Сознание и мозг. Как мозг кодирует мысли

Деан Станислас

5. Теория сознания

 

 

Итак, мы обнаружили автографы сознательного восприятия, но что дальше? В какой момент они проявляются? Теперь нам нужна теория, которая объяснит, каким образом субъективная интроспекция связана с объективными данными. В этой главе я познакомлю читателя с гипотезой «глобального нейронного рабочего пространства», которая стала плодом пятнадцатилетних трудов сотрудников моей лаборатории, стремившихся понять, что есть сознание. Идея проста: сознание — это обмен информацией, охватывающий весь мозг. В человеческом мозгу, а особенно в префронтальной коре, развились эффективные сети, передающие информацию на большие расстояния. Задача этих сетей заключается в том, чтобы отбирать важные данные и распространять их по всем структурам мозга. Сознание же — это развитый инструмент, позволяющий нам фокусировать внимание на некоем фрагменте информации и поддерживать его в активном состоянии в рамках этой передающей системы. Как только информация будет осознана, ее можно легко перенаправить в другие области в соответствии с нашими текущими целями. Мы можем дать ей имя, оценить ее, запомнить или использовать для того, чтобы планировать будущее. На компьютерных моделях нейронных сетей видно, что глобальные нейронные рабочие пространства генерируют те самые автографы, которые мы наблюдаем в экспериментальных записях работы мозга. Та же гипотеза объясняет, почему огромные объемы данных остаются недоступными для нашего сознания.

Я стану рассматривать человеческие стремления и аффекты… так же, как рассматривал бы прямые, плоскости и тела.
Барух Спиноза. Этика, 1677

Выявив автографы сознания, мы сделали огромный шаг вперед, однако даже найденные нами волны мозга и нейронные пики не объясняют, почему сознание существует или отчего возникает. Почему в результате запоздалых нейронных импульсов, массированного возбуждения коры и синхронной работы мозга возникает субъективное состояние разума? Каким образом происходящие в мозгу процессы, сколь угодно сложные, создают ментальный опыт? Почему нейронные импульсы в области V4 порождают восприятие цвета, а те же импульсы в области V5 — чувство движения? Нейробиологи нашли множество эмпирических связей между активностью мозга и психической жизнью, однако концептуальная пропасть между мозгом и разумом не стала меньше ни на вершок.

Не имея подходящей теории, нейробиологи со своими открытиями рискуют уподобиться Декарту, полагавшему, что душа человека заключена в шишковидном теле. Интуиция подсказывает, что это вещи несравнимые, относящиеся к совершенно разным областям — в одном случае мы говорим о строении мозга, а в другом — о психике. Для того чтобы объединить оба явления, нужно не просто наблюдение, а полновесная теория.

Загадки, ставящие в тупик современных нейробиологов, не слишком отличаются от загадок, над которыми бились физики XIX—XX веков. Каким образом макроскопические свойства обычной материи могут быть следствием того или иного расположения атомов? Почему имеет такую твердость стол, почти целиком состоящий из пустоты с редкими вкраплениями атомов углерода, кислорода и водорода? Что такое жидкость? Твердое тело? Кристалл? Газ? Пламя? Каким образом формы и прочие видимые и осязаемые свойства предметов складываются из редкой ткани атомов? Для того чтобы ответить на эти вопросы, им пришлось разобрать материю на составляющие, но и этого было мало: требовалась синтетическая математическая теория. Кинетическая теория газа, впервые изложенная Джеймсом Клерком Максвеллом и Людвигом Больцманом, стала известна потому, что объясняла, каким образом такие макроскопические переменные, как давление и температура, являются следствием движения атомов в газе. Эта теория была первой в череде математических моделей материи — цепочке редукционистских идей, сегодня использующихся для описания веществ таких друг от друга далеких, как клей и мыльные пузыри или кипяток в кофейнике и плазма полыхающего вдалеке Солнца.

Для того чтобы преодолеть разрыв между мозгом и разумом, нам нужна теория того же класса. Никакими экспериментами не объяснить, каким образом сотни миллиардов нейронов человеческого мозга посылают импульс в миг возникновения сознательного восприятия. Только с помощью математической теории мы поймем, каким образом психические процессы сводятся к нейронным импульсам. Нейробиологии требуются законы, аналогичные теории газов Максвелла — Больцмана, законы, которые объединят между собой очень разные домены. Задача непростая: «сгущенная материя» мозга — самое, вероятно, сложное, что есть на земле. Смоделировать мозг — это вам не разобраться в простой структуре газа, здесь потребуются последовательные объяснения на разных уровнях. Мыслительный процесс — явление головокружительно сложное, чем-то напоминающее матрешку: он возникает из сложной комбинации стандартных ментальных процедур, или процессоров, каждый из которых реализуется цепочками в различных участках мозга, причем сами эти цепочки состоят из клеток нескольких десятков разновидностей. И даже один-единственный нейрон с его десятками тысяч синапсов — это уже целая вселенная суетливых молекул, моделировать которую можно столетиями.

Впрочем, несмотря на все эти сложности, в последние 15 лет мы с моими коллегами Жан-Пьером Шанжо и Лайонелом Наккашем принялись строить мост через эту пропасть. Мы набросали некую теорию сознания, теорию «глобального нейронного рабочего пространства», в которой сконцентрировали все достижения психологического моделирования за последние 60 лет. В этой главе я надеюсь убедить вас, что, хотя до математически точных законов нам еще далеко, мы все же сумели заглянуть в природу сознания, увидели, каким образом оно возникает из согласованной активности мозга и почему демонстрирует автографы, которые мы наблюдали в ходе экспериментов.

 

Сознание как глобальное распространение информации

Какая архитектура обработки информации лежит в основе сознания? Каково разумное объяснение ее существования, какую функциональную роль она исполняет в информационной экономике мозга? Мое мнение на этот счет можно выразить очень сжато1. Когда мы говорим, что осознаем те или иные данные, то на практике имеем в виду ровно следующее: информация достигла особого хранилища, в котором стала доступна всему остальному мозгу. Из миллионов мечущихся в мозгу неосознаваемых ментальных репрезентаций была выбрана именно эта за ее соответствие нашим текущим целям. Благодаря сознанию она становится доступна всем высокоуровневым системам принятия решений. У нас в голове расположился ментальный процессор, развилась специальная архитектура для извлечения и перенаправления актуальной информации. Психолог Бернард Баарс зовет это глобальным рабочим пространством, подразумевая внутреннюю систему, изолированную от окружающего мира и позволяющую нам свободно воспринимать наши и только наши ментальные образы и распределять их по многочисленным специализированным процессорам (рис. 24).

Рисунок 24. Согласно теории глобального нейронного рабочего пространства, то, что мы ощущаем как сознание, является глобальным процессом распространения информации. В мозгу имеется не один десяток локальных процессоров (на рисунке — кружки), каждый из которых специализируется на операциях какого-то одного типа. С помощью особой системы коммуникаций — глобального рабочего пространства — эти процессоры ведут гибкий обмен данными. В каждый отдельный момент рабочее пространство выбирает определенный подраздел процессоров, создает непротиворечивую презентацию закодированной в нем информации, сохраняет ее в мозгу в течение произвольного времени и передает обратно практически на любой из оставшихся процессоров. Попав в рабочее пространство, любая информация становится осознана

В соответствии с этой теорией, сознание — не более чем распространение информации в мозгу. Осознав какую-то информацию, мы можем удерживать ее в мозгу долгое время после исчезновения соответствующего стимула из окружающего мира. Дело в том, что наш мозг уже затянул эту информацию в рабочее пространство, и там она сохраняется независимо от времени и места, где была воспринята нами впервые. В результате мы можем использовать ее как только пожелаем, в частности передать на языковые процессоры и присвоить ей имя; вот почему способность сообщать информацию является основной особенностью сознательного состояния. Впрочем, мы точно так же можем поместить эту информацию в долгосрочную память или использовать для построения будущих планов, неважно каких. Я полагаю, что гибкое распространение информации является отличительным свойством сознательного состояния.

Идея рабочего пространства родилась из целого ряда более ранних предположений, сделанных психологами, которые изучали внимание и сознание. Еще в 1870 году французский философ Ипполит Тэн ввел в обиход метафору «театр сознания»2. Наделенный сознанием разум, утверждал Тэн, подобен узкой сцене, с которой мы слышим голос только одного актера:

«Можно сравнить рассудок человека с театральной сценой, рампа которой очень узка, но сцена, начиная от рампы, расширяется. Перед этой освещенной сценой есть место лишь для одного актера… Далее, на разных планах сцены, находятся различные группы, которые тем менее отчетливы, чем дальше они от рампы. Еще дальше этих групп, в кулисах и на далеком заднем плане, находится множество темных форм, которые иногда внезапный вызов выводит на сцену или даже к огням рампы. Этот муравейник актеров всех разрядов всегда в каком-то брожении, которое выдвигает корифеев, поочередно появляющихся перед нами как бы в волшебном фонаре».
И. Тэн. Об уме, 1870 (пер. М.А. Шаталовой, О.П. Шаталова)

Еще за несколько десятилетий до Фрейда Тэн своей метафорой хотел сказать, что, хотя единовременно нашим вниманием способен завладеть лишь один предмет, разум наш должен состоять из бесчисленного множества бессознательных процессоров. Всего один актер — и такая огромная группа поддержки! Содержание же нашего сознания в любой момент строится на мириаде тайных операций, на пируэтах, совершаемых скрыто от глаза, в самой глубине сцены.

Философ Дэниел Деннет напоминает, что с этой театральной аллегорией следует быть осторожнее, ибо она может привести к великому греху — «заблуждению гомункула»3. Если сознание — это сцена, то кто же сидит в зале? Наделены ли «они», зрители, собственными маленькими мозгами с крохотной сценой внутри? А кто смотрит на происходящее на этой сцене? Следует всячески изгонять эту абсурдную, похожую на диснеевский мультфильм фантазию о гомункулах, которые сидят у нас в головах, глядят на экраны и командуют, что нам делать. Нет никакого «я», которое смотрело бы на нас изнутри. Сцена — это и есть «я». Метафора со сценой вполне верна, надо только удалить из картины наделенных разумом зрителей и заменить их точными операциями алгоритмического свойства. Как причудливо сформулировал Деннет, «человек выбрасывает из схемы воображаемого гомункула и заменяет его армией идиотов, которые и выполняют всю работу»4.

В рабочем пространстве, каким его видел Бернард Баарс, гомункула и вовсе нет. За происходящим в глобальном рабочем пространстве следит не живущий у нас в голове человечек, а группа других бессознательных процессоров, которые получают транслированное им сообщение и действуют соответственно, каждый в пределах своей компетенции. В результате обширного обмена сообщениями, отобранными за значимость, возникает коллективный разум. Идея не нова — она возникла еще при зарождении искусственного интеллекта, когда исследователи хотели заставить подпрограммы обмениваться данными через общую «классную доску», структуру для хранения данных, идентичную области обмена данными в персональном компьютере. Рабочее пространство сознания — это и есть область обмена данными, только для мозга.

Тэнова узкая сцена, на которой может выступать не более одного актера одновременно, прекрасно иллюстрирует еще одну идею с долгой историей. Согласно этой идее, сознание выросло из системы ограниченной мощности, способной работать лишь с одной мыслью одновременно. Во время Второй мировой войны британский психолог Дональд Бродбент придумал более совершенную метафору, которую позаимствовал из только-только появившейся теории обработки информации5. Изучая летчиков, Бродбент обнаружил, что даже после обучения они с трудом способны воспринимать два одновременных речевых потока, по одному на каждое ухо. Следовательно, предположил Деннет, сознательное восприятие должно иметь «канал ограниченной емкости» — бутылочное горлышко, в котором обрабатывается только один стимул одновременно. Последовавшее за этим открытие моргания внимания и психологического рефракторного периода, о которых шла речь в главе 2, было воспринято как подтверждение этой идеи: пока наше внимание занято первым стимулом, мы не замечаем ничего вокруг. Современные когнитивные психологи придумали множество метафор, которые в общем означают то же самое, и называли доступ в сознательный опыт то «центральным бутылочным горлышком»6, то «вторым этапом обработки»7, в общем, VIP-залом, в который допускаются лишь немногие избранные.

Третья метафора появилась в 60—70-е годы XX века и изображала сознание как «систему наблюдения» высокого уровня, наделенного всей полнотой власти руководителя, который контролирует поток информации во всей нервной системе8. Как заметил Уильям Джеймс в своем шедевральном труде «Принципы психологии» (1890), сознание похоже на «орган, добавленный, чтобы управлять нервной системой, которая стала чересчур сложна и потому не может регулировать сама себя»9. Понятое буквально, это утверждение отдает дуализмом: сознание ведь не побочное добавление к нервной системе, а полноценный участник и часть процесса. В этом смысле наша нервная система и впрямь совершает подвиг и «регулирует сама себя», но только с учетом наличия иерархии. Высшие центры префронтальной коры, самые свежие плоды эволюции, управляют низкоуровневыми системами в задних областях коры и в субкортикальном ядре, причем зачастую подавляют их10.

Нейропсихологи Майкл Познер и Тим Шаллис предположили, что информация становится осознана всякий раз, когда происходит ее репрезентация в рамках этой высокоуровневой управляющей системы. Сегодня мы знаем, что это предположение не вполне верно: как уже известно из главы 3, даже сублиминальный, неувиденный стимул способен частично запустить некоторые подавляющие и регулирующие функции системы контроля и управления11. И все же любая информация, достигшая сознательного рабочего пространства, обретает способность весьма глубоко и эффективно управлять всеми нашими мыслями. Управляющее внимание — это лишь одна из многих систем, куда поступают данные из глобального рабочего пространства. В результате выходит, что все, что мы осознаем, способно направлять наши решения и намеренные действия, а также порождать чувство, будто бы эти решения и действия находятся под контролем. Системы речи, долгосрочной памяти, внимания, волевая сфера — все это части внутреннего круга взаимосвязанных механизмов, между которыми идет обмен осознанной информацией. Благодаря этой архитектуре рабочего пространства все, что мы осознаем, может быть произвольно перенаправлено в нужную точку и превратиться в тему высказывания, в узелок в памяти, переместиться в центр внимания или стать основой для следующего добровольного действия.

 

Модули и не только

Вместе с психологом Бернардом Баарсом я верю, что сознание, по сути, сводится к функциям рабочего пространства: оно делает актуальную информацию общедоступной и передает ее в самые разные системы мозга. В принципе эти функции вполне можно воспроизвести на небиологической основе, задействовав, например, компьютер на кремниевых платах. Однако на самом деле все совершаемые сознанием операции далеко не тривиальны. Мы до сих пор не знаем точно, каким образом мозг их выполняет или как заставить искусственный механизм проделать то же самое. Компьютерная программа устроена жестко, модульно: каждая операция сводится к тому, что машина получает те или иные данные и преобразовывает их в соответствии со строгими правилами, после чего выдает строго определенную информацию. Речевой процессор может в течение какого-то времени удерживать фрагмент информации (например, абзац текста), но компьютер как единое целое не способен решить, важен ли этот фрагмент информации с глобальной точки зрения, равно как не способен донести его до других программ. Вот и получается, что компьютер мыслит узко. В работе он близок к совершенству, однако информация в пределах одного модуля, пусть сколь угодно умного, не может быть передана другим. Для обмена информацией у компьютерных программ есть разве что такой рудиментарный механизм, как область обмена данными, да и то происходит этот обмен под контролем разумного deus ex machina — человека.

А вот кора головного мозга, в отличие от компьютера, решила эту проблему и освоила модульный набор процессоров и гибкую систему маршрутизации. В коре существует масса участков, каждый из которых выполняет конкретные процессы. Существуют, например, целые области, состоящие исключительно из нейронов, распознающих лица и реагирующих, лишь когда на сетчатку поступит изображение лица12. В теменной и моторной коре есть участки, отвечающие за конкретные моторные функции или за те части тела, которые их выполняют. Есть сектора, занимающиеся еще более отвлеченными понятиями и кодирующие наши знания, связанные с числами, животными, предметами и глаголами. Если теория рабочего пространства верна, сознание могло возникнуть именно затем, чтобы соединить эти модули между собой. Посредством глобального нейронного рабочего пространства информация может свободно поступать в модульные процессоры мозга. Эта глобальная доступность информации и есть то, что мы субъективно ощущаем как наличие сознания13.

Схема эта дарует очевидные эволюционные преимущества. Модульная структура полезна потому, что различные области знаний требуют различных настроек коры головного мозга: цепочки, отвечающие за ориентацию в пространстве, выполняют одни операции, а цепочки, занимающиеся распознаванием пейзажей или хранением в памяти событий прошлого, — совсем другие. Однако для принятия решений зачастую необходимы бывают данные сразу из нескольких источников. Представьте себе слона в саванне. Слон хочет пить. Он выживет, если доберется до следующего источника. Решение идти вперед, к отдаленной, невидимой еще точке, может быть основано на наиболее эффективном использовании доступной информации, в том числе ментальной карте пространства, зрительном распознавании приметных деревьев и троп, а также памяти о том, как в прошлом ему удавалось или не удавалось найти воду. Жизненно важные долгосрочные решения, под влиянием которых животному предстоит пуститься в тяжелейшее путешествие под палящим африканским солнцем, следует принимать на основании всех имеющихся источников данных. Сознание могло развиться (миллиарды лет назад) именно затем, чтобы беспрестанно черпать из всех источников любую информацию, какая только может потребоваться для удовлетворения наших текущих потребностей14.

 

Развитая сеть коммуникаций

Как следует из этих эволюционных доводов, сознание подразумевает связность. Для гибкого обмена информацией требуется особая нейронная архитектура, которая свяжет отдаленные друг от друга специализированные области коры в согласованную структуру. А есть ли у нас в мозгу подобная структура? Еще в конце XIX века испанский гистолог Сантьяго Рамон-и-Кахаль, исследовавший строение мозга, заметил, что у мозговых тканей есть одна любопытная особенность. В отличие от кожи, клетки которой напоминают плотно уложенные детали мозаики, мозг состоит из чрезмерно удлиненных клеток, или нейронов. Нейроны снабжены длинными отростками-аксонами до нескольких метров длиной — ничего подобного ни у каких других клеток не встречается. Один-единственный нейрон моторной коры головного мозга может протянуть свои аксоны до самого позвоночника, чтобы командовать конкретными мускулами. Что еще интереснее, Кахаль обнаружил, что клетки, воздействующие на удаленные от них участки, расположены в коре довольно плотно (рис. 25) и образуют тонкий слой, выстилающий собой поверхность обоих полушарий мозга. Находящиеся в коре головного мозга нервные клетки пирамидальной формы зачастую дотягивались аксонами до задней части мозга или до другого полушария. Взятые вместе, эти аксоны образовывали плотные волокна ткани, складывающиеся в кабеля, насчитывающие по нескольку миллиметров в диаметре и имеющие до нескольких сантиметров в длину. Сегодня мы можем наблюдать эти переплетающиеся волокна тканей живого мозга на магнитно-резонансных томограммах.

Рисунок 25. Длинные нейронные связи могут способствовать существованию глобального нейронного пространства. Известный специалист по анатомии нервной системы Сантьяго Рамон-и-Кахаль, который в XIX веке препарировал человеческий мозг, уже тогда заметил, что нейроны коры головного мозга велики, имеют пирамидальную форму и аксонами дотягиваются до самых дальних уголков мозга (слева). Нам известно, что эти длинные связи используются для передачи сенсорной информации в насыщенную огромным количеством связей сеть теменных, височных и префронтальных областей (справа). Если эти связи будут нарушены, может возникнуть пространственное игнорирование, то есть утратится способность сознавать увиденное в той или иной части пространства

Следует заметить, что не все области мозга связаны между собой одинаково плотно. Сенсорные области, например зрительная область V1, как правило, отличаются избирательностью и устанавливают малое количество связей, выбирая для этого в основном соседние клетки. Ранние зрительные области поддерживают жесткую иерархию: область V1 сообщается в основном с областью V2, та, в свою очередь, передает данные в области V3 и V4 и так далее. В результате первичные зрительные операции функционально закапсулированы: зрительные нейроны изначально получают лишь небольшую долю тех данных, что поступили на сетчатку, и обрабатывают их в относительном уединении, ничего «не зная» об общей картине.

В высших ассоциативных зонах коры головного мозга связи, впрочем, перестают быть локальными и точечными и объединяют уже не только ближайших соседей. Когнитивные операции перестают быть модульными. В префронтальной коре — передней части головного мозга — преобладают нейроны с длинными аксонами, передающими информацию на большие расстояния. Этот участок связан со множеством других областей нижней теменной доли, средней и задней височной долей, а также фронтальной и задней частей поясной извилины, расположенных на срединной линии мозга. Выяснилось, что эти области играют роль основных узлов коммуникаций мозга, являются его главными центрами связи15. Между собой они соединяются каналами, передающими информацию в обоих направлениях: если область А передает данные в область В, то область В почти наверняка передаст те же данные обратно в область А (рис. 25). Кроме того, длинные связи нередко образуют треугольник: если область А передает данные в области С и В, то С и В, в свою очередь, почти наверняка будут поддерживать связь друг с другом16.

Эти области коры имеют сильную связь с другими участниками процесса — например, центральными латеральными и внутрислойными ядрами таламуса (отвечающими за внимание, активное внимание и синхронизацию), базальными ганглиями (принятие решений и действие) и гиппокампом (запоминание эпизодов из жизни и дальнейшее извлечение их из памяти). Особенно важны каналы, связывающие кору мозга со зрительным бугром, таламусом. Зрительный бугор представляет собой совокупность ядер, каждое из которых связано небольшой петлей как минимум с одним, а нередко и с несколькими областями коры. Практически все связанные напрямую участки коры передают информацию и по параллельным каналам, через глубинные структуры зрительного бугра17. Информация, передаваемая зрительным бугром в кору, важна еще и тем, что сигналы возбуждают кору головного мозга и поддерживают ее в постоянном активном состоянии18. Как мы еще увидим, снижение активности зрительного бугра и каналов связи с ним является одним из важнейших условий наступления комы и вегетативных состояний, в которых мозг оказывается лишен разума.

Таким образом, в основе рабочего пространства лежит плотная сеть взаимосвязанных областей мозга — децентрализованная структура, не имеющая единого физического центра. Находящийся на вершине иерархии «совет директоров», элита из элит, распределенная по самым разным уголкам мозга, синхронно реагирует на происходящее и постоянно обменивается бесчисленными сообщениями. Что поразительно: эта сеть связанных между собой высокоуровневых зон, в первую очередь относящихся к префронтальной и теменной долям, совпадает с сетью, которую я описал в главе 4, упомянув, что ее резкая активация является первым автографом сознательной работы мозга. Теперь мы можем разобраться в том, почему эти ассоциативные зоны систематически возбуждаются всякий раз, когда в фокус нашего внимания попадает фрагмент информации: эти области обладают как раз такими далеко идущими связями, которые необходимы, чтобы передавать сообщения в мозгу на большие расстояния.

Входящие в эту далеко распространившуюся сеть коры пирамидальные нейроны хорошо приспособлены к выполнению своей задачи (рис. 26). Их клеточные тела выросли, чтобы вместить всю сложную молекулярную машинерию, необходимую для поддержания жизнедеятельности длинных аксонов. Вспомним, что в ядре клетки хранится ДНК с генетической информацией, однако считываемые рецепторные молекулы должны каким-то образом добираться до синапсов, которые могут отстоять от клетки на несколько сантиметров. Крупные нервные клетки, способные обеспечить исполнение этой непростой задачи, расположились во втором и третьем слоях коры головного мозга, отвечающих, в частности, за межполушарные каналы связи, переносящие информацию из одного полушария в другое и обратно.

Еще в 20-е годы XX века австрийский исследователь-нейроанатом Константин фон Экономо заметил, что области эти распределены в мозгу неравномерно. Значительно толще они становятся в префронтальной и поясной коре, а также в ассоциативных областях теменной и височной долей, то есть на участках, которые имеют массу внутренних связей и активируются в ходе сознательного восприятия и обработки данных.

Позже Гай Элстон из Квинсленда и Хавьер ДеФелипе из Испании отметили необычайную величину дендритов, то есть принимающих антенн этих гигантских нейронов рабочего пространства. За счет величины дендритов нейроны особенно успешно принимали информацию, поступающую из множества отдаленных областей мозга19. С помощью дендритов (от греческого слова «дерево»), то есть ветвящихся структур — приемников сигнала, пирамидальные нейроны получают информацию от других нейронов. Там, где у подающих сигналы нейронов развивается синапс, у принимающего нейрона появляется микроскопическое образование, называемое отростком и представляющее собой грибообразный вырост. Отростки плотно покрывают ветвящийся древовидный дендрит. Элстон и ДеФелипе продемонстрировали важнейший для гипотезы рабочего пространства факт: оказывается, в префронтальной коре дендриты значительно крупнее, а отростки — гораздо многочисленнее, чем в задних отделах мозга (рис. 26).

Рисунок 26. Крупные пирамидальные нейроны приспособились к трансляции осознанной информации на большие расстояния, особенно в префронтальной коре. Кора головного мозга имеет слоистую структуру, и в слоях II и III располагаются крупные пирамидальные нейроны с длинными аксонами, необходимыми для передачи информации в отдаленные регионы. В префронтальной коре эти слои оказываются значительно толще, нежели в сенсорных областях (сверху). Большая толщина слоев II и III характерна примерно для тех же областей, которые проявляют максимальную активность во время сознательного восприятия. Кроме того, эти же нейроны приспособились к восприятию поступающих с большого расстояния сообщений. Древовидные дендриты (внизу), получающие сообщения из других областей, в префронтальной коре становятся значительно крупнее, нежели во всех прочих областях. Все перечисленные средства адаптации к обмену информацией на большом расстоянии выражены в человеческом мозгу сильнее, нежели в мозгу других приматов.

В человеческом мозгу эти механизмы адаптации к протяженным коммуникациям заметны особенно хорошо20. Наши префронтальные нейроны ветвятся сильнее и содержат больше отростков, чем нейроны наших родственников-приматов. У них дендритные джунгли находятся под контролем семейства генов, которые мутировали особым образом только у человека21. В этот перечень входит FoxP2 — известнейший ген, две мутации которого произошли только в ветви Homo22. Этот ген управляет нашими речевыми структурами23, а сбой в нем ведет к обширному поражению механизмов артикуляции и речи24. В семейство FoxP2 входят несколько генов, отвечающих за формирование нейронов, дендритов, аксонов и синапсов. Воспользовавшись всем богатством возможностей, которые дарует генная инженерия, ученые вырастили мышь с двумя человеческими мутациями FoxP2 — пирамидальные нейроны у этой мыши заветвились нетипичными, по-человечески крупными дендритами, а сама мышь стала проявлять недюжинные способности к учению (правда, все же не заговорила)25.

Благодаря гену FoxP2 и всему его семейству каждый нейрон префронтальной коры у человека содержит по 15 тысяч отростков и более. Это значит, что он связан почти с таким же количеством других нейронов, по большей части расположенных в очень отдаленных частях коры и зрительного бугра. Похоже на идеальный адаптивный механизм — можно собирать информацию по всему мозгу, а если она окажется достаточно важна, передавать ее снова в тысячи других точек.

Предположим, мы получили возможность проследить все связи, которые активируются, когда мы осознаем и распознаем чье-то лицо — вроде как ФБР прослеживает звонок, идущий через несколько последовательных коммуникационных узлов. Что мы увидим? Вначале входящий образ будет приведен в порядок очень короткими каналами связи, расположенными в сетчатке глаза. Сжатый образ последует дальше по толстому кабелю оптического нерва, достигнет зрительного бугра и отправится в первичную зрительную область затылочной доли. Местные U-образные волокна передадут его в несколько кластеров нейронов правой веретенообразной извилины, где исследователи обнаружили кластеры распознания лиц, то есть участки нейронов, настроенные на работу с лицами. Вся эта деятельность будет происходить без участия сознания. А дальше? Куда дальше поведут связи? Живительный ответ на этот вопрос отыскала швейцарская исследовательница Стефани Кларк26: удаленные аксоны вдруг разом отпускают зрительную информацию распространяться практически по всем уголкам мозга. Крупные каналы, исходящие из правой нижней височной доли, напрямую за один синаптический импульс отправят данные в отдаленные области ассоциативной коры, в том числе в другом полушарии. Информация станет накапливаться в нижней фронтальной коре (центр Брокá) и в височном отделе ассоциативной коры (зона Вернике). Обе эти зоны являются ключевыми пунктами речевой сети человеческого мозга, поэтому на данном этапе к поступающей зрительной информации начнут присоединяться слова.

Сами по себе эти области являются частью обширной сети рабочих пространств, и потому информация может распространиться далее и попасть во внутренний круг высокоуровневых управляющих систем, циркулируя туда-сюда в группах активных нейронов. Если моя теория верна, именно угодив в эту плотную структуру, информация попадает в сознание.

 

Зарождение осознанной мысли

Попробуйте прикинуть, сколько осознанных мыслей у вас было всего: припомните все лица, предметы, сцены, которые можете узнать, все оттенки когда-либо испытанных эмоций, от непреодолимой злобы до легкого злорадства, каждый уголок на карте мира, каждый исторический факт, каждую математическую формулу или каждую сплетню, неважно, правдивую или лживую, которую вы когда-либо слышали или могли услышать, вспомните произношение и значение каждого слова, которое вы знаете или могли знать на любом языке… Бесконечный список! И тем не менее все это может в следующий миг всплыть у вас в сознании. Но как может быть закодирован в нейронном пространстве такой огромный объем разнородной информации? Что представляет собой нейронный код сознания, как он поддерживает столь обширный, практически бесконечный набор идей?

Нейробиолог Джулио Тонони отмечает, что один лишь объем нашего репертуара по части идей уже служит ограничителем для нейронного кодирования осознанных мыслей27. В основе этого кода должна лежать абсолютно невероятная дифференциация: комбинации активных и бездействующих нейронов в глобальном рабочем пространстве должны складываться в миллиарды разных рисунков деятельности. Каждое возможное осознанное состояние психики должно иметь собственный рисунок нейронной активности, отличный от всех прочих. В результате осознанные состояния должны быть четко разграничены: это либо птица, либо самолет, либо Супермен, но никак не все сразу одновременно. Для четкого мышления с мириадами потенциальных мыслей нужен мозг с мириадами потенциальных состояний.

В книге «Организация поведения» (1949) Дональд Хебб уже предложил провидческую теорию относительно того, каким образом кодируются мысли в мозгу. Хебб ввел концепцию «совокупностей клеток» — групп нейронов, которые связаны между собой возбуждающими синапсами и потому сохраняют активность в течение долгого времени после того, как исчезнет внешний стимул. «Любая часто повторяющаяся характерная стимуляция, — предполагал Хебб, — повлечет за собой медленное развитие совокупности клеток, диффузной структуры, объединяющей в себе клетки коры и промежуточного мозга (а также, возможно, базальных ганглиев переднего мозга) и способной в течение краткого времени функционировать как замкнутая система»28.

Входящие в совокупность клеток нейроны поддерживают друг друга, посылая возбуждающие импульсы. В результате на ограниченном участке нейронного пространства возникает всплеск активности. А поскольку такие местные совокупности клеток могут активироваться независимо друг от друга и в самых разных частях мозга, в результате мы имеем комбинаторный код, с помощью которого можно изобразить миллиарды состояний. Так, любой видимый объект можно представить как комбинацию цвета, размера и фрагментов геометрических фигур. Записи деятельности коры головного мозга подтверждают: образ, к примеру, огнетушителя закодирован в мозгу как сочетание активных «участков», включающих в себя несколько сот нейронов каждый и составляющих репрезентацию каждой отдельной части огнетушителя (рукоятка, баллон, шланг и т. д.)29.

В 1959 году пионер исследований в области искусственного интеллекта Джон Селфридж ввел в обиход еще одну полезную метафору — пандемониум30. Селфридж представлял мозг в виде иерархии специализированных «демонов», каждый из которых предлагает на пробу собственную интерпретацию входящего образа. Его правоту подтвердили три десятка лет исследований в области нейрофизиологии, и в частности, открытие зрительных клеток, настроенных на линии, цвета, глаза, лица и даже американских президентов и голливудских звезд. В модели Селфриджа демоны перекрикивались, сообщая друг другу избранные ими интерпретации в соответствии с тем, насколько им соответствовал воспринимаемый образ. Их крик последовательно проходил через все более абстрактные механизмы, нейроны реагировали на все более абстрактные качества образа — так, например, если три демона кричали о наличии глаз, носа и волос, то проснувшийся четвертый демон кодировал все это как лицо. Прислушиваясь к наиболее громко озвучиваемым вариантам, система принятия решений могла сформулировать мнение о наблюдаемом объекте — оно же сознательное восприятие.

Позже к пандемониум-модели Селфриджа было сделано одно важное дополнение. Изначально передача данных в ней шла по иерархии строго вверх: демоны кричали только стоящему над ними демону, однако стоящий выше демон никогда ничего не кричал ни стоящим ниже, ни даже другим демонам своего уровня. На практике же нейронные системы не просто передают информацию наверх, но и общаются между собой. В коре головного мозга есть масса петель и обоюдонаправленных проекций31. Друг с другом разговаривают даже отдельные нейроны: если нейрон α сигналит нейрону β, то нейрон β, скорее всего, сигналит нейрону α32. Связанные между собой нейроны любого уровня поддерживают друг друга, а нейроны, находящиеся на вершине иерархии, могут связываться с подчиненными, поэтому объемы данных, идущих сверху вниз, как минимум не уступают объемам данных, идущих снизу вверх.

Имитации и математические модели реалистичных «нейросетевых» моделей с большим количеством таких петель показывают, что у всех у них есть одно очень полезное свойство. Стоит возбудиться подгруппе нейронов, и вся группа самоорганизуется и приходит в аттракторное состояние: группы нейронов генерируют воспроизводимый рисунок активности, который остается стабилен в течение долгого времени33. Как и предполагал Хебб, взаимосвязанные нейроны склонны к образованию стабильных совокупностей клеток.

В качестве кодовых схем эти воспроизводящиеся сети обладают еще одним достоинством: они зачастую приходят к консенсусу. В нейронных сетях с повторяющимися связями нейроны, в отличие от демонов Селфриджа, не просто кричат друг другу, а договариваются между собой и приходят к единой интерпретации воспринимаемой сцены. Наиболее возбужденные нейроны взаимно поддерживают друг друга и постепенно подавляют прочие альтернативные интерпретации. В результате им удается восстановить недостающие детали и отсечь помехи. После нескольких итераций закодированная нейронами картина представляет собой очищенную и интерпретированную версию воспринятого образа. Картина эта отличается большей стабильностью и устойчивостью к помехам, последовательна внутри себя и явственно отличима от прочих аттракторных состояний. Фрэнсис Крик и Кристоф Кош описывают эту репрезентацию как победившую в соревновании «нейронную коалицию», причем предполагают, что она является прекрасным двигателем для сознательной репрезентации34.

Слово «коалиция» подводит нас еще к одному важному аспекту, связанному с нейронным кодированием: нейронный код должен быть тесно интегрирован35. Все моменты сознательного восприятия сливаются для нас в одну общую картину. Рассматривая «Мону Лизу» Леонардо да Винчи, мы ведь видим не какого-нибудь там безрукого потрошеного Пикассо с витающей в воздухе улыбкой Чеширского кота и плывущими отдельно глазами. Мы воспринимаем все эти элементы (и множество других в придачу — название, смысл, связь картины с тем, что мы знаем о гениальном да Винчи) и каким-то образом соединяем их в целое. И все-таки каждый из этих элементов изначально обрабатывается конкретной группой нейронов, а сами группы расположены на поверхности вентральной зрительной коры на расстоянии в несколько сантиметров друг от друга. Как же они поддерживают связь?

Вариантов несколько — например, нейроны могут образовывать крупные совокупности. В этом им помогают центры связи высших секторов коры. Эти центры, которые нейробиолог Антонио Дамасио зовет «зонами конвергенции»36, особенно широко распространены в префронтальной коре, однако встречаются и в других секторах передней височной доли, нижней теменной доли и так называемого предклинья, участка медиальной поверхности мозга. Все эти центры отправляют и получают бесчисленное количество сообщений, поддерживая связь с массой отдаленных областей мозга. Таким образом, нейроны этих областей интегрируют информацию в пространстве и времени. Затем многочисленные модули восприятия вырабатывают единую адекватную интерпретацию полученных данных («соблазнительная итальянка»). Эту глобальную интерпретацию можно снова передать в области, из которых были изначально получены сенсорные сигналы. В результате мы получаем единую целую картину. В глобальной передаче данных задействованы нейроны с длинными аксонами, передающими информацию снизу вверх, от префронтальной коры и связанной с ней высокоуровневой сети областей в сенсорные области более низкого уровня, и за счет этого создаются условия, необходимые для возникновения единого состояния сознания, одновременно дифференцированного и интегрированного.

Нобелевский лауреат Джеральд Эдельман назвал передачу данных туда-обратно «повторным входом»37. Опыт построения моделей нейронных сетей позволяет предположить, что повторный вход обеспечивает возможность сложного вычисления оптимальной статистической интерпретации зрительного образа38. Каждая группа нейронов исполняет роль специалиста-статистика, а для того чтобы объяснить свойства получаемой информации, эти группы сотрудничают между собой39. Так, например, «специалист по теням» решает, что темный участок на картине может быть тенью, но только лишь в том случае, если свет падает сверху слева. «Специалист по освещению» соглашается и, вооружившись этой гипотезой, объясняет, почему освещена верхняя часть изображенных предметов. Тут является третий эксперт, который говорит, что с учетом этих двух факторов оставшаяся часть изображения походит на лицо. И так они обмениваются данными до тех пор, пока каждый фрагмент изображения не получит предварительную интерпретацию.

 

Формирование идеи

Совокупности клеток, пандемониум, конкурирующие коалиция, аттракторы, зоны конвергенции с повторным входом… По всей видимости, в каждой из этих теорий есть крупица истины, и моя собственная теория глобального нейронного пространства во многом основана на этих теориях предшественников40. Я полагаю, что сознательное состояние возникает из стабильной, сохраняющейся в течение нескольких десятых долей секунды активации подгруппы активных нейронов рабочего пространства. Эти нейроны распределены по различным областям мозга и отвечают за различные аспекты одной и той же ментальной репрезентации. Для того чтобы оценить «Мону Лизу», требуется совместная активация миллионов нейронов, работающих с предметами, фрагментами смысла и воспоминаниями.

В процессе доступа в сознательный опыт между этими нейронами происходит двусторонний обмен информацией, реализуемый посредством длинных аксонов нейронов рабочего пространства и представляющий собой во многом параллельные попытки создать согласованную и синхронную интерпретацию. Когда эти процессы сливаются в один, возникает сознательное восприятие. Совокупность клеток, работающая с содержанием этого сознательного восприятия, распределена по всему мозгу, и фрагменты релевантной информации, выделенные той или иной областью мозга, объединяются потому, что под влиянием нейронов с длинными, далеко протянувшимися аксонами все прочие нейроны синхронизируют свою деятельность.

Возможно, синхронность нейронов является главным условием возникновения сознания. Сегодня мы все чаще наблюдаем, как удаленные друг от друга нейроны формируют крупные совокупности, синхронизируя собственные импульсы с фоновыми электрическими колебаниями41. Если эта картина соответствует действительности, тогда кодирующая все наши мысли мозговая сеть должна походить на рой светлячков, огоньки которых мерцают в едином для всей группы ритме. В отсутствие сознания в мозгу могут возникать локальные синхронизированные совокупности клеток — например, когда мы бессознательно кодируем значение слова в языковых сетях левой височной доли. Но префронтальная кора не получает доступа к соответствующему сообщению, поэтому оно не имеет обширного распространения и не проникает в сознание.

Предлагаю вам еще одно умозрительное изображение нейронного кода сознания. Вообразите себе 16 миллиардов нейронов коры вашего головного мозга. Каждый нейрон реагирует на ограниченное количество стимулов. Разнообразие стимулов, вызывающих реакцию, поражает: только в зрительной коре имеются нейроны, реагирующие на лица, руки, предметы, перспективу, формы, линии, кривые, цвета, трехмерность… Когда мы воспринимаем некое изображение, каждая клетка обрабатывает не более нескольких битов информации, но все вместе эти клетки могут создавать репрезентации огромного количества мыслей. В соответствии с моделью глобального рабочего пространства в каждый момент из этого огромного набора возможностей избирается один-единственный вариант, который и попадает в фокус нашего сознания. В этот момент происходит возбуждение всех соответствующих нейронов, которые действуют частично синхронно и подчиняются подгруппе нейронов префронтальной коры.

Важно понять, что в этой схеме кодирования информацию несут и те нейроны, которые молчат и не подают импульсов. Их молчание дает другим понять, что свойство, с которым работают эти нейроны, в данном случае отсутствует или не имеет значения для имеющегося на данный момент ментального образа. Содержание сознания в равной степени зависит как от активных, так и от бездействующих нейронов.

В процессе финального анализа сознательное восприятие можно сравнить с работой скульптора, который берет глыбу мрамора, отсекает большую часть и постепенно проявляет в камне собственное видение. То же и в мозгу: поначалу никак не связанные между собой сотни миллионов нейронов рабочего пространства подают исходные импульсы, но большую их часть мозг заглушает, оставляя активной лишь малую долю этих нейронов. Активная группа нейронов в буквальном смысле слова очерчивает контуры сознательной мысли.

Рисунок, образуемый активными и бездействующими нейронами, может послужить объяснением возникновения второго автографа сознания: волны РЗ, о которой шла речь в главе 4, — скачке положительного напряжения, регистрируемого в верхней части головы накожными датчиками. В период сознательного восприятия небольшая группа нейронов рабочего пространства становится активна и влияет на содержание наших мыслей, а активность других групп подавляется. Активные нейроны передают сообщение по коре головного мозга, посылая электрические импульсы по длинным аксонам, но в большинстве случаев получателями этих сигналов оказываются подавленные нейроны. В этом случае сигналы действуют как глушилка, словно бы сообщая таким группам: признаки, за которые отвечаете вы, сейчас неважны, поэтому помолчите, пожалуйста. В кодировании сознательной идеи принимают участие небольшие участки активных и синхронизированных между собой клеток, а также обширные пространства, занятые нейронами с подавленной активностью.

Геометрия клетки такова, что синаптический разряд активного нейрона движется от вынесенных наружу дендритов к телу клетки. Нейроны одной группы расположены параллельно по отношению друг к другу, их электрические заряды складываются, и на поверхности головы возникает медленная волна с отрицательным зарядом, местоположение которой соответствует местоположению областей, кодирующих сознательный стимул42. Но нейронов с подавленной активностью по-прежнему больше — и их разряды, складываясь, образуют электрический разряд с положительным потенциалом. Число подавленных нейронов превосходит количество активных во много раз, поэтому в итоге разряды с положительным потенциалом складываются в большую волну на поверхности головы — в волну РЗ, которую мы с легкостью фиксируем всякий раз при возникновении доступа в сознательный опыт43. Вот и все — мы объяснили появление второго автографа сознания.

Моя теория прекрасно объясняет, почему волна РЗ так сильна, универсальна и воспроизводится снова и снова: она указывает в основном на то, что не имеет отношения к нашим текущим мыслям. Содержимое сознания связано не с массированным положительным разрядом, а с локальным отрицательным. Эдвард Фогель и его коллеги из Университета Орегона подтвердили эту идею, опубликовав работу, в которой чудесно продемонстрировали связь отрицательного напряжения в теменной коре с текущей рабочей памятью, содержащей пространственные структуры44. Всякий раз, когда мы запоминаем несколько предметов, слабое отрицательное напряжение позволяет точно определить, сколько предметов мы видели и где они находились. Напряжение сохраняется ровно столько, сколько мы помним о предметах, усиливается, когда мы заносим предметы в память, становится особенно интенсивным, когда мы уже не можем удержать все предметы в памяти, исчезает, когда мы забываем о них, и всегда неизменно указывает на то, сколько предметов мы помним. В работе Эдварда Фогеля отрицательное напряжение в точности очерчивает границы сознательной репрезентации в полном соответствии с теорией рабочего пространства.

 

Имитация активации сознания

Складывая в глобальном рабочем пространстве рисунок из активных и бездействующих нейронов, доступ в сознательный опыт формирует нашу мысль. Возможно, этого метафорического образа уже достаточно для того, чтобы мы могли интуитивно понять, что есть сознание, однако на смену ему все равно должна прийти более сложная математическая теория, объясняющая, как работают нейронные сети и почему они генерируют нейрофизиологические автографы, которые мы наблюдаем на макроскопической записи. В попытке дать точный ответ на эти вопросы мы с Жан-Пьером Шанжо принялись разрабатывать компьютерные имитации нейронных сетей, обладающие некоторыми основными свойствами доступа в сознательный опыт45.

Наша цель-минимум заключалась в том, чтобы проверить, как поведут себя нейроны, если будут соединены между собой так, как предполагает теория глобального рабочего пространства (рис. 27). Чтобы воссоздать на компьютере динамику небольшой коалиции нейронов, мы начали с нейронов «интеграции и импульса» — упрощенных уравнений, имитирующих электрические пики нервных клеток. Все эти нейроны были снабжены реалистичными синапсами, характеристики которых повторяли характеристики основных типов рецепторов нейротрансмиттеров в мозгу.

Рисунок 27. Компьютерная модель имитирует автографы бессознательного и сознательного восприятия. Мы с Жан-Пьером Шанжо с помощью компьютера имитировали ряд параметров многих зрительных, теменных и префронтальных областей, участвующих в сублиминальной и сознательной обработке данных (сверху). Четыре иерархические области соединялись между собой связями, обеспечивавшими передачу информации вперед по цепи и обратную связь на большие расстояния (середина). Каждая простимулированная область содержала клетки коры головного мозга, расположенные послойно и соединенные с нейронами зрительного бугра. Когда мы подали в сеть краткий импульс, активность стала распространяться снизу вверх, после чего сошла на нет; картина повторяла собой ту, что наблюдается при краткой активации кортикальных связей во время сублиминальной обработки данных. Немного продлив стимул, мы получили глобальную активацию: идущие сверху вниз связи усилили импульс и породили вторую волну длительной активации; это соответствовало активности, которая наблюдается во время сознательного восприятия

Затем мы соединили эти воображаемые нейроны в локальные кортикальные пучки, имитируя таким образом кору головного мозга, состоящую из слоев связанных между собой клеток. Концепция нейронного «пучка» опирается на тот факт, что нейроны, находящиеся друг над другом перпендикулярно поверхности коры, как правило, поддерживают тесную связь, одинаково реагируют и появляются в результате деления одной исходной клетки. Наша модель вполне соответствовала этим условиям: нейроны в столбцах, как правило, поддерживали друг друга и реагировали на одинаковые импульсы.

Смоделировали мы и небольшой зрительный бугор — структуру, состоящую из множества ядер, каждое из которых поддерживало тесную связь с каким-либо сектором или с различными точками коры. Мы добавили соответствующую действительности силу связей и временные задержки, они должны были возникнуть с учетом расстояния, которое предстояло преодолеть путешествующему по аксонам разряду. В результате мы получили грубую модель простейшего вычислительного блока, какой есть в мозгу у приматов: таламокортикальный пучок. Мы проследили за тем, чтобы эта модель вела себя так же, как настоящий мозг, то есть даже в отсутствие входящей информации виртуальные нейроны выдавали спонтанный импульс, а на электроэнцефалограмме их деятельность выглядела приблизительно так же, как выглядит деятельность коры головного мозга человека.

Получив удачную модель таламокортикального пучка, мы соединили несколько таких пучков в функциональную мозговую сеть широкого охвата. Мы имитировали иерархию четырех областей мозга и предположили, что каждая из них может содержать два пучка, кодирующих два целевых объекта — звук и свет. Наша сеть различала только два типа стимулов, но без этого сверхупрощения мы не смогли бы отслеживать работу модели. Мы предположили попросту, что, если в систему ввести дополнительный обширный набор состояний, качественных изменений в ней не произойдет46.

На периферии восприятие происходит параллельно: нейроны, кодирующие звук и свет, могут активироваться одновременно, не мешая друг другу. Однако на более высоких уровнях кортикальной иерархии они активно подавляют друг друга вплоть до того, что эти области могут заниматься лишь одним интегрированным видом нейронных импульсов — то есть одной «мыслью» — одновременно.

В нашей модели, как и в настоящем мозгу, кортикальные области периодически посылают друг другу сигналы по цепочке: первая область получает сенсорный импульс, пересылает его во вторую область, а та — в третью и четвертую. Следует отметить, что при отдаленной обратной связи данные замыкают цепь саму на себя, поскольку высшие области посылают импульсы поддержки в те самые сенсорные области, из которых получили их ранее. В результате мы имеем упрощенное глобальное рабочее пространство: сплетение прямых и обратных связей на разных уровнях: нейронов, пучков, областей и длинных связующих элементов между ними.

И вот, наконец, программирование осталось позади, мы радостно включили имитацию и принялись следить за тем, как будут раздражаться виртуальные нейроны. Чтобы имитировать восприятие, мы подали на зрительные нейроны таламуса небольшой электрический ток, грубо воссоздав процесс, который происходит, когда, к примеру, активируются рецепторы света на сетчатке — сначала активируются, а потом, после первичной обработки импульсов, возбуждают нейроны-ретрансляторы, расположенные в той части зрительного бугра, которая называется латеральным коленчатым телом. Далее процесс имитируется в соответствии с уравнениями. Как мы и надеялись, наша подделка, пусть и безмерно упрощенная, продемонстрировала множество физиологических свойств, которые наблюдались при экспериментах на настоящем мозге и истоки которых мы вдруг получили возможность изучить.

Первым из этих свойств была глобальная массовая активация. Поданный нами стимул медленно поднимался вверх в строгом соответствии с кортикальной иерархией, от первичной области ко вторичной, а затем к третьей и четвертой. Движущаяся вперед волна имитировала хорошо знакомое нам перемещение нейронной активности по иерархии зрительных областей. Спустя некоторое время возбуждение начало охватывать все пучки, кодирующие свойства объекта восприятия. Благодаря множеству обратных связей нейроны, кодирующие одну и ту же сенсорную информацию, обменивались сигналами, поддерживая друг друга и таким образом вызывая массовую активацию. Одновременно с этим происходило активное подавление параллельных процессов восприятия. Активация продолжалась несколько сот миллисекунд. Ее длительность никак не была связана с длительностью воздействия исходного стимула: даже краткого сигнала извне уже было достаточно для того, чтобы поддерживать передающуюся в обоих направлениях активность. В этих экспериментах нам удалось уловить самую суть того, каким образом мозг создает долгоиграющие репрезентации увиденной мельком картины и поддерживает их в реальном времени.

Динамика модели воспроизводила свойства, которые мы наблюдали на электроэнцефалограммах и при записи данных с введенных в мозг электродов. У смоделированных нейронов по большей части наблюдалось запоздалое и резкое повышение количества получаемых синаптических импульсов. Возбуждение перекидывалось на новые и новые нейроны, но одновременно с этим возвращалось в исходные сенсорные области, с которых начиналось, — имитация позднего распространения сигнала, которое мы наблюдали в сенсорных областях в период доступа в сознательное восприятие. В нашей модели состояние массовой активации выливалось, кроме того, в обоюдонаправленную нейронную активность в многочисленных, как бы вложенных друг в друга петлях модели: в кортикальном пучке, от коры до зрительного бугра и обратно и на большие расстояния в коре. В итоге выросло количество осцилляционных колебаний на самых разных частотах с выраженным пиком на гамма-уровне (30 и более герц). В момент глобальной массовой активации пики нейронов, кодирующих сознательное восприятие, синхронизировались и происходили одновременно. Короче говоря, компьютер сымитировал четыре автографа сознательного восприятия, которые мы выделили эмпирическим путем.

Имитация этого процесса позволила нам посмотреть на него с новой, математической точки зрения. Доступ в сознательный опыт соответствует тому, что физики-теоретики зовут фазовым переходом — внезапным переходом физической системы из одного состояния в другое. Как я уже объяснял в главе 4, фазовый переход происходит, к примеру, когда вода превращается в лед: молекулы H2O внезапно складываются в жесткую структуру с совершенно новыми свойствами. Во время фазового перехода физические характеристики системы могут меняться быстро и скачкообразно. В нашей компьютерной модели произошло то же самое: вялотекущая, низкая спонтанная активность на миг резко возросла, и тут же начался синхронизированный обмен импульсами.

Нетрудно понять, почему этот переход произошел так внезапно. Нейроны высшего уровня посылают импульсы тем самым участкам, которые первыми их подали, и потому система имеет два стабильных состояния с нестабильной границей между ними. Модель либо демонстрировала низкий уровень активности, либо, если входящий стимул усиливался и превышал критическое значение, стремительно и лавинообразно начинала активировать сама себя, заставляя подгруппы нейронов лихорадочно рассылать сигналы. Судьбу стимула средней интенсивности предсказать было невозможно — может, активность сойдет на нет, а может, вдруг перескочит на высокий уровень.

Этот аспект нашей модели прекрасно согласуется с психологической концепцией, созданной 150 лет назад и гласящей, что у сознания есть порог, четко отделяющий бессознательные (сублиминальные) мысли от сознательных (супралиминальных). Бессознательная обработка порождает возбуждение нейронов, активность охватывает одну область за другой, но глобальной массовой активации не происходит. А вот доступ в сознательное восприятие, напротив, согласуется с внезапным переходом к более высокому состоянию синхронизированной мозговой активности.

Правда, устройство мозга куда как сложнее снежного кома. На создание адекватной теории фазовых переходов в работе реальных нейронных сетей уйдет еще много лет47. Собственно говоря, наша модель уже продемонстрировала два вложенных друг в друга фазовых перехода. Об одном из них я только что говорил — это глобальная массовая активация. Правда, возможность этой активации сама зависела от другого фазового перехода, вызывающего «пробуждение» всей сети. Каждый пирамидальный нейрон смоделированной коры получал сигнал активного внимания — небольшой разряд тока, крайне примитивную имитацию хорошо изученного активирующего эффекта ацетилхолина, норадреналина и серотонина, поступающего из различных ядер стволовой части мозга, базальных отделов передней части мозга и гипоталамуса и переводящего кору в положение «вкл». Так наша модель имитировала изменения в состоянии сознания, то есть переход от бессознательного состояния мозга к сознательному.

Когда сигнал активного внимания был слаб, спонтанная активность падала в несколько раз, и массовая активация не прослеживалась: даже сильный входящий сенсорный сигнал, который активировал нейроны зрительного бугра и коры головного мозга в первичной и вторичной областях, и тот быстро сходил на нет, так и не преодолев порог глобальной массовой активации. В этом состоянии наша мозговая сеть была как бы сонной или словно под воздействием анестезии48. Реакция на стимулы происходила, но только в периферийных сенсорных областях — как правило, активность не могла пройти по рабочему пространству весь путь снизу вверх, вызвать массовую активацию и создать обширную совокупность клеток. Но когда мы усиливали сигнал активного внимания, модель начинала выдавать структурную электроэнцефалограмму, и под воздействием внешних стимулов вдруг происходила массовая активация. Порог активации изменялся в зависимости от активности модели, позволяя нам пронаблюдать за тем, как усиление активного внимания увеличивает вероятность того, что мы заметим самое слабое сенсорное воздействие.

 

Беспокойный мозг

В нашей модели проявился еще один поразительный феномен, а именно спонтанная нейронная активность. Нам незачем было постоянно стимулировать получившуюся сеть. Даже в отсутствие каких-либо стимулов нейроны, под воздействием случайных процессов в синапсах выдавали спонтанные импульсы, и хаотические их сигналы самостоятельно выстраивались в узнаваемые структуры.

Когда параметр активного внимания достигал высоких показателей, на экранах наших компьютеров начинали появляться и исчезать сложные последовательности нейронных сигналов. В этих последовательностях периодически можно было наблюдать глобальную массовую активацию, возникавшую в отсутствие каких-либо стимулов. Так, целая группа кортикальных пучков, отвечающих за один и тот же стимул, могла пробудиться на короткое время, а потом успокоиться снова. Долю секунды спустя ее сменяла другая глобальная совокупность клеток. Сеть самостоятельно, без какого-либо стимула извне, создавала целую серию случайных массовых активаций, весьма напоминавших мозговую активность при восприятии внешних стимулов. Единственное различие заключалось в том, что спонтанная активность, как правило, начиналась на более высоком кортикальном уровне, в пределах рабочих пространств, и затем распространялась вниз, в сенсорные области, то есть повторяла все происходящее при восприятии, только в обратном порядке.

Случаются ли такие всплески эндогенной активности в настоящем мозгу? Да. На самом деле, упорядоченная спонтанная активность встречается в нервной системе повсеместно. Всякий, кто хоть раз видел запись электроэнцефалограммы, знает, что оба полушария генерируют множество высокочастотных электрических волн, причем постоянно и независимо от того, бодрствует человек или спит. Эта спонтанная активность отличается такой высокой интенсивностью, что явственно выделяется на фоне всей прочей мозговой деятельности. Для сравнения заметим, что возбуждение в результате воздействия внешних стимулов едва различимо и, для того чтобы его зафиксировать, нужно повозиться с расчетами. Вызванная стимулом активность оттягивает на себя очень малую долю от потребляемой мозгом энергии — пожалуй, меньше 5 процентов. Нервная система действует в основном как автономный агрегат, генерирующий собственные последовательности мыслей. Даже если человек лежит в темноте и «ни о чем не думает», мозг его постоянно выдает сложный и все время меняющийся узор нейронной активности.

Впервые упорядоченные последовательности спонтанной кортикальной активности ученым удалось пронаблюдать на животных. Амирам Гринвальд и его коллеги из Института Вейцмана воспользовались электрочувствительными красителями, с помощью которых невидимый ток дает видимые изменения коэффициента отражения света, и в течение длительного периода времени фиксировали электрическую активность на большом участке коры49. Интересно, что сложные последовательности возникали даже тогда, когда животное находилось под воздействием анестезии. В темноте, в отсутствие какой-либо стимуляции, зрительный нейрон мог внезапно выдать ряд более сильных сигналов. При этом он был не одинок: на экране было видно, что в тот же самый миг происходила спонтанная активность целой совокупности нейронов.

Аналогичный феномен наблюдается и в человеческом мозгу50. Наблюдая за активностью мозга во время отдыха, ученые обнаружили, что мозг отнюдь не молчит, но постоянно выдает меняющиеся последовательности кортикальной активности. У разных людей глобальные сети, часто охватывающие оба полушария, действуют одинаково. Иногда их деятельность близко напоминает структуру мозговой активности при стимуляции извне. Так, например, крупная подгруппа языковых цепочек активируется, когда мы слушаем историю, но способна и к спонтанной активации в момент, когда мы лежим в темноте — такая вот иллюстрация к выражению «внутренний голос».

Смысл этой активности в период покоя продолжает вызывать споры в среде нейробиологов. Одни ученые указывают на то, что случайные сигналы мозга проходят по существующей сети анатомических связей — да и где бы им еще идти?51 Тем не менее, если человек не спит и концентрирует внимание, действовать начинает другая структура, непосредственно указывающая на то, о чем он думает. Так, в положении покоя у человека порой наблюдается сеть, называемая сетью по умолчанию; она включается всякий раз, когда мы размышляем о положении собственных дел, вспоминаем случаи из своей жизни или сравниваем свои мысли с чужими52. Мы кладем пациента в сканер, ждем, пока его мозг войдет в режим по умолчанию, и спрашиваем, о чем он думает. И человек, гораздо чаще, чем в других ситуациях, отвечает, что отвлекся и погрузился в собственные мысли и воспоминания53. Таким образом, наблюдая за спонтанной активностью той или иной сети, можно, по крайней мере, частично угадать, о чем думает человек.

Короче говоря, наши бесцельные раздумья возникают в результате постоянных нейронных импульсов. Более того, этот внутренний поток сигналов конкурирует с внешним миром. В периоды высокой активности по умолчанию неожиданная демонстрация такого, к примеру, стимула, как картинка, не вызывает большую волну РЗ, хотя у внимательного наблюдателя эта волна возникла бы54. Эндогенные состояния сознания мешают нам воспринимать внешние события. Спонтанная мозговая активность охватывает глобальное рабочее пространство и, затопив его целиком, может в течение длительного времени блокировать доступ других стимулов. С одной из разновидностей этого явления мы встречались в главе 1 — там она называлась слепотой невнимания.

К нашему с коллегами величайшему удовольствию, тот же самый тип активности продемонстрировала и наша компьютерная модель55. У нас на глазах происходили внезапные спонтанные активации, которые тем чаще оказывались согласованы на глобальном уровне, чем сильнее был параметр активного внимания у стимула. Важно, что, даже если на протяжении этого периода мы подавали в сеть внешний стимул, причем значительно превосходящий обычный порог подавления, стимул не получал доступа в сеть и не становился причиной глобальной массовой активации: внутренняя активность конкурировала с внешними стимулами. Наша модель могла имитировать слепоту невнимания и моргание внимания — явления, свидетельствующие о неспособности мозга осознанно воспринимать две вещи одновременно.

Кроме того, существование спонтанной активности объясняет, почему один и тот же поступающий стимул иногда вызывает полноценную массовую активацию, а иногда — едва заметное возбуждение. Все зависит от того, может ли наблюдавшаяся до появления стимула шумовая структура активности резонировать с пиками на входе или же она с ними несовместима. В нашей модели, как и в человеческом мозгу, восприятие слабого внешнего стимула зависело от случайных флюктуаций активности56.

 

Дарвин в мозгу

Спонтанная активность — одно из наиболее часто упускаемых свойств модели глобальной рабочей сети, однако я лично считаю спонтанную активность одной из важнейших и незауряднейших ее особенностей. Очень многие нейробиологи до сих пор придерживаются старомодного представления о рефлекторной дуге как о фундаментальной модели человеческого мозга57. Идея эта известна со времен Рене Декарта, Чарльза Шеррингтона и Ивана Павлова и изображает мозг как механизм приема-передачи, транслирующий данные от органов чувств к мускулам (см. знаменитую схему Декарта, изображающую, как глаз управляет рукой, рис. 1). Сегодня нам известно, что это представление глубоко ошибочно. Главным свойством нервной системы является ее автономность. Естественная активность нейронов берет верх над стимулами извне. В результате наш мозг не отдается пассивно на милость окружающего мира, а создает собственные стохастические варианты активности. В процессе развития подходящие варианты сохраняются, а неподходящие — отбрасываются58. Этот веселый творческий алгоритм, особенно хорошо заметный у детей помладше, наводит на мысли о дарвиновском естественном отборе.

На идее естественного отбора выстроил свое видение организма Уильям Джеймс. «Почему не предположить, — риторически вопрошал он, — что если спинной мозг есть машина с немногочисленным набором рефлексов, то головной мозг есть машина со множеством рефлексов, и в этом единственное между ними различие?» Потому что, отвечал он сам себе, развившиеся цепочки в мозгу действуют как «орган, естественным состоянием которого является неустойчивое равновесие», что позволяет его «обладателю приспосабливать свое поведение к мельчайшим изменениям в окружающих обстоятельствах».

Основы этого счастливого свойства лежат в способности нервных клеток к возбуждению: на ранних этапах эволюции нейрон обрел способность активировать себя сам и спонтанно выдавать импульсы. Будучи отфильтровано и усилено цепочками мозга, возбуждение это превращается в целенаправленное исследовательское поведение. Любое животное, исследующее свою среду обитания отчасти наугад, делает это благодаря наличию у него иерархии «центральных генераторов шаблона» — нейронных сетей, спонтанная активность которых обеспечивает ритмичные движения при ходьбе или плавании.

Я утверждаю, что в мозгу у приматов и, возможно, у представителей многих других видов аналогичный процесс исследования происходит и в самом мозгу, на чисто когнитивном уровне. Спонтанно генерируя сменяющие друг друга варианты активности даже в отсутствие внешних стимулов, глобальное пространство дает нам возможность свободно создавать новые планы, испытывать их и менять по собственному желанию, если они не удовлетворяют нашим ожиданиям.

В нашей системе глобального рабочего пространства идет дарвиновский процесс изменений и дальнейшего отбора59. Спонтанная активность выступает в роли «генератора различий», и рисунок ее постоянно меняется под воздействием мозга, оценивающего будущие выгоды. Построенные на этой основе нейронные сети могут отличаться большим потенциалом. Мы с Жан-Пьером Шанжо показали на компьютерной модели, что эти сети способны решать сложные проблемы и головоломки, например классическую задачу про ханойские башни60. Логика научения путем перебора в сочетании с классическими правилами синаптического обучения дает нам грубую конструкцию, способную учиться на собственных ошибках и вычленять абстрактные правила из задачи61.

В английском языке первые буквы словосочетания «генератор различий» — Generator of Diversity — складываются в слово «бог» (GOD), но на самом деле ничего волшебного в явлении спонтанной активности нет. Возбудимость — это естественное физическое свойство нервных клеток. Мембранный потенциал каждого нейрона постоянно меняет силу напряжения. Во многом это объясняется случайным выбросом пузырьков нейтротрансмиттеров на подающих сигнал синапсах. Если пойти еще глубже, становится очевидно, что эти случайные выбросы связаны с тепловым шумом, который постоянно гоняет туда-сюда молекулы нашего организма. Можно было бы предположить, что эволюция сведет влияние этого шума к минимуму (как делают, например, разработчики цифровых чипов — задают очень точное напряжение для нулей и единиц, так чтобы тепловой шум не создавал помех в работе). Но в мозгу все иначе: нейроны не только терпят шум, но даже усиливают его — возможно, потому, что фактор случайности в определенной степени бывает полезен в самых разных ситуациях, требующих поисков оптимального решения для сложной задачи. (Эффективный источник шума требуется для множества алгоритмов, таких, например, как цепочки Монте-Карло или имитация отжига.)

Всякий раз, когда флюктуации нейронной мембраны превышают пороговый уровень, возникает импульс. На нашей модели было видно, что эти случайные импульсы могут формироваться под влиянием огромного количества связей, объединяющих нейроны в пучки, совокупности и цепи, и так вплоть до возникновения глобального варианта активности. Начинается все с локального шума, а заканчивается упорядоченной лавиной спонтанной активности, связанной с нашими скрытыми мыслями и целями. Как же унизительно сознавать, что «поток сознания», слова и образы, постоянно всплывающие у нас в мозгу и составляющие ткань нашей психической жизни, происходят от случайных импульсов, испущенных миллиардами синапсов, которые закладывались на протяжении всей нашей жизни и ни на миг не прекращающегося процесса созревания и обучения.

 

Каталог бессознательного

В последние годы теория глобального рабочего пространства успела превратиться в популярный инструмент для интерпретаций, в увеличительное стекло, сквозь которое мы пересматриваем свои эмпирические наблюдения. К успехам этой теории можно отнести то, что она позволила разобраться в различных типах бессознательных процессов, идущих в человеческом мозгу. Как шведский ученый Карл Линней составил «таксономию» (то есть упорядоченную классификацию растений и животных по видам и подвидам) всех живых существ, так и мы можем теперь составить собственную таксономию бессознательного.

Вспомним основную идею главы 2: преобладающая часть деятельности мозга происходит на бессознательном уровне. Мы не сознаем бóльшую часть того, что делаем и знаем, не осознаем, что дышим и держим равновесие, не замечаем мимолетно увиденного и точных движений собственной руки, подсчета букв и соблюдения грамматических правил, а в периоды слепоты невнимания можем не заметить даже переодетого гориллой юнца, который барабанит по груди прямо перед нами — и ведь наши глаза и зрительная кора при этом прекрасно работают. Бесчисленное множество бессознательных процессоров постоянно занято созданием того, что мы есть и что делаем.

Теория глобального рабочего пространства помогает привнести в эти джунгли некоторый порядок62. С ее помощью мы можем разложить нашу бессознательную деятельность по полочкам, каждой из которых соответствует собственный мозговой механизм, радикально отличный от всех прочих (см. рис. 28). Посмотрим сначала, что происходит во время слепоты невнимания. Вот перед нами зрительный стимул, который демонстрируется достаточно долго и может преодолеть порог восприятия. Но мы не замечаем его, поскольку наш мозг полностью занят другой задачей. Я пишу эти слова в доме, где родилась моя жена; он был построен в XVII веке фермером, а в прекрасно обставленной гостиной стоят огромные напольные часы. Прямо перед собой я вижу качающийся маятник и даже не прислушиваясь могу услышать тиканье. Но стоит мне сконцентрироваться на работе, и ритмичный шум исчезает из моего внутреннего мира — на что я не обращаю внимания, то и не сознаю.

Рисунок 28. Существует несколько причин, по которым знание может оставаться незамеченным. В каждый отдельный момент рабочее пространство активируется только одной мыслью. Другие объекты не получают доступа в сознание по одной из двух причин: либо они не восприняты и потому не могут достичь рабочего пространства (предсознательная информация), либо слишком слабы для того, чтобы вызвать полноценную лавину активности до самого уровня рабочего пространства (сублиминальная информация). Кроме того, мы не сознаем информацию, которая кодируется процессорами, отрезанными от рабочего пространства. И наконец, огромное количество бессознательной информации хранится в связующих структурах мозга и микропаттернах мозговой активности

Составляя каталог бессознательного, мы с коллегами предложили назвать такого рода неосознаваемую информацию специальным словом — предсознательная63. Сознание работает в режиме ожидания: информация уже закодирована активной совокупностью испускающих импульс нейронов и может быть осознана в любой момент, если на нее обратят внимание, но этого все не происходит. На самом деле мы позаимствовали термин у Зигмунда Фрейда. Во «Введении в психоанализ» он пишет, что «некоторые процессы… могут перестать быть сознательными, но способны вновь без всяких затруднений вернуться в сознание… Все бессознательное, которое действует именно так и может с легкостью сменить бессознательное состояние на сознательное, таким образом, лучше будет описать как способное к проникновению в сознание или предсознательное».

Модели глобального рабочего пространства указывают на возможность существования нейронного механизма предсознательного состояния64. Когда в модель подается стимул, активность модели ширится и в конце концов охватывает все глобальное пространство. Эта сознательная репрезентация, в свою очередь, подавляет всяческую активность вокруг и не допускает, чтобы одновременно с ней в систему проник другой стимул. Конкуренции этой не избежать. Как я уже замечал выше, для определения сознательной репрезентации надо знать не только что она собой представляет, но и что она собой не представляет. В соответствии с нашей гипотезой, для того чтобы определить границы текущего содержания сознания и сообщить, чем оно не является, следует активно подавлять сигналы некоторых нейронов рабочего пространства. Это обширное подавление создает в высших центрах коры головного мозга узкое «бутылочное горлышко». Молчащие нейроны, обязательные спутники любого сознательного состояния, не позволяют нам видеть две вещи одновременно и производить два целенаправленных действия одновременно. Впрочем, они не мешают активации тех сенсорных областей коры, которые первыми вступают в дело, — эти области явственно возбуждаются, причем почти так же, как всегда, даже когда рабочее пространство уже занято первым стимулом. Предсознательная информация оказывается во временных хранилищах памяти, за пределами глобального рабочего пространства, и начинает медленно таять и исчезать, если только мы не решим обратить на нее наше внимание. В течение краткого времени тающую предсознательную информацию еще можно восстановить и переместить в сознание — в этом случае мы овладеем ею в ретроспективе, спустя долгое время после реальных событий65.

Предсознательное состояние не имеет ничего общего со второй разновидностью бессознательного, которую мы коротко зовем сублиминальным состоянием. Представьте себе, что вам показывают картинку, но показывают так быстро (или картинка такая нечеткая), что вы ничего не видите. Тут ситуация будет совсем иная. Как бы мы ни старались, мы не сможем воспринять скрытый стимул. Замаскированное меж двух геометрических фигур слово навсегда ускользнет из нашего сознания. Подобный сублиминальный стимул способен вызывать видимую активность в зрительной, семантической и моторной областях мозга, однако эта активность продлится слишком недолго и не выльется в глобальную массовую активацию. Это состояние нам с коллегами тоже удалось отследить на модели. В компьютерном варианте краткий всплеск активности может не дотянуть до глобального массового возбуждения, потому что к моменту, как идущие сверху вниз сигналы вернутся из высших областей в первичные сенсорные и будут способны усилить входящий сигнал, исходная активность уже угаснет и на смену ей придет маска66. Играя с мозгом, сметливый психолог легко создаст такой слабый, такой краткий или такой зашумленный стимул, что глобальная массовая активация раз за разом не будет наступать. Термин «сублиминальный» относится именно к ситуациям такого рода, когда входящая сенсорная волна угасает прежде, чем достигнет размеров цунами и обрушится на берега глобального нейронного рабочего пространства. Как бы мы ни пытались воспринять сублиминальный стимул, сознания ему не достичь — в отличие от предсознательного стимула, который доберется до сознания, если только мы выкроим немного внимания. В этом заключается основная разница между двумя типами стимулов, причем на уровне мозга она имеет массу последствий.

Неосознанная информация в мозгу не ограничивается предсознательной и сублиминальной опциями. Возьмем, к примеру, дыхание. В каждый миг вашей жизни из стволовой части мозга в мускулатуру грудной клетки поступают сигналы тысяч нейронов, которые управляют движениями ваших легких и тем поддерживают вашу жизнь. Благодаря элементарным петлям обратной связи они следят за уровнем кислорода и углекислого газа в вашей крови. И вся эта сложная нейронная машинерия работает абсолютно бессознательно. Как так? Нейронные импульсы сильны и происходят в течение длительного времени, поэтому их нельзя назвать сублиминальными; но и предсознательными они не являются, поскольку не будут восприняты сознанием, сколько внимания им ни уделяй. По нашей классификации здесь мы имеем дело с третьей категорией бессознательной репрезентации — несопряженными структурами. Последовательности импульсов, исходящие из стволовой части мозга и контролирующие ваше внимание, не сопряжены с системой глобального рабочего пространства префронтальной и теменной коры.

Чтобы информация, которую несет в себе совокупность нейронов, стала осознанной, ее надо передать нейронам рабочего пространства префронтальной коры и на связанные с ними участки. Однако нейроны стволовой части мозга никогда и никуда не передают данные, связанные с дыханием. Последовательность импульсов, несущая информацию об уровне углекислого газа в крови, не может быть передана на другой участок коры головного мозга. В результате вы о ней ничего не знаете. Многие специализированные нейронные цепи нашего мозга работают в таком глубоком подполье, что попросту не имеют связей, посредством которых могли бы передать информацию для осознания. Интересно, что единственный способ, позволяющий ввести эту информацию в сознание, заключается в том, чтобы перекодировать ее с помощью другой сенсорной модальности — почувствовать дыхание мы можем лишь опосредованно, прислушавшись к движениям собственной грудной клетки.

Мы верим, что контролируем свое тело, однако в модулях нашего мозга постоянно скользят сотни нейронных сигналов, которые не достигают нашего внимания потому, что не имеют выхода в соответствующие высокоуровневые отделы коры. У некоторых пациентов, перенесших инсульт, дело может обстоять еще хуже. Если белое вещество мозга вместе с находящимися в нем связями будет повреждено, произойдет внезапное отключение специфических сенсорных или когнитивных систем, к которым сознание вдруг потеряет доступ. В качестве наглядного примера можно назвать синдром разъединения, который происходит, когда инсульт затрагивает мозолистое тело — тугой клубок связей, соединяющих полушария мозга. Пациент с пострадавшим мозолистым телом может утратить способность осознавать собственные движения. Он не в силах будет управлять даже собственной рукой и будет уверять, что ее движения случайны и ему неподвластны. А дело всего лишь в том, что управление движениями левой руки осуществляется в правом полушарии, в то время как способность связно комментировать коренится в левом полушарии. Разъединяем эти две системы — и у пациента появляется два самостоятельных рабочих пространства, каждое из которых не вполне сознает, чем занято другое.

Но и несопряженной структурой вопрос тоже не исчерпывается. В соответствии с теорией рабочего пространства четвертый вариант, в котором нейронная информация может оставаться неосознанной, заключается в том, что информация растворяется в сложной последовательности импульсов. Возьмем конкретный пример: представьте себе изображение сетки, у которой такие маленькие ячейки или которая мерцает так быстро (от 50 герц), что вы ее не видите. Эксперименты показывают, что вы будете воспринимать лишь размытый серый цвет, однако образ сетки отпечатается в вашем мозгу: в зависимости от поворота сетки в мозгу будут включаться разные группы нейронов67. Почему же эти импульсы не достигают сознания? Возможно, потому, что здесь используется крайне запутанная пространственно-временная последовательность импульсов первичной зрительной коры, то есть нейронный шифр, который слишком сложен и потому не может быть полноценно считан нейронами глобального рабочего пространства в высших областях коры головного мозга. Мы еще не вполне разобрались в нейронном коде, однако полагаем, что для того, чтобы попасть в сознание, фрагмент информации прежде всего должен быть перекодирован в развернутую форму с помощью небольшой совокупности нейронов. В передних областях коры головного мозга должны присутствовать особые нейроны, занимающиеся важной зрительной информацией прежде, чем сигналы о ней будут усилены и вызовут глобальную массовую активацию рабочего пространства, после чего информация поступит в сознание. Если же информация остается растворена в сигналах мириад не связанных между собой нейронов, в сознание ей не попасть.

Всякий раз, когда мы видим лицо или слышим слово, у нас в мозгу начинается именно этот неосознанный процесс с перепутанными и перемешанными пространственно-временными последовательностями импульсов миллионов нейронов, каждый из которых ощущает лишь крохотную долю общего образа. Каждый из поступающих блоков содержит практически бесконечный объем информации о говорящем, о том, что он говорит, об эмоциях, о размерах помещения… если бы только мы могли все это декодировать! Но мы не можем. Мы осознаем эту латентную информацию, лишь когда высокоуровневые области нашего мозга категоризируют ее и разбивают на осмысленные фрагменты. Одна из важных задач иерархической пирамиды сенсорных нейронов, последовательно выделяющих все более абстрактные фрагменты нашего переживания, сводится к тому, чтобы сделать сообщение полным и недвусмысленным. Потренировавшись, мы начинаем различать едва слышные звуки именно потому, что нейроны всех уровней перестраиваются и начинают работать на усиление сенсорной информации такого рода68. До тренировки нейроны наших сенсорных областей тоже улавливали эту информацию, но только неявно, в виде рассеянного рисунка импульсов, не достигающих сознания.

У этого факта есть удивительные последствия: в мозгу имеются сигналы, которые игнорирует даже владелец мозга, — вспомним те же мельком показанные решетки и незаметные побуждения69. С помощью технологий нейровизуализации мы начинаем расшифровывать эти сложные коды. В ходе одной из военных американских программ специально обученному наблюдателю показывают фотографии со спутников, но показывают с немыслимой скоростью, по десять штук в секунду, следя при этом за электрическими токами его мозга, которые могут сигнализировать о том, что наблюдатель, сам того не осознавая, заметил на фотографии присутствие вражеского самолета. Наше бессознательное — это златые горы, которые только и ждут, чтобы мы ими воспользовались. В будущем, когда мы научимся усиливать мельчайшие микроструктуры, замеченные ощущениями, но пропущенные сознанием, мозг в сочетании с компьютером может подарить нам своеобразные экстрасенсорные способности без единой капли мистики, за счет одного лишь обострившегося ощущения происходящего вокруг.

И наконец, неосознанная информация пятого типа спит в нашей нервной системе и имеет вид латентных связей. Как гласит теория рабочего пространства, мы осознаем структуры нейронных импульсов лишь в том случае, если они образуют активные совокупности клеток, охватывающие значительную часть мозга. Значительно бóльшие объемы информации хранятся в немых синаптических связях мозга. Еще до рождения наши нейроны ведут статистику, собирают образчики окружающего мира и выстраивают соответствующие связи. Сотни тысяч миллиардов кортикальных синапсов человеческого мозга являются хранилищем спящих воспоминаний обо всей нашей жизни. Каждый день, а особенно в первые пять лет жизни человека, когда мозг его приспосабливается к большей части окружающей среды, возникают и распадаются миллиарды синапсов. Каждый синапс хранит крохотную долю статистики: насколько вероятно, что пресинаптический нейрон подаст импульс непосредственно перед тем, как проснется постсинаптический нейрон?

В основе бессознательно-интуитивного знания лежат все те же усиленные связи, которые в мозгу встречаются повсеместно. На раннем этапе обработки зрительной информации кортикальные связи собирают статистические данные о том, как линии, соединяясь, образуют контуры предмета70. Связи в слуховой и моторной областях служат хранилищем наших скрытых знаний о музыке: многолетние упражнения на пианино влекут за собой заметные изменения в плотности серого вещества. Предполагается, что причиной тому — изменения в плотности синапсов, размерах дендритов, структуре белого вещества и в глиальных клетках, которые служат для поддержания работы нейронов71. В гиппокампе (это такой изогнутый орган пониже височных долей) синапсы собирают наши эпизодические воспоминания: где, когда, что и с кем.

Воспоминания могут спать годами. Их содержание плотно упаковано во встречающиеся тут и там синаптические шипики. Распоряжаться этим синаптическим знанием напрямую мы не можем, поскольку формат, в котором оно записано, очень отличается от тех последовательностей нейронных импульсов, с помощью которых мы осознанно мыслим. Для того чтобы пробудить воспоминания, мы должны перевести их из спящего состояния в активное. Во время обретения воспоминания наши синапсы способствуют повторному проигрыванию определенной последовательности нейронных импульсов — и лишь после этого к нам приходит воспоминание, которое мы осознаем. Сознательная память — это не более чем осознанный момент из прошлого, примерная реконструкция конкретной последовательности импульсов, которая некогда имела место быть. С помощью нейровизуальных технологий мы можем заметить, что, прежде чем мы осознанно вспомним то или иное событие нашей жизни, воспоминания должны быть трансформированы в определенную последовательность нейронных импульсов префронтальной коры и связанных между собой областей поясной коры72. Такого рода повторная активация удаленных кортикальных областей во время осознанного воспоминания вполне соответствует нашей теории рабочего пространства.

Взяв разницу между латентными связями и активными импульсами, можно объяснить, почему, говоря вслух, мы совершенно не задумываемся о правилах грамматики. Вот предложение: «Джон считает, что он умный». Может местоимение «он» означать самого Джона? Да. А в предложении «Он считает, что Джон умный»? Нет. А в предложении «Джону понравилось, что он быстро справился с задачей»? Мы даем ответы на эти вопросы, но понятия не имеем о правилах, на основании которых их выводим. Структуры, отвечающие за речь, устроены так, чтобы обрабатывать слова и фразы, но схема этого устройства скрыта от нашего сознания. Почему? Ответ дает глобальная теория рабочего пространства: потому что знание закодировано в неподходящем для доступа в сознательный опыт формате.

Грамматика и арифметика — вещи совершенно разные. Умножая 24 на 31, мы действуем абсолютно осознанно. Любую промежуточную операцию, ее характер, порядок этих операций мы можем прокрутить в интроспекции. Но когда мы говорим — все наоборот: мы парадоксальным образом не можем сказать ни слова о том, что происходит у нас в голове. Задачи, которые решает синтаксический процессор, в сложности не уступают арифметическим, но мы понятия не имеем о том, как мы их решаем. Почему? Потому, что сложные арифметические вычисления мы производим пошагово, под непосредственным контролем главных центров сети рабочего пространства (префронтальной, поясной и теменной коры головного мозга). Эти простые последовательности можно точно и четко закодировать с помощью импульсов нейронов префронтальной коры. У нас есть специальные клетки для кодирования намерений, планов, отдельных шагов, их количества и даже ошибок и их исправления73. Таким образом, и планируемые, и совершаемые арифметические действия полностью кодируются импульсами нейронной сети, поддерживающей сознание. Грамматикой же управляют пучки связей, соединяющих левую верхнюю височную долю и нижнюю лобную извилину, в то время как располагающиеся в дорсолатеральной префронтальной коре сети сознательной преднамеренной обработки данных остаются не задействованы74. Даже под анестезией значительный участок темпоральной речевой коры продолжает автономно работать и обрабатывать речь без какого-либо участия сознания75. Мы не знаем, каким образом нейроны кодируют грамматические правила, но когда узнаем, то увидим, что в данном случае схема кодирования ничем не будет походить на схему кодирования арифметических действий.

 

Субъективные агрегатные состояния

Итак, теория глобального нейронного рабочего пространства позволяет объяснить массу наблюдений относительно сознания и связанных с ним механизмов мозга. Она объясняет, почему мы осознаем лишь малую толику информации, хранящейся у нас в голове. Чтобы попасть в сознание, информация должна быть закодирована в виде упорядоченной последовательности нейронных импульсов в высших областях коры головного мозга, а эта последовательность, в свою очередь, должна вызывать массовую активацию внутреннего круга тесно связанных между собой областей, из которых складывается глобальное рабочее пространство. Свойствами этой массовой активации, преодолевающей большие расстояния, и объясняется появление автографов сознания, которые были обнаружены во время экспериментов с нейровизуализацией.

Созданные в нашей лаборатории компьютерные имитации позволяют воспроизвести некоторые свойства доступа в сознательный опыт, однако не идут ни в какое сравнение с реальным мозгом — ни о каком возникновении сознания не может быть и речи. Впрочем, я не сомневаюсь, что компьютерная программа в принципе способна воспроизвести элементы сознания. Чтобы имитация была ближе к реальности, у нее должны быть миллиарды определенных нейронных состояний. Такая имитация не только распространяла бы активацию, но и делала бы полезные статистические выводы относительно входящей информации, вычисляя, к примеру, вероятность того, что на картинке изображено лицо конкретного человека, или того, что движущаяся рука достигнет цели.

Мы начинаем понимать, как могут быть устроены нейронные сети, производящие статистические подсчеты такого рода76. Элементарные решения в области восприятия возникают тогда, когда накапливаются шумные факты, поступающие от специализированных нейронов77. Во время массовой активации сознания одна из подгрупп этих фактов перерабатывается в универсальную интерпретацию, на основании которой принимается внутреннее решение о дальнейших шагах. Вообразите себе большую внутреннюю арену, на которой борются за согласованность различные области мозга в образе, к примеру, демонов из пандемониума Селфриджа. Следуя правилам, они обязаны постоянно стремиться к единой адекватной интерпретации всех тех разнообразных сообщений, которые получают. Благодаря далеко протянувшимся связям они преодолевают раздробленность информации и накапливают факты, на сей раз — на глобальном уровне, и так до тех пор, пока не будет получен адекватный ответ, который удовлетворит текущие цели организма.

Вся эта машина зависит от поступающей извне информации лишь отчасти. Ее девиз — автономность. Основываясь на спонтанной активности, она создает собственные цели, а эти цели, в свою очередь, распространяют свое влияние сверху вниз, затрагивая всю прочую деятельность мозга. Под их воздействием другие области удерживают долгосрочные воспоминания, генерируют ментальный отклик и трансформируют его в соответствии с правилами логики или языка. Нейронная активность во внутреннем пространстве течет потоком, задействуя миллионы параллельных процессоров. Каждый адекватный результат еще на шаг подводит нас к никогда не прекращающему работу ментальному алгоритму — потоку сознательной мысли.

Имитировать такую статистическую машину со множеством параллельных процессов и создать имитацию, основанную на реальных принципах работы нейронных сетей, было бы чрезвычайно интересно. Сегодня европейские ученые готовятся к проведению проекта Human Brain («Мозг человека») — серьезной попытке разобраться в кортикальных сетях человеческого мозга и создать полноразмерную их имитацию. У нас уже есть специальные «нейроморфные» кремниевые микросхемы, на основе которых возможно имитировать сети из миллионов нейронов и миллиардов синапсов78. В следующие 10 лет эти инструменты позволят нам получить значительно более подробную картину того, как различные состояния мозга воздействуют на наш сознательный опыт.