппендицит может угрожать жизни даже в обычных условиях, но условия, в которых находился Ректор, трудно назвать обычными. На борту субмарины не было оперирующего хирурга, и найти его на таком расстоянии от родины, да еще в окружении японцев, было просто нереально. Парень нуждался в операции, но кто будет ее проводить? Официально корабельным хирургом числился Уилер Б. Лайпс, но на самом деле все его врачебные навыки ограничивались умением работать с электрокардиографом. Командир попросил Лайпса прооперировать Ректора, но Лайпс отказался, и тогда командир попросту приказал ему это сделать. Причин для колебаний у Лайпса было более чем достаточно. Не говоря уже о полном отсутствии хирургического опыта, он не знал, как долго действует эфир, где в человеческом теле находится аппендикс, и не имел ни малейшего представления о том, какую кухонную утварь можно использовать в качестве хирургических инструментов. Но приказ есть приказ, и Лайпс начал готовиться к операции.

Собравшись с духом и собрав подходящие инструменты, Лайпс приступил к делу. Парня уложили на стол в офицерской кают-компании. Стол оказался «такой длины, что голова и ноги Ректора как раз доходили до его краев и не свешивались с него». Лайпс склонился над Ректором, нервно листая медицинский учебник. (Скорее всего, он искал рисунок, на котором была бы обозначена топография пораженного органа.) Вместо хирургической маски Лайпс натянул чайное ситечко. Своим добровольным ассистентам он выдал ложки, которые должны были служить крючками и ранорасширителями. Ассистенты в полной готовности встали по обе стороны от пациента. Затем, как позже было сказано в опубликованной в Chicago Daily News статье, Лайпс наклонился к Ректору и сказал: «Слушай, Дин, я никогда раньше не делал ничего подобного». У Ректора округлились глаза, а Лайпс, «следуя старинному хирургическому правилу, прижал кончик мизинца к втянутому пупку, а большой палец установил на гребне подвздошной кости, после чего указательный палец сам уткнулся в точку, где надо было выполнить разрез».

Удаление аппендикса – самая распространенная хирургическая операция. Довольно часто, как в случае с Дином Ректором, аппендэктомия становится необходимой неожиданно и в самых неподходящих условиях. Придя на работу, понаблюдайте за своими коллегами. Возможно, кого-то из них несчастный случай лишил глаза. Вы не увидите ни одного, у кого не было бы сердца, но я готов биться об заклад, что у многих нет аппендикса. Этих людей, лишенных червеобразного отростка, вы не выделите из общей массы; на их коже нет стигм или каких-либо других страшных последствий аппендэктомии. Возможно, что аппендикса нет и у вас. Но независимо от этого было бы уместно задать вопрос: если аппендикс причиняет людям так много неприятностей, а его отсутствие куда менее заметно, чем отсутствие штанов (на это вы бы обязательно обратили внимание, взглянув на коллегу), то зачем он нам вообще нужен? Ответ, как мы увидим дальше, имеет отношение к нашим кишечным микробам и к истории нашей эволюции. Аппендикс имеет смысл только в контексте нашего эволюционного прошлого, но члены экипажа подводной лодки едва ли в тот момент размышляли над этими проблемами. Люди смотрели на Дина Ректора, который, широко раскрыв рот, громко стонал.

Лайпс, собравшись с духом, сделал разрез.

Аппендикс – это отходящий от слепой кишки продолговатый кусок плоти размером с мизинец. Однако, несмотря на свой малый (относительно других органов) размер, он все же достаточно велик и заслуживает отдельного описания. На вопрос о том, что делает в организме аппендикс, можно дать очень распространенный ответ. Сердце качает по сосудам кровь. Почки очищают ее и регулируют артериальное давление. Легкие поглощают из воздуха кислород и выделяют в атмосферу углекислый газ. Что же касается аппендикса, или червеобразного отростка, то он, кажется, просто висит, как и положено слепому отростку. За триста лет, прошедших после первого удаления аппендикса у живого человека, этому небольшому органу приписывали массу способностей – иногда сверхъестественных, но по большей части банальных. Возможно, аппендикс является частью иммунной системы. Возможно, он играет какую-то роль в нервной регуляции. Может быть, он секретирует гормоны и влияет на работу мышц. Но в принципе в медицинской науке преобладало мнение, что аппендикс в организме не делает вообще ничего. Это рудимент, такой же, как соски у мужчин или кости задних конечностей у кита; то есть заметный, но никому не нужный пережиток прошлого. Это неверный ответ, но вплоть до недавнего времени мы об этом не знали.

История наших попыток понять, в чем заключается функция аппендикса, началась задолго до операции Лайпса, но в этой истории было больше предположений, чем истинного понимания. Главным доказательством того, что аппендикс является обычным рудиментом, служил тот факт, что после его удаления с людьми не происходит ровным счетом ничего. Это считалось логически обоснованным окончательным доказательством. Хирурги (а в случае Лайпса – техники кабинета ЭКГ) удалили миллионы аппендиксов. За результатом они наблюдали приблизительно так же, как вы могли бы наблюдать за результатом удаления ненужного бревна из стены вашего загородного дома. Если дом после этого не рухнул, то вы испытываете громадное облегчение, слегка подпорченное беспокойством во время сильного ветра. Однако «ветры» дули, но людям, перенесшим аппендэктомию, не становилось хуже, и они не умирали молодыми. Их дома продолжали стоять крепко и непоколебимо. Если бы роль аппендикса в организме была по-настоящему важной, то лишившиеся его люди (по крайней мере некоторые) начали бы болеть. Но перенесшие операцию, подобно морским свинкам в стерильных камерах, и не думали болеть, поэтому представлялось совершенно ясным, что аппендикс – это пережиток прошлого. Возможно, он что-то делал, когда мы были обезьянами, а может, и еще раньше, когда мы, словно мелкие грызуны, жили среди громадных динозавров. Да, вполне вероятно, что в организме наших далеких предков аппендикс и играл какую-то жизненно важную роль, но теперь он просто болтается среди кишок, как язык колокольчика, который иногда, как в случае Дина Ректора, начинает панически трезвонить: «Я здесь, удалите меня немедленно!»

Но с гипотезой о том, что червеобразный отросток – это всего лишь антикварная безделушка, бесполезный рудимент, были и кое-какие проблемы. Во-первых, аппендикс иногда убивает. Если воспаленный аппендикс не удалить, то вероятность гибели пациента независимо от его возраста приближается к пятидесяти процентам. Согласно статистике, один из шестнадцати человек в общей популяции заболевает острым аппендицитом, следовательно, если в этих случаях не удалять аппендикс, то каждый тридцать второй человек умрет от аппендицита. Если бы исторически каждый тридцатый человек умирал от воспаления червеобразного отростка, само присутствие которого, размер и форма запрограммированы генетически (что представляется вполне правдоподобным), то не потребовалось бы много поколений на то, чтобы ген крупного аппендикса (или даже аппендикса вообще) полностью исчез из человеческой популяции. При прочих равных условиях гены, которые убивают или даже просто ослабляют нас, надолго в генофонде не задерживаются. Рыбы, которые в процессе эволюции приспособились к жизни в подводных пещерах, очень скоро лишились глаз, ибо в темной пещере глаза не нужны, не говоря уже о том, что с точки зрения биоэнергетики сохранение глаз в такой ситуации слишком дорого обходится организму. Если бы наличие аппендикса было излишним и вредным, то он давно бы исчез, как исчезли глаза у пещерных рыб. Кстати сказать, они утратили не только глаза, но и их нервные связи. У этих рыб редуцировались участки мозга, отвечавшие за зрение. Но подобная судьба не коснулась аппендикса, он остался, несмотря на миллионы смертей на его счету.

Еще одна проблема с этой гипотезой заключается в обезьянах. Если наш аппендикс действительно всего лишь бесполезный рудимент, то мы можем присмотреться к нашим ближайшим родственникам и выяснить, что делал когда-то наш червеобразный отросток. Чем занимался аппендикс в организмах наших предков, каковы его нынешние функции в организмах наших родственников? Если наш аппендикс – всего лишь рудимент, то можно ожидать, что у обезьян этот орган развит лучше, чем у нас, и приносит обезьянам больше пользы. По идее, у шимпанзе аппендикс должен быть меньше, чем у других обезьян, так как они являются нашими ближайшими родственниками, а их образ жизни (и полезность аппендикса при таком образе жизни) близок нашему. У пещерных рыб нет глаз, так как они бесполезны и дорого обходятся, но мы можем исследовать родичей пещерных рыб и выяснить, какую роль глаза играли в жизни их предков. Точно так же мы можем исследовать наших родичей и выяснить, что делал аппендикс в организме наших предшественников.

Здесь кроется суть проблемы и самая интересная часть истории. Оказалось, что у людей и некоторых человекообразных обезьян аппендикс хорошо развит и имеет более сложную структуру, чем у низших широконосых обезьян, например у мартышек. Это позволяет утверждать, что для нас червеобразный отросток важнее, чем для наших предков. Полученные данные противоречат нашим ожиданиям – ведь мы исходили из рудиментарности аппендикса. Что все это может значить? Скорее всего, аппендикс, долгое время считавшийся бесполезным, все же имеет (или совсем недавно имел) для нас какое-то значение. Более того – его значение, видимо, настолько велико, что особи с хорошо развитым червеобразным отростком живут дольше и оставляют более многочисленное потомство, которое передает дальше гены сложного и отлично развитого аппендикса. Собственно, мы вновь пришли к началу нашей истории. Исследование других приматов привело нас к выводу о том, что наш аппендикс – во всяком случае, в недавнем эволюционном прошлом – имел для нас очень большую ценность. Но какую?

Вопрос, выполняет ли аппендикс какую-либо функцию или просто является бесполезным придатком слепой кишки, в течение сотен лет ждал своего исследователя. Никто в мире не занимался этой проблемой всерьез. Подобно многим другим важным вопросам, этот, как правило, служил лишь предметом застольных бесед. После обеда о нем благополучно забывали. Во всем мире хирурги провели в операционных тысячи часов, удаляя червеобразные отростки. Их удалили так много, что эта операция стала считаться рутинной – удалить аппендикс стало так же прозаично, как, скажем, открыть банку кока-колы или оторвать черенок от помидора. Большинство врачей вообще перестали задумываться о пользе или вреде аппендикса, бросая очередной отросток в таз. Никто (даже вопреки здравому смыслу!) не учитывал возможность того, что аппендикс играет какую-то роль во взаимоотношениях организма и населяющих его микробов.

Но вернемся на подводную лодку, где Уилер Б. Лайпс вскрыл брюшную полость Дина Ректора и принялся изучать его кишечник. Об аппендиксе Лайпс знал приблизительно столько же, сколько все остальные люди, – то есть практически ничего. Правда, осознание того, что он невежда не более прочих, было слабым утешением как для Лайпса, так и для Ректора. Пот заливал глаза Уилера, и он то и дело просил своих помощников вытирать ему лоб. Перед ним на столе лежал человек со вскрытым животом. Операция измотала Лайпса. В течение двадцати минут он тщетно искал червеобразный отросток. Сначала он «поискал на одной стороне слепой кишки, а потом на другой». Лайпс начал сомневаться в своих силах.

Когда уже начало казаться, что все пропало, аппендикс, наконец, был найден. Оказалось, что он свернулся змеей и втянулся в просвет слепой кишки. Лайпс удалил отросток, бросил его в кувшин, снял с лица Ректора губку с эфиром и кетгутом зашил рану. Все необходимые инструменты у Лайпса были наготове. Нитки он отрезал маникюрными ножницами.

Никто не знал, суждено ли Ректору жить или умереть, но аппендикс лежал в кувшине, выставленный на всеобщее обозрение. Если бы Лайпс внимательно присмотрелся к удаленному им органу, то обнаружил бы много интересного. Во-первых, он заметил бы, что аппендикс заполнен лимфатической тканью – признак отношения к иммунной системе. Лайпс бы увидел, что изнутри аппендикс покрыт бактериями – толстым ковром из тесно прижавшихся друг к другу разнообразных бактериальных клеток (таким же ковром покрыты хитиновые панцири муравьев). При правильном освещении Лайпс мог бы обратить внимание на то, что аппендикс очень напоминает своего рода пещеру. Но Лайпс, естественно, ничего этого не заметил. В тот момент его меньше всего занимал вопрос, зачем нужен был Ректору его аппендикс. Лайпса намного больше интересовало, как Ректор перенесет действие эфира и когда у него самого и его помощников пройдет возбуждение, вызванное всплеском адреналина, бушевавшего в их крови все несколько часов этой операции. Подводная лодка покачивалась в волнах, а в такт ей покачивался и аппендикс в кувшине, и Ректор на импровизированном операционном столе.

Через несколько дней стало окончательно ясно, что Ректор пошел на поправку. Лайпс стал героем. До конца дней его будет окружать ореол доблести и творческих способностей. Но в истории изучения человеческих аппендиксов (включая и ваш) нельзя не отметить еще одного незаурядного человека, который видел невероятное количество аппендиксов в кувшинах и тазах, присмотрелся к ним внимательно и обнаружил ключ к пониманию загадки червеобразного отростка.

Рэндал Боллингер – почетный профессор университета Дюка в Дареме (Северная Каролина). Сам он утверждает, что отошел от дел и наслаждается заслуженным отдыхом. Отправьте ему письмо по электронной почте, и вам придет автоматически сгенерированный ответ: профессора не будет на месте до 2050 года. В науке принято считать, что способность порождать новые идеи достигает своего пика в возрасте, из которого Боллингер давно вышел. Успех редко приходит к неоперившимся цыплятам и старым облезлым петухам. Но всякий стандартный подход имеет свои недостатки и ограничения. Стандарт упускает из вида опыт и объем наблюдений. Да, лучшие свои произведения Пикассо создал во времена бурной молодости, но его другу Матиссу, как хорошему вину, потребовалось несколько десятилетий для совершенного созревания таланта. Свои лучшие полотна Матисс написал в возрасте между семьюдесятью одним и восемьюдесятью пятью годами, ну а Боллингер продолжал работать с человеческими организмами и размышлять об их природе. Они были его холстами, которые он постоянно подправлял и делал на них открытия. Боллингер понимал, что у организма всегда найдется в запасе пара-другая тайн, которые надо разгадать. Одной из таких тайн и был аппендикс.

За время своей трудовой деятельности Боллингер видел тысячи аппендиксов – в животах больных, на операционных столах и в тазах для удаленных частей тела. Он знал, что червеобразные отростки заполнены тремя вещами: иммунной тканью, антителами и бактериями. Именно бактерии становятся главной проблемой при разрыве аппендикса. Когда это происходит, бактерии, находящиеся в кишках и аппендиксе, попадают в полости тела и вызывают опасную для жизни инфекцию.

Многие люди видели то же самое, что и Боллингер. Но большинство их проигнорировало увиденное, как, впрочем, и мы все игнорируем значительную часть того, что попадается нам на глаза. Однако в случае Боллингера простые наблюдения относительно естественной истории аппендикса оказались полезными и плодотворными. Обнаруженные им факты и проницательность его коллеги Билла Паркера из медицинского центра университета Дюка помогли совершить удивительное открытие. Во время рутинного лабораторного коллоквиума в 2005 году Паркер и Боллингер беседовали со студентами и докторантами о своих последних исследованиях. Функция аппендикса никогда не была темой этих обсуждений, и на этот раз коллоквиум не был исключением из правила – по крайней мере, поначалу. Но тот день Паркер запомнил на всю жизнь. Он даже помнит, на каком стуле сидел в тот день. У Боллингера, вспоминает Паркер, «был такой вид, словно он наткнулся на какое-то сокровище». Он некоторое время молчал, а потом задумчиво, как будто обращаясь к самому себе, но достаточно громко произнес: «Бьюсь об заклад, я знаю, что делает в организме аппендикс». Вот так, без особого повода, на коллоквиуме развернулась интересная дискуссия. Студенты онемели от неожиданности. Боллингеру и Паркеру очень скоро стало ясно, что за несколько минут этого ясного весеннего утра они решили проблему, которую до них не могли решить на протяжении пяти сотен лет. Они внезапно нашли очевидный ответ. В тот день Боллингер и Паркер пришли к выводу, что аппендикс – это дом и убежище для бактерий. Аппендикс возник как место, где бактерии могут спокойно жить и размножаться и где их не беспокоит кишечная перистальтика. Аппендикс – это тихая гавань, уютный закоулок. Из этого закоулка, решили профессора, бактерии могут заново колонизировать кишечник после того, как флора вымывается из него во время разных заболеваний. Например, холера вызывает такую интенсивную рвоту и такой профузный понос, что из желудочно-кишечного тракта вымывается масса бактерий. При холере этот эффект представляется адаптационным, то есть приспособительным. Когда клетки холерного вибриона изгоняются из организма (и чаще всего попадают в системы водоснабжения), то они передаются следующим жертвам с такой же неизбежностью, как если бы переносчиками были комары. Холерный вибрион запускает весь этот процесс, в избытке производя соединения, которые, не являясь чрезмерно токсичными, тем не менее вызывают такую реакцию, словно в кишечник попало большое количество ядовитых веществ. В такой ситуации аппендикс может стать для бактерий спасительной гаванью.

В этот момент на свете нашлось бы мало того, во что Боллингер и Паркер верили бы больше, чем в свою новую гипотезу. Возможно, что человеческое тело устроено так же сложно, как муравьиное сообщество. Теперь надо было решить, что делать дальше. Можно было либо немедленно опубликовать посетившую их идею, либо сначала ее проверить. Паркер и Боллингер, скрепя сердце, решили все же для начала проверить свою гипотезу. Для этого им, конечно, придется «хорошенько покопаться в кишечнике с подвешенным к нему аппендиксом». Если бы они тогда знали, что проверка гипотезы займет два бесконечно долгих года.

Озарение, снизошедшее в тот день на Боллингера, Паркера и других сотрудников лаборатории, не могло посетить кого-то одного из них. Новое знание явилось в результате соединения опыта и знаний каждого из них. Потребовался опыт Боллингера, изучавшего морфологию и структуру червеобразного отростка. Не менее важным было в этом отношении открытие, сделанное Паркером за десять лет до этого. Паркер тогда изучал антитела и читал литературу о том, как они реагируют на бактерии. Читая научные статьи, он понял две вещи: во-первых, то, что антитела иногда не атакуют, а, наоборот, помогают бактериям, и, во-вторых, что аппендикс – по необъяснимым пока причинам – буквально забит антителами. Странным казалось не только то, что такой, судя по всему, бесполезный орган вообще существует. Странным было и то, что он заполнен антителами, производство которых очень недешево обходится организму. Никто не задавался вопросом, что может быть тому причиной.

Антитела обычно описываются как часть защитной системы организма, как вторая линия его обороны, на которую наталкивается чужеродный агент, сумевший проникнуть в тело сквозь барьеры первой линии, например сквозь слизистую оболочку носа. Но это только часть правды. На самом деле главное занятие антител – это отличать клетки нашего тела от клеток других организмов. С точки зрения антител, весь мир населен двумя типами клеток – «свои» и «чужие». Вся жизнь антител проходит в распознавании этих двух типов клеток и в запуске соответствующих иммунологических реакций – ответов на вторжение в организм «чужих» клеток.Антитела являются древним компонентом нашей иммунной системы. По механизму своей активности наша иммунная система не отличается от систем крыс и лягушек, так как сотни миллионов лет назад, когда жили наши общие предки, эта система уже доказала свою несомненную эффективность.

Паркер начал читать о том, что другие биологи уже знали об определенном классе антител – об иммуноглобулинах А. Антитела этого вида типичны для человеческого кишечника. В поисках материалов об иммуноглобулинах А Паркер читал то же самое, что читали до него сотни ученых. «Основная функция иммуноглобулинов А состоит в поиске и идентификации бактерий, находящихся в кишечнике», чтобы другие элементы иммунной системы могли атаковать распознанные чужеродные бактерии и вытеснить их из кишечника и из организма. Но Паркер чувствовал, что в этой картине что-то не так.

Здесь я хотел бы немного отвлечься от повествования и сказать, что наука – по крайней мере в некоторых деталях – состоит из ошибок. Исправление ошибок – это то, чем сотни и тысячи ученых занимаются в своей повседневной научной деятельности. Вся надежда на то, что истина в конце концов все же пробьет себе дорогу, а ошибки будут вытеснены (фигурально выражаясь) в кишечник и удалены прочь. Но подчас этот процесс требует немалого времени и трудов. Иногда заблуждение прикидывается истиной довольно долго, ибо об ошибках пишут в учебниках и их заучивают поколения молодых ученых. Находить и исправлять такие застарелые ошибки и заблуждения – занятие трудное и неблагодарное. Но если вам удастся это сделать – неважно, в результате внезапного озарения, терпения, прилежного чтения, везения или сочетания всех или некоторых из этих факторов, – то это будет похоже на то, как если бы вы на нью-йоркском Центральном вокзале обнаружили ведущую в волшебный мир потайную дверь. После такого открытия хочется останавливать всех встречных и спрашивать: «Как вы могли не заметить этого раньше?»

Просматривая статьи об иммуноглобулине А, Паркер читал то же самое, что до него читали и другие иммунологи, но ему в этих статьях виделось нечто несуразное. Присутствовали все части картины, но соединялись они неправильно. Создавалось впечатление, что смотришь на человека, у которого ступня растет прямо из бедра. В статьях, вышедших в семидесятые годы, писали, что бактерии, атакуемые иммуноглобулинами А, имеют на своей поверхности специальные рецепторы. Их можно сравнить с микроскопической дверью, специально устроенной таким образом, чтобы антителам было удобнее атаковать бактерию. Но скажите на милость, зачем бактериям двери для тех самых антител, которые атакуют их и выводят из организма? Это выглядит так же, как если бы китайцы, построив свою Великую стену, пристроили бы к ней с внешней стороны Великую лестницу. Зачем строить для врагов удобные проходы? Читая литературу, Паркер со временем обнаружил еще более странные вещи. Недавние исследования показали, что у людей и подопытных мышей с отсутствием иммуноглобулина А бактерии с рецепторами к нему исчезают.

Паркер, занимаясь исследовательской медицинской деятельностью, изучает возможности ксенотрансплантации – то есть пересадки органов животных одного вида представителям других видов. Его задача – найти приемлемое медицинское решение, отыскать способ его реализации и клиническое применение. Понимание свойств иммуноглобулина А и сходных антител показалось Паркеру ключом к решению проблемы. Если ученым удастся временно блокировать или каким-то образом изменить активность этих антител, то человеческий организм сможет принять, допустим, легкие обезьяны или сердце свиньи как свои собственные. (В мечтах Паркер видел газетные заголовки типа «В Кливленде произведена пересадка человеку легких свиньи».) Но помимо своей основной деятельности, Паркер всегда очень живо интересовался радикальными новыми идеями. Он любит их и искренне им радуется. Теперь, когда он серьезно взялся за проблемы ксенотрансплантации, у него появились и новые идеи по поводу иммуноглобулина А. Если он окажется прав, то в учебниках по биологии придется заново переписывать целые главы.

Итак, в один прекрасный день 1996 года Билл Паркер сидел в своей лаборатории, размышляя о том, что ему известно об иммуноглобулине А. Такие моменты переживали многие ученые (наверное, так чувствует себя ягуар, поймавший броненосца) – они напряженно думали, как проникнуть под броню фактов и найти закономерность, связывающую их в единое целое. Иногда вскрыть броненосца так и не удается, и он спокойно гуляет по лаборатории – целый и невредимый. Но столь же часто ягуару все же удается обнаружить в броне слабое место. Вот и Паркеру показалось, что он нашел верное объяснение, которое придавало смысл всем его разрозненным наблюдениям. Ответ был очевиден, и не требовалось никаких новых исследований, по крайней мере пока. Если теория Паркера окажется верна, то она перевернет все наши нынешние представления о самых распространенных антителах нашего кишечника.

Откровение, посетившее Паркера в 1996 году, состояло в следующем: если организм с помощью иммуноглобулинов А пытается освободиться от бактерий, то он тем самым оказывает себе поистине медвежью услугу. Если бактерии пытаются избежать контакта с антителами класса иммуноглобулинов А, им это также не удается. Они не только оставили дверь открытой, но и поменяли замок таким образом, чтобы он подходил для ключа – антител класса IgA. Естественно, у бактерий нет никаких дверей и специальных рецепторов к иммуноглобулинам А; справедливо также и обратное. Дело в том, что на поверхности антител IgA присутствуют определенные сахара. Бактерии распознают эти сахара и реагируют на них. Мысль Паркера заключалась в том, что все иммунологи, до сих пор изучавшие действие иммуноглобулинов А в нашем кишечнике, заблуждались относительно их функции. На самом деле они помогают бактериям! Антитела способствуют слипанию бактерий в конгломераты и их закреплению на слизистой кишечника. Эта фиксация препятствует вымыванию бактерий из просвета кишки.

Иммуноглобулины класса А помогают бактериям тем, что сооружают для них подобие строительных лесов, на которых бактерии соединяются вместе, образуя биопленку – сообщество разнородных бактериальных клеток. Биологические пленки очень широко распространены в природе – их, например, образуют бактерии, живущие на муравьях-листорезах. Паркер ничего не знал о листорезах, но знал, что подобное взаимодействие встречается в мире растений. Он понял, что бактерии в кишечнике человека поразительно схожи с бактериями, обитающими на корнях растений. Что, если человеческий организм, как и растения, вырабатывает вещества, способствующие прилипанию бактерий? Что, если иммуноглобулины не воюют с бактериями, а, наоборот, помогают им удержаться на слизистой кишки?

Для того чтобы проверить эту идею, Паркеру нужно было в лабораторных условиях смоделировать взаимодействие иммуноглобулинов А с кишечными микробами. Ученый начал выращивать клетки слизистой оболочки кишечника на пластиковых пленках, а затем добавлял в эти культуры бактерии. По всей лаборатории были расставлены пробирки с невообразимой дрянью. Для усиления роста клеток в культуры добавляли человеческие экскременты. Иногда путь к открытию приходится прокладывать через незнакомый лес, где взору исследователя вдруг открываются неведомые ранее чудеса. Но бывает, что роль леса исполняет лаборатория, заполненная бактериями, выделенными из человеческих экскрементов. Всякому стороннему наблюдателю эта картина показалась бы ужасной и даже вульгарной – но не Паркеру, которому лабораторный запах казался сладким запахом открытия.

В 1996 году у Паркера не было ничего, кроме идеи, но она имела колеса и могла двигаться. Это и надо было проверить. Опыты заняли целых семь лет. Наконец, Паркеру удалось показать, что если к биопленкам добавлять иммуноглобулины А, то пленки растут быстрее и достигают большей толщины. В присутствии иммуноглобулинов А к клеткам кишечника прилипало вдвое больше бактерий. Если же к пленкам добавляли фермент, расщепляющий иммуноглобулины А, то пленки распадались. Паркеру показалось, что он нашел убедительные доказательства своей правоты, но… сначала ему никто не поверил. Колеса идеи прокручивались вхолостую. Никто не давал денег на исследования, ни один журнал не принимал его статьи. Наконец, в 2003 году Паркеру удалось опубликовать статью. Но заметят ли ее? Не канет ли она в Лету вместе с другими безвестными идеями? Паркер мог быть тысячу раз прав, но это не гарантировало признания.

Наконец в 2004 году случился прорыв. Джеффри Гордон, известный и заслуженный ученый, получавший в виде грантов миллионы долларов и имевший в своем распоряжении дюжину докторантов, написал теоретическую статью в поддержку идеи Паркера. Статья Гордона стала неким порогом, необходимым толчком, и вскоре тем, кто выжидал, было дано разрешение поверить Паркеру. Со скоростью приливной волны, захлестывающей корни мангровых зарослей, идея Паркера превратилась из ереси если и не в догму, то, во всяком случае, в признанную теорию. Стало очевидно, что основной функцией иммуноглобулинов А является помощь бактериям. В своих лабораторных исследованиях, результаты которых изначально никто не хотел публиковать, Паркер показал, что в присутствии иммуноглобулинов А бактерии растут в пятнадцать раз быстрее, чем в отсутствие IgA. Следовательно, иммуноглобулины не просто помогают бактериям, но и делают это очень активно!

Идея Паркера, несмотря на свою внешнюю непритязательность, оказалась поистине революционной. Когда Паркер приступал к своей работе, все были убеждены, что первоочередная задача нашей природной иммунной системы – воевать с бактериями. Дело было закрыто. Теперь Паркер и многие ученые стали отстаивать абсолютно противоположную точку зрения. Антитела иммуноглобулинов класса А, стучась в двери бактерий, не атакуют их. Иммуноглобулины помогают бактериям, поставляя вещества, позволяющие им образовывать структуры, называемые биологическими пленками. Паркер и Боллингер показали, что такие пленки выстилают слизистую оболочку большей части толстого кишечника и аппендикса. На микроскопических срезах был отчетливо виден ковер, состоящий из плотных рядов коротких стержней и напоминающий строй солдат, стоящих плечом к плечу. С медицинской точки зрения эти биологические пленки всегда рассматривались как зло. Такие пленки охотно вырастают на стенках лабораторных пробирок и на прочем лабораторном оборудовании. Но в нашем кишечнике биопленки, возможно, играют положительную роль, может быть, они нам даже необходимы. Мы еще вернемся к вопросу о том, для чего хороши эти бактериальные пленки, а пока вспомним, что рассуждения Билла Паркера – это еще не конец истории.

Рэндал Боллингер, воспользовавшись идеей (а теперь уже и открытием) Билла Паркера, предложил свое объяснение функции аппендикса в человеческом организме. Если иммунная система помогает бактериям кишечника и если аппендикс – это то место, где мы встречаем наибольшую концентрацию иммунной ткани и антител (причем скорость отмирания клеток здесь сравнима скорее с тихой заводью, нежели со стремительной рекой), то, вероятно, именно в аппендиксе антитела в наибольшей степени помогают бактериям. Аппендикс – это маленький инкубатор, отделенный от быстрого потока, несущегося по кишечнику (и отгороженный от плывущих в этом потоке патогенных бактерий), эдакий дзен-буддийский садик микробной жизни.

Боллингеру и Паркеру пришлось ждать возможности исследовать человеческие кишки, чтобы подтвердить предположение Боллингера о том, что бактериальные пленки должны быть наиболее плотными именно в аппендиксе. Когда ученые наконец получили ожидаемое, им удалось подтвердить справедливость гипотезы Боллингера. Просвет кишок оказался густым лесом из клеток, это был даже не лес, а настоящее гнездо жизни. Интерпретация Боллингера заключалась в следующем: в виде биопленки аппендикс содержит огромное количество бактерий, которые, в свою очередь, оказывают нашему организму неоценимые услуги. Помимо этого, Боллингер считает, что аппендикс – это тихая гавань для микробов. Когда патогенные микроорганизмы вытесняют из кишок полезные бактерии, аппендикс служит источником повторной колонизации кишечника после стихания инфекции.

В настоящее время то, что предлагают Паркер, Боллингер и их коллеги, – это единственное правдоподобное объяснение тех феноменов, которые мы наблюдаем в аппендиксе. Эта гипотеза позволяет объяснить и другие аспекты функции аппендикса, которые до сих пор плохо поддавались пониманию. Теория, предложенная учеными, объясняет, почему аппендицит больше распространен в развитых, а не в развивающихся странах, где люди вообще чаще страдают от кишечных инфекций и паразитов. Такой подход позволяет объяснить этот феномен тем, что в развивающихся странах аппендикс до сих пор выполняет свою задачу восполнения микробной флоры кишечника. В развитых же странах аппендикс нечасто встречается с патогенными бактериями. Ему недостает стимуляции, как и всей иммунной системе в отсутствие паразитов и/или патогенных бактерий. Таким образом, аппендицит, как и большинство так называемых современных болезней цивилизации, является результатом изгнания других организмов из нашей повседневной жизни. Аппендикс воспаляется, потому что наш организм за отсутствием другой мишени ополчается против самого себя. Смерть все же нашла Дина Ректора, первого человека, которому выполнили аппендэктомию на подводной лодке. Спустя некоторое время он погиб в результате неисправности выпущенной торпеды, которая, покинув лодку, развернулась и поразила ее. Она ополчилась на подводную лодку точно так же, как аппендикс Дина Ректора восстал против своего хозяина. Но на этот раз у Дина не было никаких шансов избежать гибели.

Это было совершенно неожиданное открытие: выяснилось, что наша иммунная система, включая аппендикс, может помогать живущим в кишечнике бактериям, а не сражаться с ними. Это знание перевернуло наши прежние представления, полученные в результате опытов на содержавшихся в огромных стерильных камерах морских свинках. Оно показало, что мы можем получать и получаем пользу от микробов, причем настолько большую, что ради этого стоило научиться продуцировать антитела для улучшения условий жизни микробов в кишечнике. Вместе с этими знаниями, добытыми в результате трудов Эми Кросвелл, Билла Паркера и Рэндала Боллингера, возникла и новая научная отрасль. На протяжении всей истории медицины мы всегда плохо думали о других биологических видах. Нас убивают бактерии, грибы, глисты, вирусы, простейшие и многие другие мрачные злодеи, имя которым – легион. Изначальное мнение, что бактерии являются нашими смертельными врагами, помешало работавшим до Паркера биологам и медикам увидеть и разглядеть то, что увидел и разглядел он. В самом лучшем случае считалось, что бактерии и другие микроорганизмы могут быть безразличны нашему организму. Но никто даже не предполагал, что бактерии могут нам помогать. Симбиоз как форма взаимовыгодного сожительства была оставлена на откуп экологам, изучающим разные непонятные организмы – например, муравьев и термитов в дальних странах.

История о кишках, аппендиксе и их бактериях – это лишь верхушка айсберга, и мы только начинаем искать то, что скрыто под поверхностью. Наши организмы приспособились к взаимодействию и с другими видами, отличными от бактерий. Мы с вами, как и все другие люди, очень похожи на колонии муравьев-листорезов в том, что тоже зависим от других биологических видов, без которых мы перестали бы быть самими собой. Мы воображаем себя крепостью, осажденной бактериями, но на самом деле это не так. Микробы интегрированы в наши тела, представляют собой их неотъемлемую часть. При изучении поперечных срезов наших кишок трудно бывает сказать, где кончаются микробы и начинается ткань кишки. Антитела класса иммуноглобулинов А не определяют «хорошие» бактерии как чужие. Для антител они неотличимы от клеток нашего организма. Этот взгляд пока чужд медицинскому сообществу, но экологи давно с ним освоились. Совместная жизнь с бактериями – это норма, стерильное существование – аномалия.

Нам трудно воочию представить себе взаимодействие наших тел с другими биологическими видами, и, вероятно, это положение сохранится и в ближайшем будущем. Мы, конечно, можем представить себе наши кишки и даже тот маленький домик для бактерий, который существует во многих из нас в виде червеобразного отростка. Но представление это весьма смутное. С другой стороны, воссоздание картины гнезда муравьев-листорезов нам вполне по силам и предоставляет нам окно, через которое можно заглянуть в его святая святых. Совсем недавно биологи провели интереснейший эксперимент по выявлению структуры муравейника листорезов. В гнездо залили большое количество воды, а потом высыпали несколько грузовиков цемента. Консистенция раствора была более жидкой, чем обычно, и цемент заполнил все ходы и туннели внутри муравейника, даже самые мелкие. Поток раствора убил рабочих муравьев, потом личинок и, в конце концов, матку. В итоге получился слепок муравейника, его, так сказать, негатив. Подобный эксперимент был проведен с гнездами и других видов муравьев, но по величине они даже близко не подходят к гигантскому поселению листорезов.

Раствор заливали в муравейник на протяжении нескольких дней и заполнили всю его полость. Потом ученые выждали некоторое время, чтобы дать раствору затвердеть, после чего принялись медленно откапывать полученный слепок. Постепенно из-под земли выступала сложнейшая конструкция из камер и туннелей. Сцена походила на археологические раскопки. Биологи словно выкапывали из песка фигуры китайских терракотовых воинов – сначала головы, потом плечи, потом все остальное туловище. Рабочие продолжали копать, но до конца работы было далеко. Из-под земли появлялись все новые и новые туннели и камеры. На пятый день рабочие наконец выкопали гнездо целиком, оставив в земле отверстие глубиной в десять и шириной в двадцать футов. По форме муравейник напоминал сердце, пульсирующий центр которого был когда-то наполнен живыми насекомыми. Теперь это был безжизненный натюрморт. От сердца отходили артерии и вены, перемежающиеся камерами, где тоже совсем недавно кипела жизнь. Проявив терпение, можно было рассмотреть и детали: помещения для отходов, камеры с висящими на потолках грибами, глубокое жилище королевы. Здесь было все необходимое для жизни. Слепок был сделан мастерски, он представлял собой настоящее произведение искусства, плод совместного труда муравьев и людей – хотя в первую очередь, конечно, муравьев. Более мелкие слепки муравейников можно увидеть в музеях, но слепок гнезда муравьев-листорезов был очень велик для выставочного экземпляра, чрезмерно велик. Люди сидели вокруг него, как в картинной галерее, – то отходя на некоторое расстояние, чтобы оценить перспективу, то подходя ближе, чтобы рассмотреть детали. Самое сложное – это включить перспективу в научное исследование.

Физически гнездо муравьев было создано эволюцией для комфортного проживания не только муравьев, но и их биологических партнеров. Для того чтобы проветривать грибные камеры, в муравейнике проложены специальные туннели. Сами камеры устроены так, чтобы максимально облегчить рост грибов. Помещения для отходов расположены в некотором отдалении, чтобы патогенные гнилостные бактерии не смогли добраться до грибов. Наше тело подобно муравейнику, оно создано из множества разнообразных клеток и микроорганизмов разных видов. Поражает другое: мы удивлены, но не шокированы сложностью взаимоотношений между муравьями и микробами, однако не ожидаем подобной сложности от собственного организма. Мы охотно верим в то, что жизнь колонии муравьев зависит от множества микробов, живущих на телах насекомых и в их кишечнике, а также от чужеродных грибов. Мы верим в то, что даже незначительные изменения в растительном сообществе вокруг муравейника могут в корне изменить облик колонии. Но мы никак не можем примириться с тем, что все это верно и для жизни наших собственных организмов. Мы думаем о себе как о чрезвычайно сложных животных, но почему-то считаем, что сложность взаимоотношений с микробами, грибами и паразитами касается не нас, а животных других видов.

Аппендикс – это окно с видом на наше сходство с муравьями и другими формами жизни. Вскройте аппендикс, извлеките наружу его содержимое и изучите его. Да, оно выглядит несколько неопрятно, но все же это книга, которую можно и нужно прочесть. Она расскажет о том, что наш организм создал уникальное (даже если сравнить с близкородственными нам видами) вместилище для бактерий; придаток, заполненный иммуноглобулинами А, помогающими удерживать в кишечнике столь нужные нам бактерии. Аппендикс и иммуноглобулиновые антитела – это модельное представление о нашем теле в целом, об организме, который действительно борется с некоторыми враждебными видами, но при этом – осознаем мы это или нет – выработал у себя способность помогать другим видам – как таким малым, как бактерия, так и таким крупным, как корова.