Можно ли сохранять «запасные части» для нормальной жизнедеятельности?

В последние десятилетия в хирургической практике все чаще стали применять (различные виды трансплантации (пересадок) для замены больных тканей у человека (кровеносных сосудов, крови, костного мозга, кожи, роговицы глаза, кости и др.) и даже целых органов (почек, поджелудочной железы, селезенки, печени, сердца и др.). Для того чтобы в нужный момент обеспечить необходимые ткани или органы, сначала рассчитывали на людей-доноров (дающих кровь или костный мозг), а чаще уповали на случай: вдруг окажется под рукой внезапно скончавшийся в результате катастрофы человек, у которого можно взять необходимые здоровые органы. Но на такие случаи трудно рассчитывать. Бесспорно, значительно удобнее и практичнее иметь в наличии для неотложной пересадки хранящиеся в течение известного периода времени необходимые ткани или органы. Это заставило ученых вспомнить о патентах природы — способности многих видов организмов впадать в анабиотическое состояние.

В этом отношении первые успехи были достигнуты довольно давно, при сохранении в течение длительного времени при низкой температуре мужских половых клеток (сперматозоидов), с целью использовать их для искусственного осеменения сельскохозяйственных животных, а ныне это применяется и в повседневной практике медицины (на этих интересных проблемах мы остановимся в следующих главах).

В 1951 г. профессор Б. Лайет сообщил, что ему удалось заморозить, кроме сперматозоидов, еще и ряд других биологических объектов. Наибольший интерес представляют его опыты по замораживанию при температуре -150 °C красных клеток крови (эритроцитов) и сердца зародыша цыпленка. При быстром замораживании и быстром размораживании ученому удалось сохранить до 75 % эритроцитов. В результате мгновенного воздействия при температуре -150 °C на сердце зародыша цыпленка и последовавшего затем размораживания при температуре +40 °C было установлено, что сердечная деятельность постепенно восстанавливается.

В 1958 г. французскому ученому Луи Рею удалось с помощью жидкого азота заморозить сердце зародыша цыпленка до -196 °C, причем перед этим его помещали в глицерин. Через некоторое время сердце стали согревать, и при температуре 37 °C оно начало сокращаться.

За последние десятилетия в клинической практике резко возросла потребность в донорской крови. Во многих странах мира созданы специальные центры, откуда можно в любое время получить кровь нужной группы крови и в необходимом количестве. Но сохранить жизнеспособность крови — дело совсем непростое. Уже к концу первой недели кровь доноров портится, даже если ее сохраняют в холодильнике. Тогда ученые решили прибегнуть к помощи глубокого замораживания. На сравнительно просто устроенных безъядерных клетках крови — эритроцитах, как на модели, изучались процессы, происходящие при замораживании и размораживании. Выяснилось, что не все эритроциты остаются живыми после размораживания. Оказалось, что у них есть смертельные враги — кристаллики льда, образующиеся при температуре от -3 °C до — 40 °C, из-за которых клетки крови повреждаются и становятся биологически неполноценными.

Группа советских ученых разработала целый ряд методов эффективного замораживания и размораживания эритроцитной массы. Рентгеноструктурный анализ помог установить, что чем быстрее осуществляется охлаждение эритроцитной массы, тем меньше размеры образующихся кристалликов льда и, следовательно, меньше повреждение эритроцитов. Надежным защитником от льда-разрушителя оказался глицерин. Если эритроцитную массу погрузить в раствор глицерина, его молекулы проникают в эритроциты и образуют связи с молекулами воды, которые значительно прочнее, чем связи между молекулами воды между собой. Именно это препятствует быстрому росту правильной кристаллической решетки льда. Удалось установить, что один из лучших методов заключается в том, чтобы эритроциты, помещенные в раствор, содержавший 10–12 % глицерина, охлаждались бы с помощью жидкого азота до -196 °C за 1–2 мин, а размораживание осуществлялось за 40 с водой, подогретой до +45 °C. Как выяснилось, более быстрое размораживание приводило к повреждению эритроцитов, ибо «врывающаяся» в эритроцит растаявшая вода в этом случае играла разрушительную роль. Оказалось, что методы, разработанные советскими учеными, сохраняют неповрежденными 85–95 % замороженных эритроцитов, а их основные показатели в день размораживания почти re же, что и в день замораживания. В результате многочисленных опытов удалось выявить одно исключительно важное обстоятельство — продолжительность хранения практически не влияет на число эритроцитов, полностью восстанавливающих свои функции после размораживания. Профессор В. А. Аграненко и профессор Ф. Р. Виноград-Финкель вместе с группой своих сотрудников исследовали эритроциты, хранившиеся на протяжении 5 лет при температуре -70 °C, и установили, что все это время замороженные с помощью холода эритроциты сохраняли все свои биологические свойства.

Размороженная эритроцитная масса имеет ряд преимуществ перед донорской цельной кровью, в которую обязательно добавляют консерванты, отнюдь не безвредные для организма. В большинстве случаев после переливания размороженных, хорошо промытых эритроцитов у больных не наблюдалось отрицательных реакций, часто возникающих даже после переливания свежей крови доноров. Кроме того, эритроцитная масса не содержит плазмы крови, а именно в ней развиваются вирусы инфекционного гепатита — тяжелого заболевания, печени, часто поражающего людей, которым перелили натуральную кровь доноров. Если возбудитель гепатита останется на поверхности эритроцитов, то при их промывании коварный вирус удаляется вместе с белковыми фракциями плазмы, лейкоцитами и тромбоцитами, к которым также чувствительны многие больные. Благодаря этим достоинствам размороженной эритроцитной массы хирурги используют ее при операциях с искусственным кровообращением.

В сентябре 1979 г. на советско-американском симпозиуме по проблемам переливания крови в Бетезде (США) профессор В. П. Осипов в своем докладе от имени сотрудников Всесоюзного научно-исследовательского института клинической и экспериментальной хирургии сообщил о результатах использования размороженной эротроцитной массы для заполнения аппарата искусственного кровообращения во время операции. Опыт возглавляемой им лаборатории подтвердил, что и в этом случае размороженные эритроциты переносят кислород не хуже, чем эритроциты натуральной крови доноров, не вызывая при этом обычных осложнений. Весьма важно и другое наблюдение: промытые эритроциты, попавшие в организм больного, практически не изменяют свертываемость крови, а это крайне важно, особенно после сложных операций (например, при операциях на сердце).

В настоящее время консервирование крови, особенно ее компонентов (сыворотка крови, плазма крови, антигемофильная плазма, альбумин крови, глобулин и др.), широко используется в медицинской практике. Медицинские учреждения, оказывая неотложную медицинскую помощь, используют их для переливания крови при всех случаях острого сокращения объема циркулирующей крови, вызванных потерей крови. Некоторые продукты крови, полученные из отдельных составных частей крови, имеют даже известные преимущества перед цельной кровью: у них более продолжительный срок годности в связи с возможностью сохранять их в анабиотическом состоянии не только путем замораживания и лиофилизации (высушивание в условиях вакуума) и — что особенно важно — они не обладают изосерологическими особенностями (т. е. особенностями отдельных групп крови), благодаря чему их можно немедленно переливать в кровеносную систему нуждающегося в этом человека или животного без опасений, что может возникнуть несовместимость по группе крови.

В последнее время для продолжительного консервирования компонентов крови различные фирмы во многих странах сконструировали современную аппаратуру для автоматического замораживания в диапазоне от -10 до — 196 °C (с помощью жидкого азота).

Но ученые на этом не остановились. Если возможно приводить в анабиотическое состояние клетки крови, почему же не попытаться осуществить то же самое с костномозговыми клетками, столь необходимыми при трансплантации костного мозга — операции, известной под названием миелотрансфузии (пересадка костного мозга). Эта операция особенно необходима при серьезном нарушении ряда важных функций гемопоэза (образования клеток крови), защитных механизмов и иммунитета. Именно такое нарушение наблюдается при лучевой болезни, вызываемой вредным воздействием ионизирующих излучений. В подобных случаях самым эффективным средством лечения является пересадка костного мозга.

Французский врач Жаме впервые в мире решился осуществить пересадку костного мозга югославским физикам, подвергшимся облучению от ядерного реактора, несмотря на то что его коллеги пытались убедить его в том, что такая операция опасна и бесполезна. К счастью, опыт удался и физиков удалось спасти. Это была настоящая сенсация.

Пересадка костного мозга оказалась эффективной и при многих врожденных генетических болезнях. Так, например, несколько лет тому назад широкую известность получил случай с годовалым Морисом Илайсом из Калифорнии. Врачи установили у ребенка врожденную агаммаглобулинемию. В его организме отсутствовала защитная система иммунитета, вследствие того что некоторые белые кровяные тельца нормально не функционировали. Жизнь ребенка несколько раз была на волоске. Исчерпав все возможные средства, врачи во главе с профессором Ричардом Стаймом решили применить метод доктора Роберта Гуда из Миннесоты по пересадке костного мозга и таким образом ввести в организм больного новую иммунную систему. С помощью шприца врачи извлекли из грудины его 13-летней сестры Тейми костный мозг. Взятое количество мозга содержало около 2 млрд. жизненно важных для Мориса клеток костного мозга. После успешной пересадки костного мозга потекли дни напряженного ожидания. Так как система иммунитета у маленького Мориса в достаточной мере не функционировала, она не смогла отторгнуть клетки костного мозга его сестры, однако существовала реальная опасность, что клетки сестры предпримут атаку на клетки брата, что приведет к фатальному исходу. После длившегося некоторое время кризиса состояние больного начало улучшаться, а исследование его белых кровяных клеток показало, что в них содержатся женские хромосомы (т. е. они представляют собой клетки его сестры), что доказывало одно: пересадка прошла успешно. Через 2 месяца Мориса выписали из больницы вполне здоровым.

Вот почему решение проблемы длительной консервации костного мозга не терпит отлагательства. Костный мозг, как кровь и компоненты крови, крайне важно сохранять как можно более длительное время, приводя его в анабиотическое состояние путем замораживания, чтобы врач мог им воспользоваться в нужный момент.

Установлено, что при температуре +4 °C клетки костного мозга сохраняют жизнеспособность только в течение суток. Для консервирования их на более длительное время специалисты пользуются способом замораживания при температуре от -76 до — 80 °C, добавляя вещество, легко проникающее через клеточную мембрану и удерживающее внутриклеточную воду, например, 15–30 %-ный глицерин или коллоид диметилсульфоксид. При постепенном замораживании важно соблюдать определенный ритм, чтобы предотвратить гемолиз (разрушение) красных кровяных клеток, содержащихся в суспензии костного мозга, и сохранить в целости ядерные клетки костного мозга. Замороженный костный мозг сохраняется в холодильнике при температуре -80 °C и может использоваться 1–5 лет. Перед употреблением костномозговой материал размораживают на водяной бане при температуре +37 °C. Размораживание можно проводить и медленно при температуре 0 °C в течение 40–60 мин, что более благоприятно сказывается на сохранении в целости ядерных клеток.

В Ленинградском научно-исследовательском институте гематологии и переливания крови сконструирован аппарат для замораживания костного мозга при температуре -196 °C с помощью жидкого азота — для соответствующих экспериментов и неотложных нужд клиник. Для более длительного хранения и замораживания большего по объему количества костного мозга в Англии создан аппарат с автоматическим программным устройством, работающим в диапазоне от +18 до -196 °C.

Но ученые продолжают поиск. После того как им удалось с помощью глубокого замораживания консервировать сперматозоиды, кровь и костномозговую ткань, они задумались над другой проблемой: возможно ли сохранять и другие виды тканей и даже целые органы? В этом отношении представляют интерес исследования, проведенные советским фармакологом членом-корреспондентом Академии наук СССР Н. П. Кравковым с отрезанными ушами кроликов и человеческими пальцами. В артерию отрезанного кроличьего уха Н. П. Кравков с помощью специального аппарата вводил питательную жидкость, насыщенную кислородом и подогретую до определенной температуры, соответствующей температуре тела кролика. Питательная жидкость протекала по артерии всего уха, достигала капилляров, собиралась в венах и капля по капле вытекала через перерезанную вместе с ухом ушную вену. Когда в питательную жидкость Н. П. Кравков добавлял адреналин (гормон надпочечников), кровеносные сосуды сужались, медленнее пропускали питательную жидкость и скорость выделения ее замедлялась, а это доказывало, что ткань кровеносных сосудов еще жива. Мертвая ткань не могла бы реагировать на адреналин. Оказалось, что при условии искусственного подкармливания кроличьего уха питательной жидкостью оно может жить очень долго. Если ухо поместить под стеклянным колпаком над серной кислотой, которая является сильным водопоглощающим средством, оно высыхает и становится похожим на пергамент. Такое ухо Н. П. Кравков сохранял в высушенном состоянии в течение 8 месяцев, затем увлажнял его и оставлял на некоторое время во влажной среде, после чего снова пропускал через его кровеносную систему питательную жидкость. Оказалось, что кровеносные сосуды отчетливо реагируют на адреналин — следовательно, живы.

Подобные опыты ученый проводил и с отрезанными пальцами человека. Их ткань оказалась тоже очень выносливой. Когда отрезанный край заливали парафином и прикрепляли к горлышку колбы, палец удавалось сохранять под стеклянным колпаком в течение нескольких месяцев, если под колпаком оставляли немного воды и несколько капель эфира. Вода поддерживала определенный уровень влажности, а эфир препятствовал процессу загнивания. Кровеносные сосуды пальца отчетливо реагировали на адреналин, ноготь продолжал расти, а при введении в него препарата пилокарпина (вызывающего потоотделение), кожа на пальце начинала выделять пот. Это доказывало, что ткани отрезанного пальца продолжали жить. После продолжительного высушивания и последующего увлажнения и в данном случае, как и при опыте с кроличьим ухом, кровеносные сосуды реагировали на адреналин, следовательно, их ткань была жива.

Несмотря на огромные трудности, в наше время пересадка органов стала действительностью. Уже тысячам больных пересадили почки. Если первые успехи были достигнуты только при пересадке почек, взятых у кровных родственников, то теперь положительные результаты получены при пересадке почек, взятых у трупа, разумеется, при точном определении соответствия группы крови.

После знаменитой операции профессора Бернарда не прошло и двух десятилетий, а уже во многих странах сотням людей сделана пересадка сердца. Пересадка печени уже не считается эпохальным событием, но все же число пациентов, перенесших эту операцию, еще невелико. Достигнутые успехи вселяют надежды на дальнейшее усовершенствование операций подобного рода. Известно, что печень выполняет очень сложную и важную функцию — это настоящая биохимическая лаборатория для обмена веществ в организме. Уже осуществлены и первые попытки пересадки поджелудочной железы, что преследует цель радикально решить вопрос о лечении такого тяжелого заболевания, как диабет (сахарная болезнь). Изучаются также возможности замены периферических нервов, что даст возможность решить вопрос о пересадке конечностей и глаз.

Повседневной медицинской практикой в хирургических клиниках стала пересадка кожи, костей, кровеносных сосудов, роговицы глаза и др.

Многие из этих тканей и органов трансплантировали и до того, как новые криобиологические методы нашли широкое применение в медицинской практике. Чтобы получить необходимые ткани и органы, в то время рассчитывали на случайное совпадение обстоятельств (например, при неотложной и жизненно необходимой операции нужный орган брали у случайно погибшего в катастрофе или внезапно скончавшегося, но не от инфекционной болезни, человека).

Во многих странах ученые в случае смерти от неинфекционной болезни изымают у трупов здоровые ткани и органы, которые немедленно консервируют на длительный период путем замораживания, т. е. переводят их в состояние анабиоза, чтобы использовать в будущем (речь идет о коже, роговице глаза, костях, щитовидной железе, клапанах сердца и др.). В отношении этих органов и тканей утвердилось мнение, что проблема их замораживания и многолетнего сохранения уже решена. Однако вопрос относительно замораживания почек оказался более сложным. В лабораториях у мышей уже получены обнадеживающие результаты — замороженные почки затем пересаживали другим мышам, у которых почки удаляли, и они работали нормально. В исследовательской лаборатории Красного Креста США удалось заморозить почку кролика в жидком азоте путем нитрификации, и орган полностью сохранил цвет и свежесть в отличие от замороженной обычным путем почки, которая темнеет и не выдерживает продолжительного хранения. Что касается почек человека, то, согласно утверждению известного советского криобиолога профессора Н. С. Пушкаря, консервация почек человека с помощью холода тоже стала реальностью (хотя пока только в течение 36 ч).

Недавно в прессе появилось сообщение, что японскому профессору Исаму Суда удалось сохранить в течение 203 дней замороженный мозг кошки и затем снова его «оживить». Перед замораживанием профессор Суда промыл мозг, чтобы удалить кровь из кровеносных сосудов, а затем заполнил клетки 35 %-ным раствором глицерина, чтобы они не разрушались, и наконец заморозил его до -20 °C. «Оживляли» мозг при помощи крови, подогретой до 37 °C. По мнению ученого, в будущем с помощью низких температур станет возможным сохранять и впоследствии восстанавливать и другие органы животных и человека.

В 1975 г. стали известны опыты и другого японского ученого Садзио Сумида (из Центральной национальной больницы в г. Фукуока) — известного специалиста в области замораживания крови. Ему удалось «вернуть к жизни» несколько сердец животных (мышей и крыс), сохранявшихся более 2 лет в замороженном состоянии. По словам Сумиды, оживление сердец холоднокровных животных после продолжительного замораживания уже осуществлялось в Японии и в других странах, но «возвращение к жизни» замороженных сердец теплокровных животных произошло впервые. Эти сердца заморозили в мае 1973 г. Животные были умерщвлены, и после того как их сердца промыли, чтобы удалить из них остатки крови путем введения раствора Рингера через сонную артерию, все еще живые сердца заморозили в сосуде с жидким азотом при — 196 °C. Сначала сердца охлаждали со скоростью 1 °C в минуту до температуры — 80 °C, а затем температуру быстро довели до -196°. Чтобы предотвратить повреждение клеток из-за образующихся кристалликов льда, в сердца ввели раствор глицерина. Размораживали сердца в августе 1975 г., быстро заполняя их полости раствором Рингера при температуре 40 °C.

В настоящее время с помощью искусственного замораживания сохраняют в течение продолжительного срока ряд органов и тканей, извлеченных из трупов в целях их пересадки в случае необходимости. На этой базе в некоторых странах созданы специальные центры, так называемые банки тканей, а по сути, это «банки запасных частей жизни» для человека.

В Советском Союзе существуют специальные центры (например, Институт проблем криобиологии и криомедицины Украинской академии наук), откуда можно получить необходимые ткани и органы для пересадки и спасения жизни нуждающегося в них пациента.

Обычно органы и ткани берут у людей, погибших чаще всего в результате катастрофы или скончавшихся от незаразных болезней. Установлено, что некоторые ткани после смерти организма сразу не умирают и в течение нескольких часов сохраняют жизнеспособность. Именно это свойство тканей переживать смерть организма и используется при их консервировании.

Благодаря успехам в области длительного сохранения тканей и органов стала возможной замена различных заболевших органов и тканей человека. Возможно, уже недалек тот день, когда эти революционные достижения перешагнут порог клиник и лабораторий и будут внедрены в широкую медицинскую практику, как это произошло с переливанием крови, пересадкой костного мозга, роговицы глаза, кожи и костей.

В последние годы достигнуты бесспорные успехи и в консервировании эмбрионов (зародышей) животных и человека с помощью глубокого замораживания (т. е. перевода их в состояние анабиоза) и их последующего размораживания и пересадки в организмы самок животных и женщин.

Эти вопросы, по существу, означают революцию в медико-биологических науках, поэтому они вызывают особый интерес и будут рассмотрены в следующих главах.