Изобилие. Будущее будет лучше, чем вы думаете

Диамандис Питер

Котлер Стивен

Часть третья

Строим основание пирамиды

 

 

Глава 7

Инструменты взаимодействия

 

Истоки взаимодействия

Первые две части этой книги мы посвятили исследованию перспектив изобилия и мощи экспоненциального развития, которое поможет его достигнуть. И хотя существует группа техноутопистов, которые верят, что одних только экспоненциальных сил хватит, чтобы совершить такой переворот, мы не придерживаемся этой точки зрения. Конечно, если сложить комбинаторную мощь AI, нанотехнологий и 3D-печати, может показаться, что мы двигаемся в нужном направлении, однако (скорее всего) время, которое потребуется для такого развития, простирается далеко за пределы, намеченные этой книгой. Ведь нас интересуют ближайшие 2–3 десятилетия. И для того, чтобы мы могли достичь нашей глобальной цели в столь сжатые сроки, экспоненциальному росту понадобится поддержка.

И эта помощь уже в пути. Позже в этой книге мы рассмотрим три силы, ускоряющие прогресс. Разумеется, все три этих фактора – «совершеннолетие» DIY-инноваторов, появление технофилантропов новой породы и растущая творческая и рыночная мощь «восходящих миллиардов» – сами усиливаются экспоненциальными технологиями. На самом деле такие технологии могут рассматриваться как питательный бульон для всех этих сил, как среда, укрепляющая и питающая их. И все же сами экспоненциальные технологии – лишь часть более масштабного процесса сотрудничества, который начался уже очень давно.

Самые ранние одноклеточные жизненные формы на нашей планете называются прокариотами. Эти клетки представляли собой всего лишь мешочки цитоплазмы со свободно плавающей в них ДНК, и появились они около 3,5 млрд лет назад. Эукариоты возникли на 1,5 млрд лет позже. Они были более эффективными, чем их предки прокариоты, и более способными к взаимодействию, поскольку использовали то, что мы можем назвать биотехнологиями: «гаджеты» вроде ядер, митохондрий и аппаратов Гольджи, которые и делают клетку более мощной и жизнеспособной. Хочется рассматривать эти технологии как мелкие детали более крупного механизма – похоже на то, как двигатель, ходовая часть и трансмиссия вместе образуют автомобиль, – но ученые считают, что некоторые из этих «деталей» начинали как самостоятельные формы жизни, индивидуальные образования, которые в какой-то момент «решили» работать вместе во имя общего дела.

Это решение нельзя назвать необычным. Мы и сегодня видим подобные каузальные цепочки в нашей жизни: новые технологии создают лучшие возможности для специализации, что повышает уровень взаимодействия, и это, в свою очередь, приводит к большей эффективности, что способствует появлению новых технологий и новому витку всего процесса. В эволюции мы точно так же наблюдаем многократно повторяющиеся процессы.

Через миллиард лет после появления эукариотов произошла очередная технологическая инновация, а именно: рождение многоклеточной жизни. На этой фазе развития клетки начали специализироваться, и эти специализированные клетки учились взаимодействовать на чрезвычайно продвинутом уровне. В результате появились весьма приспособленные к жизни формы. Один тип клетки отвечал за движение, другой развил способность чувствовать химические градиенты. Весьма скоро начали появляться жизненные формы с индивидуализированными тканями и органами, а среди них – и наш вид, чьи десять триллионов клеток и семьдесят шесть органов демонстрируют почти невообразимый уровень сложности. Канадский научный журналист Пол Ингрэм пишет:

Каким же образом десять триллионов клеток организуют себя в человеческое существо? И зачастую продолжают делать это без единой осечки в течение нескольких десятилетий? Как эти десять триллионов клеток вообще образуют тело, способное стоять в вертикальном положении? Даже просто подняться на высоту одного метра семидесяти или восьмидесяти сантиметров от земли – весьма впечатляющий трюк для кучи клеток, каждая из которых возвышается над поверхностью не больше, чем пятно от кофе. [219]

Ответ, конечно же, заключается в цепочке причин и следствий: технология (кости, мышцы, нейроны) ведет к специализации (бедро, бицепсы, бедренный нерв), а та, в свою очередь, ведет к взаимодействию (все эти органы и многие другие обеспечивают наши двуногость и прямохождение), и это приводит к еще большей сложности (в силу новых возможностей, которые появляются у нас благодаря нашему вертикальному положению в пространстве). Но история здесь не заканчивается. Словами Роберта Райта, автора книги «Не ноль: Логика человеческой судьбы» (Nonzero: The Logic of Human Destiny), мы можем сказать:

Люди запустили совершенно новый тип эволюции: эволюции идей, мемов, технологий. Удивительно, что эта эволюция сохраняет траекторию, заданную биологической эволюцией: движения к большей сложности и лучшему взаимодействию.

Никогда эта причинно-следственная цепь не была такой очевидной, как в ХХ веке, когда, как мы скоро увидим, культурная эволюция произвела самые мощные инструменты взаимодействия, которые мир когда-либо видел.

 

От лошадей до «Геркулеса»

В марте 1861 года Уильям Рассел, один из основателей транспортной компании Pony Express, решил использовать прошедшие осенью прошлого года президентские выборы для раскрутки своего предприятия. Рассел взялся как можно быстрее доставить экземпляр инаугурационной речи Авраама Линкольна из форта Кирни в Небраске, где кончалась телеграфная линия, протянутая с Восточного побережья, в Плейсервилл, штат Калифорния, где начиналась западная телеграфная сеть. Для этого Рассел потратил небольшое состояние, нанял сотни дополнительных работников и расставил через каждые десять миль пути свежих почтовых лошадей. В результате Калифорния прочитала речь Линкольна буквально молниеносно – через какие-то жалкие семнадцать дней после того, как президент ее произнес.

Теперь сравним: в 2008 году вся страна узнала, что Барак Обама стал сорок восьмым президентом США, в тот самый момент, когда он был объявлен победителем. Когда Обама произнес свою инаугурационную речь, его слова преодолели расстояние между Вашингтоном и Сакраменто, штат Калифорния, на 14 939 040 секунд быстрее, чем в свое время речь Линкольна. А монгольского Улан-Батора и Карачи в Пакистане слова Обамы достигли менее чем на секунду позже. На самом деле, если не брать в расчет какие-нибудь комбинации предвидения и телепатии в глобальных масштабах, это практически самая высокая скорость, с которой может перемещаться подобная информация.

Столь стремительный прогресс еще больше впечатляет, если вспомнить о том, что наш биологический вид передает друг другу сообщения уже в течение 150 000 лет. И хотя дымовые сигналы в свое время были серьезной инновацией, не говоря уже об авиапочте, появившейся в прошлом веке, сегодня мы научились так хорошо играть в эту игру, что независимо от расстояния и с помощью лишь смартфона и аккаунта в Twitter слова любого человека могут достигнуть экрана любого другого смартфона за одно мгновение. И это происходит без всяких дополнительных расходов, найма сотрудников или предварительного планирования. Это происходит когда угодно и по любой угодной нам причине. Мы можем передавать изображение в режиме прямой трансляции, в цвете и во всех трех измерениях.

И это еще один пример самовоспроизводящейся цепочки положительной обратной связи, которая является отличительным признаком жизни уже миллиарды лет. От эукариота, вооруженного митохондрией, до воина масаи, вооруженного мобильным телефоном, – продвинутые технологии позволяют углубить специализацию, а это создает бóльшие возможности для взаимодействия. Это самозаводящийся механизм. Так же, как развитие по закону Мура приводит к тому, что всё более быстрые компьютеры используются для разработки нового поколения еще более быстрых компьютеров, так и инструменты взаимодействия всегда производят на свет новое поколение инструментов взаимодействия. Речь президента мгновенно распространилась по всему миру, потому что в течение XIX и особенно XX века та же петля положительной обратной связи породила два самых мощных инструмента кооперации, которые мир когда-либо видел.

Первым из этих инструментов стала транспортная революция, которая пересадила нас с гужевых повозок на поезда, автомобили и самолеты менее чем за двести лет. Мы построили скоростные дороги и проложили воздушные пути – то есть, говоря словами Томаса Фридмана, «сделали мир плоским». Когда в Судане разразился голод, американцы узнали об этом не годы спустя. Они получили сообщения в режиме реального времени и немедленно решили оказать помощь. И поскольку помощь эту доставил транспортный самолет «Геркулес С-130», а не какой-нибудь парень верхом на лошади, множество людей в одно мгновение оказались гораздо менее голодными.

Если хотите более наглядно представить себе, в какой степени изменились возможности взаимодействия, просто сравните одну лошадиную силу и 18 000 лошадиных сил мощности двигателей «Геркулеса». Общая грузоподъемность за единицу времени, возможно, еще более показательная мера – и здесь разница еще более ощутима. Лошадь может перенести примерно 90 кг на 50 км в день, в то время как «Геркулес» за то же время переносит 19 000 кг на 13 000 км. В данном случае наша способность взаимодействовать друг с другом улучшилась в 56 000 раз.

Второй инструмент взаимодействия – революция в информационных и коммуникационных технологиях (ICT), которую мы уже обсудили. В этой области за тот же период произошли еще более серьезные достижения. В своей книге «Общее благо: экономика для перенаселенной планеты» (Common Wealth: Economics for a Crowded Planet) экономист Колумбийского университета Джеффри Сакс насчитал восемь конкретных преимуществ, которыми ICT обогатили экологически устойчивое развитие, – и все эти преимущества, по сути дела, основаны на взаимодействии.

Первое из этих преимуществ – подключенность (con-nectivity). В наше время невозможно остаться вне окружающего мира. Мы все – часть процесса, мы все знаем, чем занимаются другие люди. Сакс пишет:

В самых удаленных деревнях мира разговор в наше время часто заходит о самых актуальных политических и культурных событиях или о последних изменениях цен на сырье – и все это благодаря мобильным телефонам еще в большей степени, чем благодаря радио и телевидению.

Второй вклад – дальнейшее разделение труда: поскольку бóльшая подключенность приводит к большей специализации, что позволяет всем нам встроиться в глобальную цепочку поставок. Далее – масштаб: гигантский размер сетей, по которым передаются сообщения, практически мгновенно достигающие миллионов адресатов. Четвертое преимущество – репликация: ICT позволяют стандартизованным процессам и документам, например онлайн-курсам или товарным спецификациям, мгновенно добираться до самых удаленных филиалов. Пятое – контроль и учет. Новые современные платформы позволяют усовершенствовать аудит, мониторинг и оценку, а это, в свою очередь, ведет к улучшению практически всего – от демократических институтов до интернет-банкинга и телемедицины.

Шестое преимущество заключается в способности интернета сводить вместе продавцов и покупателей (Сакс называет этот процесс «сопоставлением», matching), и эта способность, помимо прочего, – очень важный фактор в формировании «экономики длинного хвоста», как ее назвал автор и главный редактор журнала Wired Крис Андерсон.

Седьмой вклад – это использование социальных сетей для строительства «сообществ по интересам», в результате чего появилось все на свете – от Facebook до SETI@home. И, наконец, на восьмом месте находятся образование и подготовка кадров: ICT создали нечто вроде всемирной аудитории с постоянно обновляющимся учебным курсом, и в этот курс может быть включена любая крупица информации, которую только можно пожелать.

Очевидно, что мир сейчас стал значительно более привлекательным местом благодаря всем этим новым инструментам взаимодействия, но влияние ICT не ограничивается новыми способами распространения информации и распределения материальных ресурсов. Как понял Роб Макьюэн, когда отправился на поиски золота в холмах северо-западного Онтарио, инструменты взаимодействия также могут создать новые возможности для распределения ментальных ресурсов – и это может оказаться гораздо более серьезной движущей силой изобилия.

 

Золото и

Linux

Роб Макьюэн, энергичный канадец за пятьдесят, купил в 1989 году разрозненную коллекцию компаний по добыче золота под названием Goldcorp. Десятилетие спустя он объединил эти компании и был готов к экспансии – процессу, который он хотел начать со строительства нового обогатительного завода. Чтобы определить, какого размера строить завод, Макьюэн предпринял вполне логичное действие: спросил своих геологов и инженеров, сколько золота, по их мнению, можно найти в его шахтах. Никто не знал. Под его началом работали лучшие люди, которых только можно было нанять за деньги, но никто не мог ответить на этот вопрос.

Примерно в то же время, проходя курс для управляющих в Школе менеджмента Слоуна при МТИ, Макьюэн узнал про Linux. Эта операционная система с открытым кодом была запущена в 1991 году, когда Линус Торвальдс, в то время 21-летний студент Университета Хельсинки в Финляндии, опубликовал короткое сообщение в сети Usenet:

Делаю (бесплатную) операционную систему (просто хобби, она не будет такой же профессиональной и масштабной, как gnu ) для клонов PC AT 386(486). Заварил все это в апреле – и сейчас уже кое-что готово. Хотелось бы получить фидбек: что кому нравится, а что не нравится…

На этот пост откликнулось так много людей, что первая версия операционной системы Торвальдса была завершена всего за три года. Linux 1.0 появился в свободном доступе в марте 1994 года, но на этом проект не закончился. Поддержка все продолжала и продолжала поступать. В 2006 году исследование, проведенное по заказу Европейского союза, оценило разработку новой версии Linux 2-6-8 в 1,14 млрд долларов. К 2008 году доход от всех серверов, настольных компьютеров и пакетов программного обеспечения, работающих под Linux, составил 35,7 млрд долларов.

Макьюэн был потрясен этим обстоятельством. В Linux более десяти тысяч программных строк, и Макьюэн не мог поверить, что сотни программистов могут сотрудничать в работе над такой сложной системой. Он не мог также поверить в то, что большинство из них делают это бесплатно. Он вернулся в офис Goldcorp, одержимый безумной идеей: вместо того чтобы просить собственных инженеров оценить количество золота, прячущегося под землей, он выложит в открытый доступ самые ценные данные, которые обычно хранятся в самых надежных сейфах горнорудных компаний: геологическую информацию. В марте 2000 года Макьюэн объявил о начале конкурса Goldcorp:

Покажите мне, где я могу найти следующие шесть миллионов унций [230] золота, и я заплачу вам пятьсот тысяч долларов.

За следующие несколько месяцев Goldcorp получила более 1400 запросов на 400 мегабайт геологической информации. Всего в соревнование вступили 125 участников. Через год оно было завершено, победителями стали три команды – две из Новой Зеландии и одна из России. Никто из участников этих команд ни разу не был на шахте Макьюэна. Но к этому моменту инструменты взаимодействия стали такими изощренными, а наше желание использовать их – таким зрелым, что в 2001 году количество золота, местонахождение которого точно указали (за 500 000 долларов) эти команды, стоило миллиарды долларов на открытом рынке.

Когда Макьюэну не удавалось определить количество драгоценного металла под землей, он испытывал «дефицит знаний» – весьма распространенная проблема в современном мире. Но стоит применить инструменты взаимодействия, чтобы должным образом поощрить инициативу людей, как лучшие умы готовы взяться за решение самых сложных проблем. Вспомним «закон Джоя» (названный в честь Билла Джоя, одного из основателей Sun Microsystems, которому принадлежат эти знаменитые слова):

Неважно, кто вы такой, – большинство самых умных людей в мире работают на кого-то другого.

Наши новые возможности взаимодействия дали отдельным людям способность понимать глобальные проблемы и воздействовать на них в небывалой прежде степени, во много раз расширив как сферу их интересов, так и сферу их влияния. Мы теперь можем целый день работать руками в Калифорнии, а вечером сдать свой мозг напрокат заказчику из Монголии. Профессор коммуникации Нью-Йоркского университета Клэй Ширки использует термин «когнитивный прирост», чтобы описать этот процесс, и определяет его как «возможность для всех в мире становиться добровольными участниками больших, иногда глобальных проектов»:

«Википедия» была написана силами волонтеров – и они отдали этому сотни миллионов часов. Как мы можем сравнить этот показатель с другими видами использования времени? Например, просмотр телевизора – самая большая трата времени – отнимает только в США каждый год двести миллиардов часов. Получается, что мы в США тратим только на просмотр рекламы каждые выходные столько же времени, сколько было затрачено на всю «Википедию». Если мы откажемся от телевизионной зависимости всего лишь на год, мир получит более триллиона часов когнитивного прироста, чтобы вложить его в общие проекты. [233]

Представьте себе, что стало бы с мировыми проблемами, если бы мы могли посвятить им триллион часов сосредоточенного внимания.

 

Доступный «Андроид»

До этого момента мы рассматривали инструменты взаимодействия, укорененные в прошлом, но они не идут ни в какое сравнение с тем, что ждет нас в будущем. Можно утверждать, что из-за ненулевого характера информационного обмена наиболее здоровая мировая экономика будет построена именно на этом обмене. Но это станет возможным, только если наши лучшие приспособления для обмена информацией – особенно мобильные, недорогие и подключенные к интернету гаджеты – станут доступны во всем мире.

Сейчас эта проблема решается. В начале 2011 года китайская компания Huawei выпустила бюджетный (стоимостью 80 долларов) смартфон на базе Android, который распространяется кенийским телекоммуникационным гигантом Safaricom. Менее чем за шесть месяцев было продано 350 000 устройств – весьма впечатляющая цифра для страны, в которой 60 % населения живет меньше чем на два доллара в день. Еще важнее доступной цены – более 3 000 000 приложений для Android, к которым теперь есть доступ у владельцев смартфонов. И если этих эффектных цифр недостаточно, вот еще информация: осенью 2011 года правительство Индии совместно с канадской компанией Datawind объявило о начале выпуска семидюймового планшета на базе Android стоимостью 35 долларов.

Но есть еще более интересный момент. Поскольку создание технологий, распространяющих информацию, традиционно стоило очень дорого, то идеи, которые затем распространялись быстрее всего, обычно рождались в более богатых, доминирующих странах, где был доступ к новейшим и самым продвинутым технологиям. Тем не менее из-за снижения затрат, связанных с показателями экономической эффективности, эти правила быстро меняются.

Посмотрите, как эти изменения повлияли на Голливуд. Большую часть XX века «столица мишуры» была средоточием мира развлечений: лучшие фильмы, самые яркие звезды, гегемония, не знавшая конкуренции. Однако менее чем за 25 лет цифровые технологии изменили эту ситуацию. В среднем Голливуд производит пятьсот фильмов в год, которые смотрит 2,6 млрд людей во всем мире. Если средняя длина фильма составляет два часа, получается, что Голливуд производит 1000 часов контента в год. С другой стороны, пользователи YouTube загружают каждую минуту 48 часов видео. Это означает, что каждые 21 минуту YouTube предлагает больше нового контента, чем Голливуд за весь год. А как насчет аудитории? В 2009 году на YouTube было 129 миллионов просмотров в день, так что за 21 день сервис набирал больше зрителей, чем весь Голливуд за год. Учитывая то, что создателей контента в развивающихся странах теперь больше, чем в развитых, мы можем сказать, что инструменты взаимодействия позволили молчаливому мировому большинству наконец обрести голос.

И голос этот теперь слышен как никогда раньше. Говорит Салим Измаил, один из основателей и исполнительный директор Университета сингулярности:

Глобальное распространение ICT резко демократизировало инструменты взаимодействия. Мы отчетливо это увидели в ходе Арабской весны. Совокупная способность всех людей самостоятельно публиковать контент обеспечила полную информационную открытость и трансформировала политический ландшафт. По мере того как все большее количество людей осваивает эти инструменты, они всё чаще начинают применять их в решении самых различных серьезных проблем.

Включая, как мы увидим в следующей главе, и проблему, лежащую в основании нашей пирамиды изобилия: проблему воды.

 

Глава 8

Вода

 

Вода за воду

Питер Там не планировал становиться социальным предпринимателем. В 2001 году он консультировал McKinsey & Company по проекту бутилированной воды в Южно-Африканской республике – стране с затяжным водяным кризисом. Каждый день он наблюдал за тем, как женщины и дети нагружают на себя пустые кувшины и отправляются в путь, который часто занимал четыре часа, чтобы набрать достаточно воды для самых необходимых потребностей семьи. Однажды днем, когда Там ехал на машине по пустой грязной дороге во многих милях от ближайшего города, он повстречал одинокую женщину, которая несла на голове кувшин литров на двадцать. Там вспоминает:

Это была жуткая глухомань. Было ясно, что эта женщина идет уже давно – и будет идти еще долго. Хотя я давно знал, что в Южной Африке плохо с водой, именно в тот момент мне стало абсолютно ясно: нужно что-то с этим делать.

Там решил, что самый простой способ что-то изменить – это связать бутилированную воду, которая в это время становилась одним из самых востребованных товаров в мире, с дефицитом воды, который становился одним из самых серьезных мировых кризисов. Он вернулся в Соединенные Штаты, объединился со своим старым другом Джонатаном Гринблаттом и создал Ethos Water – бренд воды класса «суперпремиум», который мог бы направлять часть прибыли на помощь детям, не имеющим доступа к чистой воде, и на привлечение внимания к проблеме. В 2005 году Говард Шульц, генеральный директор Starbucks, решил приобрести Ethos и стал предлагать воду этого бренда в 7000 кофеен по всей Америке. С помощью Starbucks, которая отдавала по 5 центов с каждой проданной бутылки на проекты, связанные с доступом к воде, Ethos с тех пор раздала субсидий на 10 миллионов долларов и обеспечила полмиллиона человек водой и санитарными условиями.

Давайте сразу оговоримся: мировой кризис с чистой водой затрагивает миллиард человек, поэтому 10 миллионов долларов решить проблему не могут. Но появление Ethos оказалось чем-то вроде поворотного момента. Исторически, поскольку для большинства водных проектов требуется создание огромной инфраструктуры, эта ниша была занята мощными институтами вроде Мирового банка. Ethos стала одной из первых компаний, которая доказала, что социальное предпринимательство может тоже играть роль в решении проблем с водой. Компания также помогла привлечь внимание к проблеме, и это создало эффект снежного кома. В течение десяти лет вода стала самой востребованной темой для социального предпринимательства – и, как отмечает изобретатель Дин Кеймен, тут еще есть огромные возможности для роста:

Когда вы говорите с экспертами о том, что хотите разработать новую технологию для обеспечения развивающихся стран чистой питьевой водой, то они вот что вам отвечают: если учесть, что четыре миллиарда человек живут на менее чем два доллара в день, нет никакой жизнеспособной бизнес-модели, никакой экономической модели, никакого способа финансировать расходы. Однако двадцать пять беднейших стран уже тратят 20 % своего ВВП на воду. Эти 20 %, около 30 центов в день, не так уж много, но давайте еще раз посчитаем: когда четыре миллиарда людей тратят тридцать центов в день – это рынок с ежедневным объемом 1,2 миллиарда долларов, это 400 миллиардов долларов в год. И вам не нужно изучать рынок, чтобы узнать, если ли спрос. Это же вода! Спрос всегда есть!

Но удовлетворить этот спрос, как бы это ни было выгодно, будет непросто. Проблема в том, что определенное количество воды необходимо не только для питья и гигиены: вода принимает самое глубокое участие во всей нашей жизни, питает практически все, что мы производим и потребляем. Почему 70 % мировой пресной воды тратится на нужды сельского хозяйства? Потому что для производства одного яйца требуется 450 литров воды. 380 литров уходит на выращивание одного арбуза. Мясо – один из самых жадных до воды продуктов, каждый фунт (450 г) мяса «стоит» 9500 литров воды, или, как однажды наглядно объяснил Newsweek,

для выращивания одного 450-килограммового бычка нужно столько воды, что в ней мог бы плавать эсминец.

И пища – это только начало. На самом деле проблема воды влияет буквально на все ярусы нашей пирамиды изобилия. Например, образование: 443 миллиона школьных дней в год теряется из-за болезней, связанных с грязной водой. 132 литра воды требуется, чтобы сделать один микрочип – а каждый завод Intel производит миллионы чипов в месяц, – в результате чего дефицит воды означает ущерб для информационного изобилия. И есть еще проблема энергетики – ведь каждое звено в цепочке производства энергии делает мир все более сухим. В США, например, энергетика поглощает 20 % не задействованной в сельском хозяйстве воды. Свобода, находящаяся на вершине нашей пирамиды, тоже оказывается под угрозой при дефиците воды. В 2007 году Эдвард Мигель, профессор экономики в Калифорнийском университете в Беркли, обнаружил «серьезные свидетельства того, что большее количество дождей снижает вероятность конфликтов в Африке». На тот момент речь шла о гражданских войнах, которые разворачиваются в пределах государственных границ, но нельзя забывать о том, что около двухсот рек и трехсот озер пересекают эти границы, и не все соседи относятся друг к другу дружелюбно.

И наконец, каждый год в мире от болезней, связанных с водой, умирает 3,5 миллиона человек: факт, который делает прямую связь между гидратацией и здоровьем совершенно очевидной.

Помимо сосредоточенных на человеке требований нашей пирамиды изобилия есть даже более сложные проблемы окружающей среды. Давайте вернемся на мгновение к бутилированной воде. Каждый год мы, люди, выпиваем почти 50 млрд литров воды в бутылках. Значительная ее часть – это так называемая «ископаемая вода»: она в течение десятков тысяч лет накапливалась в водоносных пластах, и ее запас не так-то просто пополнить. Однако ископаемая вода также поддерживает самые хрупкие экосистемы Земли. Потребности нашего сельского хозяйства и промышленности, производство бутилированной воды – и в результате эти системы оказались на пороге катастрофы. Мы не можем рисковать дальнейшей дегидратацией. Если выразиться совсем просто: отсутствие экосистем означает отсутствие экосистемных сервисов, а эту потерю наш биологический вид просто не переживет.

Итак, решение этих проблем потребует использования всех инструментов, какие только есть в нашем распоряжении. Наше сельское хозяйство должно быть полностью преобразовано, равно как и промышленность. Нам понадобятся устройства для эффективного использования водных ресурсов, новые инфраструктурные решения и предельная честность в признании того факта, что население Земли продолжает стремиться в направлении девяти миллиардов. Эта цифра показывает, чтó нам действительно нужно: изменения в порядки раз. Учитывая, что 97,3 % воды нашей планеты – это морская вода, слишком соленая для употребления, а еще 2 % представляют собой полярный лед, вряд ли изменений на порядок величин можно добиться, оперируя лишь оставшимися 0,7 процента. Это не означает, что мы должны отказаться от сохранения ресурсов и повышения эффективности их использования, но, если наша главная цель – изобилие, значит, потребуется совершенно новый подход. Чистая пресная вода должна пройти исторический путь алюминия – от одного из самых дефицитных ресурсов Земли до одного из самых распространенных и доступных. Чтобы это провернуть, потребуются серьезные инновации из тех, что подчиняются закону Мура. И вскоре мы увидим, что DIY-изобретатели, такие как Дин Кеймен, вносят именно такой вклад.

 

Дин против Голиафа

Дин Кеймен – физик-самоучка, мультимиллионер, предприниматель… и один из величайших DIY-инноваторов нашего времени (440 патентов и Национальная медаль в области технологий). Как и большинство DIY, Кеймен любит решать проблемы. В 1970-е, когда он еще учился в колледже, брат Кеймена (в то время студент медицины, а сейчас известный детский онколог) как-то упомянул о том, что нет никакого надежного способа в течение определенного времени давать младенцу одну и ту же маленькую дозу того или иного лекарства. Поэтому младенцев приходилось надолго оставлять в больницах, а медсестры были связаны жестким рабочим графиком.

Кеймену стало интересно, и он занялся этой проблемой. Одно изобретение вело к другому – и очень скоро он придумал первый портативный инфузионный насос, способный автоматически вводить в точности одинаковые дозы лекарства без необходимости круглосуточного медицинского присмотра. После этого случая миниатюризация медицинских технологий стала чем-то вроде его специализации.

В 1982 году Кеймен основал компанию DEKA Research and Development, которая вскоре разработала портативный аппарат для почечного диализа размером с видеомагнитофон (предыдущий был размером с посудомоечную машину). Затем последовали iBot – моторизированное инвалидное кресло, которое умеет подниматься по лестницам; сегвей – попытка Кеймена заново изобрести городской транспорт; а также бионическая рука LUKE Arm – радикальный прорыв в технологии искусственных конечностей.

В своей изобретательской деятельности Кеймен никогда не упускал из вида проблемы, связанные с диализом. Он объясняет:

Каждый день пациент на диализе пропускает через организм 19 литров стерилизованной воды. Обеспечить такое количество воды нелегко. Обычно это означает, что к дому пациента раз в неделю подъезжает грузовичок доставки – и в результате его гараж забит сотнями канистр стерильной воды. Я не переставая думал о том, что должен же быть более удобный способ.

Сначала Кеймен задумал вторично перерабатывать стерильную воду, но после консультации с биологами понял, что невозможно механическим способом отфильтровать то, что почка забирает естественным образом: «Тут задействованы аммиак, мочевина, все эти средние молекулы. То, что забирает почка, просто невозможно отфильтровать». Но раз нельзя переработать стерильную воду, то, может быть, получится сделать воду из-под крана достаточно чистой для инъекций?

На это рискованное предприятие ушло несколько лет. «Выяснилось, что сделать из обычной питьевой воды стерильную с помощью фильтра невозможно, – объясняет Кеймен. – Мембраны обратного осмоса не работали. Золотым стандартом была бы чистая, дистиллированная деионизированная вода, однако достаточно миниатюрных дистиллеров, которые соответствовали бы этому стандарту, не существовало». И Кеймен решил сконструировать такой дистиллер. К сожалению, проведя необходимые расчеты, он понял, что количество электроэнергии, которое нужно для работы даже маленького устройства, таково, что для этого потребуется сделать новую проводку в большинстве домов.

И тут ему пришла в голову еще более безумная идея – создать дистиллер, способный повторно использовать собственную энергию:

Через пару лет мы наконец-то получили эту маленькую коробочку, которая повторно использовала 98 % энергии и могла производить разумное количество стерилизованной воды. Мы протестировали ее на разных типах водопроводной воды, и она сработала идеально. Она была так хороша, что нам даже не обязательно было использовать воду из-под крана – мы могли бы взять бытовые сточные воды (без туалетного смыва). И тут до меня дошло: если я могу сделать бытовой сток достаточно чистым для инъекций, причем используя при этом 98 % энергии повторно, то чего ради я совершенствую устройство, способное производить лишь 20–40 литров воды в день? Да, такая машина может помочь десяткам тысяч пациентов на диализе, но ведь если я сделаю другую, более производительную машину, она сможет помочь нескольким миллиардам человек! И вместо решения небольшой проблемы [доставки стерильной воды] я могу спасти людей от смерти [из-за болезней, связанных с водой]!

Эта «другая машина» была построена в 2003 году. Поскольку с помощью этой технологии Кеймен хочет побороть настоящего гиганта – проблему заболеваний, связанных с водой, – то он назвал машину «Праща» (Slingshot), в честь оружия, которым Давид победил Голиафа. «Праща» – размером с большой холодильник с проводом для включения в сеть и двумя шлангами – входным и выводным. Как говорит Кеймен,

погрузите шланг в любую влагу – в воду, загрязненную мышьяком, в соленую воду, в выгребную яму, в сливной резервуар завода по переработке химических отходов – в общем, во что угодно мокрое, – и вы получите на выходе стопроцентно, фармакологически чистую воду, пригодную для инъекций.

Текущая версия может очистить 1000 литров воды в день, используя при этом количество энергии, которого хватит для работы обычного фена. Источник этой энергии – усовершенствованная версия двигателя Стирлинга, способного работать практически на любом топливе. За шесть с лишним месяцев полевых испытаний в Бангладеш двигатель работал на коровьем навозе и обеспечивал жителей местной деревни достаточным количеством электричества для освещения и подзарядки мобильных телефонов. А поскольку Кеймен хочет применять это устройство в самых отдаленных деревнях мира, оно рассчитано на то, чтобы работать без технического обслуживания по меньшей мере пять лет.

Гринблатт ворчит:

И лучше бы оно в самом деле так работало, потому что мир завален водными насосами и фильтрами, которые быстро ломаются. Я был в одной деревне в Эфиопии, где смастерили водный насос из велосипедных запчастей – и это работало, потому что, когда насос ломался, люди могли его починить, уж запчасти-то для велосипеда они могли раздобыть. Это что-то вроде цепочки поставок, если хотите. [262]

Гринблатт не одинок в своем мнении. Многие считают, что проблема воды – это проблема денег, которую следует решать на местном уровне, без всякой помощи технологических гениев. Это мнение основано на историческом опыте: в прошлом веке многие государства лишь потеряли время, пока искали высокотехнологичные, идеальные решения проблемы. Миллионы людей умерли за это время, и сейчас в мире полно устройств, которые или быстро ломаются, не выдерживая жестких условий окружающей среды, или их невозможно поддерживать в рабочем состоянии из-за того, что цепочки поставок не дотягиваются до таких отдаленных уголков. Немало таких инноваций – поскольку никто не озаботился провести предварительную дискуссию по этому поводу – просто-напросто не смогли преодолеть культурных барьеров. Роб Крамер, председатель организации Global Water Trust, любит рассказывать апокрифическую историю о проекте расширения водопроводной линии где-то в африканской глуши – новая труба проходила на расстоянии всего нескольких сот метров от деревни, в которой всегда не хватало воды, но какие-то вандалы постоянно ломали трубу:

Выяснилось, что те четыре часа, которые женщины почти каждый день проводили в походах за водой [к далекому источнику] и обратно, были единственным временем, когда они избавлялись от постоянного надзора своих мужей. Они так дорожили этим личным временем, что постоянно выводили трубу из строя.

Все это верно, но нужно учесть и другие обстоятельства. Во-первых, каким бы прекрасным ни было решение с велосипедными запчастями, его нельзя рассматривать как долгосрочное. Насос из велосипедных запчастей – промежуточный вариант, его можно сравнить с ранними телефонными стационарными системами, которые в конце концов привели к появлению беспроводных 3G-сетей. Для долгосрочного решения проблемы нам все еще нужны серьезные технологические прорывы вроде «Пращи».

Во-вторых, мы можем учиться на своих ошибках. Безусловно, мы упустили много времени с решением проблемы воды – и не только в развивающихся странах (инфраструктура США настолько стара, что под городом Филадельфия до сих пор работает сеть деревянных труб), зато сейчас очень высок уровень осознания этой проблемы. И благодаря беспроводной революции мы можем мгновенно делиться друг с другом лучшими решениями. Более того, мы теперь понимаем, что поддержка местных сообществ – самый важный компонент любого решения проблемы воды, и без него все наши усилия окажутся бесплодными. Мы также знаем, что запчасти должны быть легкодоступны, что обслуживающий персонал должен быть материально заинтересован в своих усилиях и что в идеале все оборудование должно собираться и обслуживаться на месте. Но мы теперь понимаем, что все это относится к любым решениям – как высоко-, так и низкотехнологичным. Более того, представление о том, что высокотехнологичные решения не работают в отдаленных сельских регионах, рухнуло с появлением мобильного телефона. Что может быть более технологичным, чем современный мобильный телефон? И тем не менее уже более миллиарда их используется по всей Африке.

Капитализация энергии и инфраструктуры – две главных составляющих большинства технологических решений наших проблем с водой. С созданием изобилия энергии будет решена половина этой проблемы. Как мы будем вырабатывать эту энергию – тема одной из последующих глав, поэтому пока давайте обратимся к капитализации.

Эйприл Ринн, директор организации WaterCredit, говорит, что средний микрофинансовый кредит на водное пространство – от 200 до 800 долларов. В данный момент стоимость производства одной «Пращи» – 100 000 долларов. Но, по словам Кеймена, если поставить производство на поток, цена снизится до 2500 за штуку плюс еще 2500 за двигатель Стирлинга, который обеспечивает устройство энергией. Если система действительно проработает без техобслуживания пять лет, значит, при производстве одной тысячи литров питьевой воды в день себестоимость литра составит 0,002 доллара. Даже если вы добавите к этой себестоимости прибыль и оплату труда, цена пяти литров будет всего четыре цента – сравните ее с 30 центами за тот же объем сегодня.

Однако Кеймен решил, что есть и другой способ решения проблемы. Он начал переговоры с компанией Coca-Cola, чтобы она помогла наладить ему производство и дистрибуцию, а главное – разрешила использовать собственную огромную сеть поставок (самую большую в Африке) для помощи в обслуживании «Пращи». Кеймен объясняет:

Это не конец пути. Я правда думаю, что здесь должна быть включена третья сила, кто-то, кто сделает весь процесс прозрачным и безопасным, расскажет о нем людям. Но я также думаю, что Coca - Cola может стать главной подъемной силой, главным инвестором, главным каналом распространения, развития, поддержки, обучения персонала и техобслуживания. Это комплексное решение. Я думаю, они смогут сделать бóльшую часть из того, что вообще нужно сделать.

И Coca-Cola согласилась попробовать. В мае 2011 года самый большой в мире производитель газированных напитков начал серию полевых испытаний «Пращи». В случае успеха будут спасены многие сельские сообщества по всему миру, однако у этой технологии есть свои ограничения. По словам Кеймена, каждая «Праща» рассчитана на то, чтобы обеспечить водой сто человек. Много машин сразу могли бы дать воду гораздо более крупным сообществам, но они непригодны для использования в масштабе большого города и не могут удовлетворить наши сельскохозяйственные и промышленные нужды. Но прежде чем мы обсудим решения этих проблем, давайте посмотрим, как «Праща» может повлиять на решение другой глобальной проблемы, которая многим мешает поверить в возможность изобилия: происходящий в настоящее время демографический взрыв.

 

Профилактика

Мальтузианцы часто называют людей, верящих в изобилие, корнукопианцами (cornucopians). Главный отличительный признак корнукопианца – его отношение к проблеме роста мирового населения. Корнукопианцы считают, что темпы технологического роста будут опережать темпы роста населения, и это решит все наши проблемы. Мальтузианцы считают, что мы уже превысили максимальную емкость глобальной среды и, если рост народонаселения бесконтрольно продолжится, ничто из наших изобретений не будет достаточно мощным, чтобы обратить процессы вспять. Но технологии, которые изобретает Кеймен, показывают, что столь необходимый средний путь возможен.

Рост населения прямо связан с рождаемостью. Сегодня в большинстве развитых стран уровень рождаемости находится на уровне или ниже уровня воспроизводства – то есть численность населения или стабильна, или снижается. Проблема – в развивающихся странах, где число рождений гораздо выше числа смертей. Причем сосредоточена эта проблема не в крупных городах – урбанизация как раз снижает уровень рождаемости. Самая плодовитая часть населения планеты – это сельская беднота. Для сельскохозяйственных работ нужно много рабочих рук, поэтому семьи у крестьян обычно большие. При этом родители хотят мальчиков – обычно как минимум трех. Их логика просто разрывает сердце. Три мальчика нужны, потому что один из них, возможно, умрет еще ребенком, второй останется дома, будет работать в поле и поддерживать стареющих родителей, а также скопит достаточно денег на то, чтобы отправить третьего брата в школу, чтобы он со временем смог получить более хорошую работу и прервать этот порочный круг. Таким образом, детская смертность в среде сельской бедноты – один из самых серьезных факторов, подпитывающих рост населения, и грязная вода – часто в самом корне этой проблемы.

Из 1,1 миллиарда людей на планете, которые не имеют доступа к безопасной воде, 85 % живут в сельской местности. Из 2,2 миллионов детей, которые умирают каждый год от того, что пьют зараженную воду, подавляющее большинство – тоже деревенские. Поэтому устройство, способное обеспечить подобные сообщества чистой питьевой водой, улучшив при этом здоровье и уровень выживаемости детей, приведет к снижению рождаемости в том самом месте, где это имеет наибольшее значение. «Праща» – не только система очистки воды, но и чрезвычайно четко сфокусированное устройство планирования семьи: профилактика, замаскированная под питьевой фонтанчик.

 

Внизу становится больше места

Какой бы привлекательной ни выглядела «Праща», проблема воды не может быть решена с помощью какой-то одной технологии – скорее, потребуется комбинация технологий, разработанных для удовлетворения комбинации потребностей. Одна из этих ключевых нужд – наша способность подготовиться к катастрофам. Даже в развитых странах наши системы помощи зачастую оказываются бессильны перед землетрясениями, цунами и тропическими циклонами. Когда ураган «Катрина» обрушился на Новый Орлеан, потребовалось целых пять дней, чтобы обеспечить водой беженцев, укрывшихся на стадионе Superdome.

Английский инженер по имени Майкл Причард был потрясен последствиями «Катрины», случившейся менее чем через год после разрушительного азиатского цунами. Причард был специалистом в области очистки питьевой воды – именно ее нехватка и была основной проблемой в последствиях обеих трагедий. Дело было не только в том, что выжившие не смогли немедленно получить чистую воду, но и в том, что стандартное решение этой проблемы лишь усугубило другие. Причард рассказывал на конференции TED:

Что мы обычно делаем во время кризиса? Мы доставляем воду. Через несколько недель мы разбиваем лагеря, и люди вынуждены прийти в эти лагеря, чтобы получить безопасную питьевую воду. Что происходит, когда в лагере скапливается двадцать тысяч людей? Распространяются заболевания, требуется больше ресурсов, образуется самозаводящийся порочный круг проблем.

И Причард решил, что надо что-то делать. Несколько лет спустя, в 2009 году, он завершил разработку бутылки Lifesaver («Спасатель»). Ручной насос с одного конца, фильтр – с другого не производят впечатления чего-то супертехнологичного, однако этот фильтр не похож на все остальные. Исследователи в области нанотехнологий работают на микроскопическом уровне, где расстояния меряются в атомах. Нанометр (одна миллиардная метра) – их основная мера. До появления изобретения Причарда лучшие на рынке водные фильтры с ручными насосами отфильтровывали частицы крупнее 200 нанометров. Это достаточно, чтобы отсечь большинство бактерий, но вирусы, размеры которых значительно меньше, чем у бактерий, проходили через фильтр. Причард разработал мембрану с порами в 15 нанометров. Она за несколько секунд удаляет всё, что нужно удалить: бактерии, вирусы, цисты, паразитов, грибки и другие водные патогены. Одного фильтра хватает на производство шести тысяч литров воды, и система автоматически отключается с окончанием действия картриджа, не позволяя пользователю пить зараженную воду.

«Спасатель» был разработан как средство помощи при катастрофах, но к чему ждать бедствия? Версия «Спасателя» в виде канистры емкостью 18,5 л способна очистить 25 000 литров воды – семье из четырех человек этого хватит на три года. И, что еще лучше, стоит эта вода всего-навсего полцента в день. Причард прогнозирует:

За восемь миллиардов долларов мы можем достичь одной из «Целей тысячелетия» [274] , снизив вдвое число людей, не имеющих доступа к безопасной питьевой воде… За двадцать миллиардов доступ к такой воде получит каждый человек на Земле.

Но «Спасатель» – это лишь начало. Индустрия нанотехнологий сейчас переживает взрывной рост. С 1997 по 2005 год инвестиции в этой области выросли с 432 млн долларов до 4,1 млрд и Национальный научный фонд предсказывает, что к 2015 году эта цифра достигнет одного триллиона долларов. Мы вступаем в эпоху молекулярного производства, а когда работаешь в таком масштабе, перераспределение атомов ведет к появлению абсолютно новых физических свойств.

Возвращаясь к воде: сейчас появились наноматериалы, обладающие повышенным сродством к тяжелым металлам (то есть имеющие с ними схожие пространственные и электронные характеристики). В результате тяжелые металлы «притягиваются» к этим частицам, и последние могут лучше преобразовывать загрязнения в безобидные вещества, а это помогает очищать загрязненные водные пути, водоемы и объекты, входящие в так называемую Программу суперфонда (то есть защищенные Законом о всесторонней ответственности и возмещении ущерба окружающей среде).

Тем временем ученые из IBM и токийская компания Central Glass совместно разработали нанофильтр, способный удалять как соль, так и мышьяк – то есть выполнять задачу, которая до самого недавнего времени считалась неосуществимой.

Новости на фронте санитарии: сейчас разрабатываются сантехнические устройства с использованием самоочищающихся наноматериалов, которые способны самостоятельно прочищать засоры и противостоять коррозии; скоро появятся и самозапаивающиеся трубы, которые могут собственными силами устранить протечку. На переднем крае работают немецкий ученый Хельмут Шульце и инженеры компании DIME Hydrophobic Materials (Объединенные Арабские Эмираты): они разрабатывают технологию прямиком из фантастической саги «Дюна» – гидрофобный нанопесок. Слой такого песка толщиной в десять сантиметров, «подстеленный» под верхний почвенный покров пустыни, уменьшает потери воды на 75 %. На Ближнем Востоке, где 85 % всей пресной воды уходит на орошение, подобная технология может помочь и в выращивании урожая, и в борьбе с опустыниванием.

Если учесть, что 40 % населения Земли живет на расстоянии не более 100 километров от морского побережья, наибольшие перспективы сулит комбинация нанотехнологий и технологий опреснения. В настоящий момент большинство из семи тысяч опреснительных установок мира используют технологию термального опреснения (ее также называют многоступенчатым мгновенным вскипанием) или обратного осмоса. В первом случае морская вода превращается в пар, который затем конденсируется, во втором – вода пропускается через полупроницаемые мембраны. Ни то, ни другое решение нам не подходит.

Термальное опреснение потребляет слишком много энергии (около 80 МВтч за миллион литров), поэтому подобные проекты невозможно развернуть в по-настоящему большом масштабе. Кроме того, рассол, образующийся в качестве побочного продукта, загрязняет водоносные горизонты и уничтожает популяции морских животных и растений. Обратный осмос использует относительно меньшее количество энергии, но некоторые токсины, в частности бор и мышьяк, могут проникнуть через мембраны, к тому же последние очень быстро забиваются, что снижает срок работы фильтра. Однако лос-анджелесская компания NanoH 2 O недавно вошла в список 100 лучших компаний в области чистых технологий (Cleantech 100 list), представив новый фильтр, который использует на 20 % меньше энергии и производит при этом на 70 % больше пресной воды.

Конечно, мы могли бы продолжать в том же духе до конца книги. Есть десятки и десятки нанотехнологий, которые сейчас находятся в разработке, а в будущем должны повлиять на ситуацию с водой. И параллельно с изумительными решениями в области нанотехнологий появляются столь же невероятные инновации в биотехнологиях и в области вторичного использования отработанной воды. Но многие считают, что наиболее перспективное направление поисков – не столько сама обработка воды, сколько те метатехнологии, которые окружают этот процесс.

 

Интеллектуальная сеть для воды

Когда «ведущий ученый» IBM и технический руководитель организации Big Green Innovations Питер Уильямс говорит: «Самая большая возможность, предоставляемая водой, – это не вода, а информация», – он говорит о расточительстве. Прямо сейчас в Америке 70 % воды расходуется в сельском хозяйстве, но при этом 50 % произведенной еды выбрасывается. Пять процентов нашей энергии уходит на перекачивание воды, но 20 % этой воды утекает через дыры в трубах. «Примеры можно множить бесконечно, – говорит Уильямс, – но суть остается неизменной: назовите мне проблему с водой, и я назову вам соответствующую проблему с информацией».

Решение этой информационной проблемы заключается в создании умных сетей для всех наших систем водоснабжения. Все наши трубы, наши водопровод и канализация, наши реки, озера, водохранилища, гавани и, в конце концов, наши океаны должны быть оборудованы сенсорами, «умными» измерительными устройствами и автоматическими системами контроля, управляемыми AI. Марк Модзелевски, исполнительный директор организации Water Innovations Alliance, полагает, что подобная интеллектуальная сеть сможет снизить потребление воды в США на 30–50 %.

В IBM считают, что создание таких сетей потребует 20 млрд долларов инвестиций в ближайшие годы, – и компания готова приступить к делу. В бассейне Амазонки IBM объединилась с организацией Nature Conservancy, чтобы построить систему компьютерного моделирования, которая позволит пользователям симулировать поведение речных бассейнов и принимать существенно лучшие решения относительно проблем, которые в данный момент считаются неразрешимыми. Например, приведет ли сплошная вырубка леса в верховьях реки к уничтожению рыбных запасов ниже по течению? В Ирландии организация Big Blue совместно с Морским институтом реализует проект Smart Bay, который отслеживает поведение волн, уровень загрязнения и состояние морской жизни в заливе Голуэй. Существует также проект «умной дамбы» в Нидерландах, система аналитического отслеживания работы канализации в городе Вашингтон и еще несколько десятков подобных проектов по всему миру.

Другие компании тоже работают в этом направлении. Отделение Hewlett-Packard в Детройте применило систему умных измерений, которая уже увеличила производительность на 15 %. Что касается академического сектора, то здесь исследователи чикагского Северно-Западного университета создали «умную трубу» – комплекс из множества наносенсоров, которые способны измерить всё: от качества воды до свойств потока. В других странах мира также предпринимается все больше усилий в этом направлении. В Испании только что установлена общенациональная ирригационная система, управляемая компьютером, которая разработана, чтобы сэкономить 20 % тех 240 миллиардов литров воды, которые испанские фермеры и крестьяне используют ежегодно.

Управляемая компьютером ирригация – это один из элементов «точного земледелия», в свою очередь, представляющего собой лишь часть возможностей, которые открывают интеллектуальные сети. Это комплексная технология, в которой управляемая компьютером ирригация объединяется с GPS-отслеживанием и методами удаленного зондирования, чтобы получить больше урожая на каждую каплю воды. Описанная комбинация позволяет фермерам получать информацию обо всем, что происходит у них на полях: о температуре, испарении, проценте влажности воздуха и почвы, прогнозе погоды, количестве удобрений, использованном для каждого растения, сколько воды каждое растение получило, и т. д., и т. п.

Сейчас 70 % всей воды на Земле расточительно расходуется на то, чтобы выращивать продовольствие. «С точным земледелием, – говорит Даг Милл, консультант по использованию воды из штата Джорджия, – фермеры могут снизить потребление воды на 35–40 процентов и увеличить урожай на 25 процентов».

И значительная экономия, о которой мы говорим в этом разделе, – лишь начальная точка этого обсуждения, не конечная. Как только наши гидротехнические сооружения объединятся в интеллектуальные сети, вода по-настоящему станет предметом информационной науки – и таким образом войдет в число экспоненциально растущих областей. То, что мы сейчас обсуждаем как интеллектуальную гидротехническую сеть, пока представляет собой только бета-версию системы. Сеть будет постоянно совершенствоваться, и – поскольку мы, люди, очень плохо умеем предсказывать результаты экспоненциального роста – сейчас просто невозможно сказать, к чему приведет ее развитие. Однако одно можно утверждать с точностью: в результате мы окажемся в ситуации, где воды будет гораздо больше.

 

Решение санитарной проблемы

До сих пор идут споры: кто изобрел современный туалет? Апокриф гласит, что это был английский слесарь XIX века Томас Крэппер, но на самом деле история важного изобретения уходит корнями в гораздо более давние времена. Западная традиция приписывает заслугу сэру Джону Харингтону, который изобрел ватерклозет для своей крестной, королевы Елизаветы I (однако изобретение Харингтона так и не было поставлено на коммерческие рельсы). На востоке же эта инновация появилась в гораздо более давние времена: археологи не так давно обнаружили отхожее место эпохи династии Хань, которое они датируют 206 годом до н. э. Устройство было обеспечено проточной водой и снабжено каменной чашей и подлокотниками – в результате китайский артефакт 2400-летней давности выглядит вполне современно. И в этом заключается проблема: когда речь заходит о канализационных системах в наших домах, обнаруживается, что в них очень долгое время ничего не менялось.

Но только представьте себе потенциальные усовершенствования. Представьте туалеты, которые не требуют инфраструктуры. Никаких труб под полом, никаких площадок для выщелачивания, скрытых под вашим газоном, никаких систем канализации, опутывающих целый квартал. Это будут туалеты хай-тек: с измельчением и сжиганием фекалий, мгновенным испарением урины и попутной стерилизацией всего на свете. Вместо того чтобы всё «спускать в трубу», эти туалеты будут производить упаковки мочевины (для удобрений), столовую соль, большое количество чистой воды и достаточное количество энергии, чтобы вы могли подзарядить при необходимости свой телефон, пока справляете нужду. Присоедините эти туалеты к интеллектуальной сети – и электричество можно будет продавать в энергоснабжающие компании, в результате чего впервые в истории людям будут платить за то, что они испражняются! И последнее: потребителю все это будет обходиться в пять центов в день. Это уже не просто усовершенствование – это революция!

Кроме того, это цель недавно объявленной программы фонда Билла и Мелинды Гейтс. Восемь университетов получили финансирование, чтобы вывести сантехнические технологии на уровень XXI века, и именно так в проекте был задействован Лоуэлл Вуд. Вуда нельзя назвать типичным специалистом в области санитарии. Он – астрофизик в Ливерморской национальной лаборатории имени Лоуренса, и за плечами у него опыт работы в области термоядерного синтеза, компьютерной инженерии, рентгеновских лазеров, а также – и это принесло ему наибольшую известность – в программе космической противоракетной обороны («Звездные войны»), инициированной президентом Рональдом Рейганом. По словам Вуда,

основной смысл проекта Гейтсов заключается в том, чтобы усовершенствовать систему, которая по-настоящему не развивалась в течение 130 лет, со времен викторианской Англии. В развивающихся странах, где санитарные проблемы приводят к огромному числу смертей и болезней, это очевидным образом спасет миллионы и миллионы жизней, но в развитом мире три четверти наших счетов за воду – это стоимость растрат и расходов на содержание очистных сооружений. Таким образом, цель – решить обе проблемы: найти способ для людей справлять нужду без использования водопровода и канализации и при этом перерабатывать человеческие отходы, приводя их в безвредное состояние.

Это может показаться фантастикой, но на самом деле тут не требуется никакого волшебства. Вуд продолжает:

Можно сжигать фекалии и использовать эту энергию, чтобы полностью очищать мочу, снова разделять ее на воду и минеральные вещества. В человеческих фекалиях содержится более мегаджоуля энергии в день, и этого достаточно, чтобы поддерживать работу туалета – плюс останется полно энергии на подзарядку телефонов и освещение. И у нас уже есть подходящая технология: мы в самом буквальном смысле можем всё это сделать, просто купив компоненты в магазине. Самая большая проблема заключается в том, что это должно стоить не больше пяти центов в день, потому что только такая стоимость доступна для жителей развивающихся стран.

Преимущества такого туалета практически неоценимы. Прежде всего удаление человеческих фекалий из уравнения решительным образом снизит процент заболеваемости во всем мире (а это, в свою очередь, будет способствовать замедлению прироста населения). Этот проект можно реализовать распределенно, децентрализованно (значит, нет необходимости делать огромные предварительные инвестиции в инфраструктуру), а поскольку производить энергии и воды он будет больше, чем было затрачено, эту технологию можно считать по-настоящему революционной. Более того, эффективность технологии дает возможность столь необходимой экономии. На канализацию расходуется 31 % всей воды в Америке. Согласно подсчетам Агентства по защите окружающей среды США, 4,7 триллионов литров воды – столько ее ежегодно используют в Лос-Анджелесе, Майами и Чикаго – каждый год вытекает из американских домов, и самые большие траты приходятся именно на туалеты. И наконец, помимо отходов жизнедеятельности человека, этот технологичный туалет может перерабатывать все вообще органические отходы, включая объедки, садовые обрезки, фермерские отходы, – и таким образом замыкать все циклы, одновременно предоставляя семье всю ту воду, которая ей может потребоваться.

 

Голубая точка

В 1990 году, в один из самых знаменитых моментов своей блистательной карьеры, астроном Карл Саган решил, что будет интересно, если космический зонд Voyager 1, завершив свою миссию на Сатурне, развернется и сделает снимок Земли. На таком огромном расстоянии Земля выглядит несущественным, трудно различимым пятнышком рядом с другими пятнышками, или, как говорит Саган, «как пылинка на фоне солнечного луча». Но эта пылинка – голубая. Отсюда и название знаменитой фотографии: «Голубая точка».

Наша планета – голубая точка, потому что это водный мир, две трети которого покрыто океанами. Эти океаны – наша опора и наша жизненная сила. Бесспорный факт состоит в том, что в данный момент миллиард людей лишен доступа к безопасной питьевой воде, но в наших океанах заключается секрет к лучшему будущему. Возвращаясь к прозвучавшей ранее теме: изобилие – это не просто выдумка корнукопианцев. И хотя у только что описанных инноваций есть потенциал прикоснуться к мировому океану – вторично переработать их содержимое и изменить химический состав, обеспечив нас всех водой в необходимом количестве, и даже более того, – это не произойдет автоматически. У нас впереди много работы. В то же время из-за того, что технологии по эффективному использованию воды все находятся на экспоненциальных кривых, они представляют самый большой из возможных рычагов. Это кратчайший путь из точки А в точку Б, но – и это очень важное «но» – мы должны по-настоящему посвятить себя прохождению по этому пути.

Саган однажды сказал о своей знаменитой фотографии:

Этот далекий образ нашего крошечного мира… подчеркивает нашу ответственность: мы должны относиться друг к другу добрее, а также хранить и лелеять голубую точку – единственный мир, который мы знаем.

Невозможно с этим не согласиться. Так что сегодня, прямо сейчас, давайте начнем экономить: быстрее выходить из душа, есть меньше говядины – делать все, что возможно, для сохранения ограниченных на данный момент ресурсов. Но на будущее знайте, что мир водного изобилия – очень реальная перспектива, и вложение нашей энергии в экспоненциальные технологии направляет нас на верный путь. Технологии, рассмотренные в этой главе, и области исследований, которые они представляют, – самый лучший способ сохранить единственный мир, который мы когда-либо знали: нашу голубую точку.

 

Глава 9

Накормить девять миллиардов

 

Несостоятельность грубой силы

Говорят, что попытки накормить голодающих – одна из самых старых филантропических целей в мире. Но это не означает, что мы многого добились в этой области. Согласно данным ООН, 925 миллионов человек в настоящее время недоедает. Это почти каждый седьмой житель планеты, и самые заметные жертвы голода – дети. Каждый год 10,9 миллионов детей умирает, причем половина – от осложнений, связанных с голодом. В развивающихся странах один из трех детей страдает от задержки роста, связанной с плохим питанием. Дефицит йода – основная причина умственной отсталости и поражений мозга; недостаток витамина А убивает каждый год миллион младенцев. И такая ситуация наблюдается сегодня, прямо сейчас – до того как население Земли вырастет еще на несколько миллиардов, до того как глобальное потепление сократит пригодную для пахоты площадь суши; до того как какая-нибудь нерешенная проблема не превратится в окончательно нерешаемую.

При всем этом ситуация вызывает в памяти историю о двух торговцах обувью, живших в Британии в начале ХХ века. Оба отправились в Африку исследовать новые рынки сбыта. Через неделю каждый из них написал письмо домой. Первый торговец жаловался: «Перспективы ужасные, здесь никто не носит обуви. Я сажусь на следующий же корабль домой». Но второй видел ситуацию совсем иначе: «Это замечательное место, здесь никто пока не носит обуви! Рыночный потенциал практически безграничен! Вероятно, я никогда не уеду отсюда». Другими словами, когда речь заходит о еде, существует множество возможностей для улучшения ситуации.

За последние сто лет наше сельское хозяйство развивалось по большей части за счет перебора технологий, то есть по методу «грубой силы» (brute force). Сначала мы индустриализируем наши фермы, затем – нашу еду. В результате производство продовольствия и система его дистрибуции стали полностью зависеть от нефтепродуктов. Сейчас мы сжигаем 10 калорий нефти, чтобы произвести одну калорию пищи. В мире, который стоит перед лицом энергетического дефицита, одно только это делает процесс неоправданным. Ирригационные системы иссушили наши водоемы. Основные водные горизонты в Китае и Индии практически истощены, и это привело к пыльным бурям гораздо более масштабным, чем те, от которых страдал американский Средний Запад в 1930-х годах. Токсичные гербициды и пестициды отравили наши реки. Сток азотных удобрений превратил наши прибрежные воды в мертвую зону – настолько, что США, стране, окруженной океанами, теперь приходится импортировать 80 % морепродуктов.

Но даже эта нелепая практика не может длиться вечно. Современные рыболовные технологии – еще один пример этого грубого перебора. Придонное траление уничтожает более пятнадцати миллионов квадратных километров океанского дна каждый год – это территория размером с Россию. Так что забудьте об импорте. В докладе международной группы экологов и специалистов по окружающей среде, опубликованном в 2006 году в журнале Science, сообщается, что при текущем уровне лова морская рыба и морепродукты в мире закончатся к 2048 году.

Более того, судя по всему, мы вот-вот исчерпаем потенциал технологий, которые позволили нам добиться самых больших достижений в пищевом производстве за последние пятьдесят лет. По словам Лестера Брауна, основателя двух некоммерческих экологических организаций – Института всемирного мониторинга (Worldwatch Institute) и Института экологической политики (Earth Policy Institute), – «за последнее десятилетие появилось еще одно ограничение для роста производительности в мировом сельском хозяйстве: сокращение списка технологий, которые мы еще не опробовали». Япония, например, использовала практически все доступные технологии, но урожайность рисовых полей на четырнадцать лет застыла на месте. Южная Корея и Китай оказались в похожих ситуациях. Рост урожайности пшеницы во Франции, Германии и Британии – трех странах, которые отвечают за 1/8 всемирного производства пшеницы, – схожим образом остановился. А индустриализация сельского хозяйства сделала положение более бедных стран еще менее надежным. Описывая ситуацию в индийском регионе Пенджаб, который, как утверждают многие, благодаря Зеленой революции превратился «из плошки для подаяния в хлебную корзинку», знаменитый эколог Вандана Шива отмечает:

Вместо того чтобы принести процветание, два десятилетия Зеленой революции погрузили Пенджаб в состояние недовольства и насилия. Вместо изобилия в Пенджабе накопились проблемы: отравленные почвы, пораженные паразитами злаки, заболоченные пустыни, раздраженные и погрязшие в долгах крестьяне.

Однако, несмотря на это истощение, в прошлом веке также произошло удивительное изменение в нашей способности производить продовольствие. Мы смогли накормить больше людей, чем когда-либо раньше, используя при этом меньшие площади. В данный момент под сельское хозяйство занято 38 % всей мировой суши. Если бы темпы производства остались такими же, какими они были в 1961 году, нам сегодня понадобилось бы 82 % суши, чтобы производить то же количество продовольствия. Такой эффективности мы добились благодаря интенсификации сельского хозяйства, основанной на использовании углеводородов. В будущем нам нужно придумать, как сменить этот экологически неустойчивый метод «грубой силы» гораздо более сбалансированным подходом. Если мы научимся работать с нашими экосистемами, вместо того чтобы давить их гусеницами, и будем параллельно оптимизировать наши урожаи и наши пищевые цепочки, то мы с легкостью сможем оказаться там же, где и второй продавец обуви из нашего анекдота: в месте, откуда можно увидеть бескрайний рынок и безграничный потенциал.

 

Наготовить на девять миллиардов

Многие считают, что вопрос, как эффективнее всего улучшить наши урожаи, сводится к бинарному выбору: применять ГМО (генетически модифицированные организмы) или не применять. Честно говоря, этот вопрос перед нами уже не стоит. В 1996 году в мире 1,7 миллиона гектаров было отведено под урожай, выращенный с помощью биотехнологий, к 2010-му это число подскочило до 148 миллионов гектар. Это увеличение площади в 87 раз делает генетически модифицированные семена (genetically engineered seeds, GE) наиболее быстро распространяющейся зерновой технологией в истории современного сельского хозяйства. Иными словами, беспокоиться уже поздно – эта лошадка давно сбежала из стойла.

Однако представление о том, что применение ГМО – это «франкенштейнов грех» против природы, на самом деле просто смехотворно. Противники ГМО исходят из предположения, что в сельском хозяйстве в принципе есть что-то естественное. Но каким бы идиллическим ни казалось нам земледелие, на самом деле оно представляет собой всего лишь затянувшиеся на 12 тысяч лет поиски способа оптимизировать наш обед. Вот как это объясняет Мэтт Ридли:

Уже почти по определению все культурные растения «генетически модифицированы». Это чудовища-мутанты, способные производить неестественно огромные голые (то есть удобные для обмолота) зерна или тяжелые сладкие плоды; выживаемость этих растений зависит от человеческого вмешательства. Морковь имеет оранжевый цвет только благодаря выведению мутантного сорта – что, вероятно, было проделано в Голландии не раньше XVI века. Бананы стерильны и неспособны давать семена. Пшеница имеет три цельных диплоидных (двойных) генома в каждой клетке, которые произошли от трех видов дикой травы, и в качестве дикого растения просто не может выжить (в природе сегодня не встречается дикая пшеница).

История сельского хозяйства – это история человеческого вмешательства в ДНК растений. В течение очень длительного времени предпочтительным методом была гибридизация (межпородное скрещивание), но затем появился Мендель со своими горошинами. Как только мы начали понимать, как работает генетика, ученые стали пробовать самые дикие технологии с целью вызвать искусственные мутации. Мы погружали семена в канцерогены и бомбардировали их радиацией (в том числе и внутри ядерных реакторов). Сейчас существует больше 2250 таких мутантов – почти все они имеют сертификат «органический».

С другой стороны, технологии ГМО позволяют нам более точно настроить наш поиск новых свойств растений. Впервые в истории растениеводства инструменты генной инженерии позволяют нам понимать, что же, собственно, мы делаем. И это серьезное отличие. Именно из-за этого поднялась вся суматоха: из-за радикального изменения качества и количества информации, доступной нам, из-за перехода от эволюции естественного отбора к сознательно направляемой эволюции.

При этом нельзя утверждать, что за пределами биоинженерных технологий сейчас не разрабатываются интересные техники оптимизации производства зерна. Институт земли (Land Institute) в штате Канзас пытается превратить пшеницу и кукурузу из однолетних растений в многолетние. Результаты могут быть фантастическими. Естественные экосистемы гораздо лучше управляемых человеком сельскохозяйственных систем справляются с превращением солнечного света в живую ткань. Многолетние растения – и главным образом поликультурные многолетники (имеется в виду смесь многолетников, растущих рядом) – поддерживают эти экосистемы. У таких растений длинные корни и сложное строение, что делает их устойчивыми к разным погодным условиям, к насекомым-вредителям и к болезням; также они способны произвести больше биомассы на гектар, чем одомашненные виды, не требуя при этом применения ископаемых видов топлива и не истощая ни почву, ни водные горизонты.

Проблема заключается в том, что на это нужно время. Институт Земли предполагает, что эти многолетники станут приносить урожай (и прибыль) лишь через двадцать пять лет. А генно-модифицированные культурные растения у нас уже есть.

Более того, после тридцати лет исследований многие из наших страхов по поводу ГМО оказались несостоятельными. Например, опасения по поводу ущерба здоровью. За это время было создано (и съедено) более триллиона порций генно-модифицированной пищи – но ни одного случая заболевания, вызванного ГМО, зарегистрировано не было. Другим опасением была экологическая катастрофа, но в общем и целом ГМО, как выясняется, оказывают скорее положительное воздействие на окружающую среду. Генно-модифицированные семена не требуют глубокой вспашки, поэтому структура почвы не нарушается. Это замедляет эрозию, стимулирует секвестрацию (удаление) углерода и фильтрацию воды, а также значительно уменьшает количество углеводородов, необходимых для выращивания нашей еды. Использование гербицидов тоже уменьшается, и при этом урожайность увеличивается.

Стюарт Бранд пишет в своей книге «Наука обо всей Земле: манифест экопрагматика» (Whole Earth Discipline: An Ecopragmatist Manifesto):

Когда индийские фермеры в 2002 году начали выращивать [генетически модифицированный] Bt -хлопок, страна из импортера хлопка превратилась в экспортера; 17 миллионов тюков превратилось в 27 миллионов. Что это принесло людям? Основным исходом стало то, что Bt -хлопок увеличил продуктивность на 50 процентов и уменьшил использование пестицидов на 50 процентов, в результате чего индийский валовый доход в сельском хозяйстве увеличился с 540 миллионов до 1,7 миллиардов долларов.

Это отчет о прогрессе в настоящем времени. Сельскохозяйственная часть биотехнической промышленности растет со скоростью 10 % в год; сама технология находится на более быстрой кривой роста. В 2000 году, когда был секвенирован первый геном растения, на это было потрачено семь лет, 70 миллионов долларов и силы пятисот человек. Тот же проект сегодня занимает около трех минут и стоит около 100 долларов. Это хорошие новости. Большее количество информации означает более прицельный подход. Прямо сейчас мы собираем первое поколение ГМО-урожаев; вскоре у нас появятся версии, которые могут расти в условиях засухи и на солончаках, обладают повышенной питательностью, могут использоваться как лекарства, повышают урожайность других растений и позволяют снизить использование пестицидов, гербицидов и ископаемых видов топлива. Лучшие версии будут обладать многими из этих свойств одновременно.

Проект BioCassava Plus, существующий в рамках фонда Гейтсов, планирует взять маниок (кассаву) – одну из наиболее распространенных сельскохозяйственных культур в мире, – усилить его белком, витаминами А и Е, железом и цинком, снизить естественное содержание цианида, сделать растение устойчивым к вирусам и увеличить срок хранения плодов с одного дня до двух недель. К 2020 году эта генетически модифицированная культура сможет радикально улучшить здоровье 250 миллионов людей, для которых маниок – повседневная пища.

Конечно, существуют и определенные проблемы, связанные с ГМО. Никому не хочется видеть, как мировыми поставками продовольствия распоряжаются всего несколько компаний, поэтому вопрос собственности на семена – весьма болезненный. Но это тоже не продлится долго. Команда Калифорнийского университета в Дэвисе – фитопатолог Памела Рональд и ее супруг, эксперт по органическому земледелию Рауль Адамчак – пишут в своей книге «Завтра на столе: органическое земледелие, генетика и будущее еды» (Tomorrow’s Table: Organic Farming, Genetics and the Future of Food):

ГМО – относительно простая технология, использование которой ученые в большинстве стран, включая развивающиеся, уже отточили. ГМО-модифицированные семена не нуждаются ни в каком-либо дополнительном уходе, ни в дополнительных фермерских навыках.

Это означает, что технология ГМО уже стала демократичной – при условии, что мы научимся делиться интеллектуальной собственностью. Пока еще этого не произошло (во всяком случае, в серьезном масштабе), но в недавней речи, произнесенной в фонде Long Now Foundation, писатель и активист органического питания Майкл Поллан призвал учредить движение за открытые исходные коды для программного обеспечения ГМО. Стюарт Бранд соглашается с этим призывом и предлагает:

Если в Monsanto придут в бешенство, скажите им, что, если они будут достаточно вежливы, вы, может быть, и предоставите им лицензию на адаптированные к местным условиям изменения, которые вы произвели с их запатентованным массивом генов.

Но даже при наличии открытого кода ГМО накормить весь мир – это задача, которую не решить одной лишь урожайностью. Нужно учесть еще и вопрос дистрибуции. Так что подумайте вот над чем: мы живем на планете, где около одного миллиарда человек постоянно голодны, – и при этом мы уже сейчас производим больше продовольствия, чем необходимо, чтобы накормить весь мир. Согласно данным Института политики в области продовольствия и развития (Institute for Food and Development Policy, известен также как Food First), в мире сегодня производится около 2 кг еды на каждого человека в день: 1,1 кг зерна, бобовых и орехов; около 0,45 кг мяса, молока и яиц; и еще столько же фруктов и овощей. Поэтому многие эксперты думают, будто проблема заключается в том, что при существующей системе распределения продовольствия неизбежны огромные потери. Если это правда и если мы по-настоящему серьезно настроены на то, чтобы накормить весь мир, то решение заключается не в том, чтобы научиться более эффективно перемещать продовольствие по земному шару. Гораздо лучше просто переместить фермы.

 

Вертикальное земледелие

Нам не впервой этим заниматься. В самом конце Второй мировой войны американская армия начала испытывать сложности со снабжением. Тогда это тоже была проблема дистрибуции. Войска оказались разбросаны по всему миру, и, помимо того что возить на дальние расстояния скоропортящиеся продукты было непозволительно дорого, грузовые суда становились легкой добычей вражеских субмарин. Очевидным ответом было выращивать продовольствие на местах, но на голых островах Тихого океана и засушливых пустынях Ближнего Востока не было достаточных площадей плодородной почвы. Однако зачем нужна почва, если есть вода?

Идея выращивания еды в воде восходит как минимум к Висячим садам Семирамиды в Вавилоне. Но гидропоника – выращивание съедобных растений в питательном растворе – более современное явление. Первая книга на эту тему – «Sylva Sylvarum» («Лес лесов, или Естественная история в десяти центуриях») Фрэнсиса Бэкона – вышла в 1627 году, однако технология гидропоники не была отработана до 1930-х годов, когда ученые усовершенствовали химический состав питательной среды. Впрочем, если не считать единственного случая (авиакомпания Pan American выращивала овощи на тихоокеанском островке Уэйк, чтобы добавлять свежую зелень в обед пассажиров межконтинентальных рейсов), никто не пытался заниматься подобным земледелием в серьезных масштабах. Вторая мировая все изменила. В 1945 году армия США начала серию масштабных гидропонных экспериментов, сначала на острове Вознесения в Южной Атлантике, а затем на острове Иводзима и в самой Японии, в частности на самой большой в тот момент гидропонной ферме в мире, которая находилась в городе Тёфу и занимала площадь в 8,9 га. Одновременно – поскольку США держали на Ближнем Востоке войска, обеспечивавшие безопасность поставок нефти в Америке, – новые гидропонные фермы были созданы в Ираке и в Бахрейне. Все они оказались невероятно успешными. В одном 1952 году гидропонные предприятия армии вырастили более 3,5 миллионов килограммов свежей продукции.

После войны большинство из нас забыли об этом успехе. Производство продовольствия вновь обрело твердую почву под ногами. Затем началась «Зеленая революция», и гидропоника была вытеснена еще дальше на периферию, уступив место углеводородным решениям. Лишь крохотная часть исследований продолжалась. В частности, ими упорно занималось агентство NASA, пытавшееся придумать, как накормить астронавтов на Марсе. Другие организации тоже работали в этом направлении. В 1983 году Ричард Стоунер сделал большой прорыв, обнаружив, что растения можно подвешивать в воздухе, подкармливая их через насыщенный питательными веществами туман. Это положило начало новой науке – аэропонике, и именно тут началось самое интересное.

Традиционное сельское хозяйство потребляет 70 % всей пресной воды на планете. Гидропоника на 70 % эффективнее традиционного сельского хозяйства. Аэропоника на 70 % эффективнее гидропоники. Таким образом, если бы мы использовали в сельском хозяйстве аэропонику, мы могли бы сократить использование воды с 70 до 6 процентов – неплохая экономия. Учитывая, что с каждым днем угроза дефицита воды становится все более серьезной, трудно понять, почему эти технологии до сих пор не получили самого широкого распространения.

«Это проблема пиара, – говорит Диксон Деспомьер. – Когда люди слышат слово „гидропоника“, они представляют себе не NASA, а горшок с комнатным растением. Черт побери, десять лет назад я и сам так думал».

Но ситуация начинает меняться, и отчасти это дело рук как раз доктора Деспомьера. Этот высокий седобородый мужчина – микробиолог и эколог по образованию, а также один из ведущих мировых экспертов по внутриклеточному паразитизму. До своего ухода на пенсию в 2009 году он был профессором на факультете здравоохранения Колумбийского университета. В 1999 году Деспомьер читал курс по медицинской экологии, который включал в себя раздел о климатических изменениях и их потенциальном влиянии на производство продовольствия. Он вспоминает:

Это была весьма депрессивная тема для изучения. Продовольственная и сельскохозяйственная организация при ООН ( Food and Agriculture Organization of the United Nations, FAO ) подсчитала, что сельскохозяйственное производство, чтобы не отстать от роста населения, должно увеличиться вдвое к 2050 году. В то же время 80 % пригодной для возделывания земли уже занято, и наши текущие данные о климатических изменениях демонстрируют, что производство зерновых в течение следующих десяти лет уменьшится на 10–20 %. К тому времени, когда я закончил излагать эти данные моим студентам, они готовы были забросать меня гнилыми помидорами.

Деспомьеру так надоела вся эта тоска и безысходность, что он отклонился от привычного курса и предложил студентам поискать позитивное решение. Обдумав вопрос со всех сторон, они предложили идею плантации на крыше. По словам профессора,

это была идея местного масштаба, и она казалась осуществимой. Студенты хотели знать, сколько людей они смогут накормить, если будут выращивать еду на крышах – не коммерческих зданий, а жилых домов – на Манхэттене. И я дал им остаток семестра на поиск ответа.

Это было еще до появления карт Google, поэтому одни только поиски подходящих крыш заняли у студентов три недели, в течение которых они не вылезали из Нью-Йоркской публичной библиотеки. Затем встал вопрос: «А что выращивать?» Нужно было найти растение, способное давать урожай в очень стесненных условиях, но при этом весьма калорийное. В конце концов остановились на рисе. Пора было делать расчеты – и выяснилось, что выращивание риса на крышах Нью-Йорка смогло бы накормить всего 2 % населения города.

Они очень расстроились, – вспоминает Деспомьер. – Столько работы – и выяснилось, что они смогут накормить всего два процента ньюйоркцев. Я попытался мотивировать их и сказал: «Ну что ж, если вы не можете выращивать урожай на крышах, как насчет всех этих заброшенных жилых домов? Как насчет авиабазы Райт-Паттерсон? Как насчет небоскребов? Представьте себе, сколько еды мы могли бы вырастить, если бы только удалось запихнуть ее в высотки?»

В то время для Деспомьера это были по большей части слова, сказанные мимоходом, чтобы утешить студентов. Но идея застряла в его голове. Его жена тоже хотела понять, сработает ли такой план, и в результате профессор начал искать информацию о гидропонике в интернете:

Я прочитал о том, каких успехов достигла армия во время Второй мировой, и понял две вещи. Первая: что гидропоника – это не только выращивание растений в горшках. И вторая: что безумная идея вертикальной фермы не так уж безумна.

Его студенты тоже были преисполнены энтузиазма и вновь взялись за работу. В течение года были сделаны первые грубые прикидки, из которых получалось, что их вертикальная ферма может накормить гораздо большее количество народа, чем 2 % ньюйоркцев. Деспомьер говорит:

Одно тридцатиэтажное здание, занимающее один нью-йоркский квартал, могло прокормить пятьдесят тысяч человек в год. Сто пятьдесят вертикальных ферм могли бы накормить всех людей в Нью-Йорке.

У вертикальных ферм много изумительных преимуществ. Они не зависят от погоды, поэтому урожай можно выращивать в течение всего года в оптимальных условиях. Один квадратный метр этажа небоскреба производит продовольствия столько же, сколько 10–20 квадратных метров традиционной почвы. Технологии «чистой комнаты» (clean room, позволяют создать в помещении особо чистую атмосферу) дают возможность обойтись без пестицидов и гербицидов – а значит, избавиться от отравленных сточных вод. Ископаемые виды топлива, которые сейчас употребляются для вспашки, внесения удобрений, посева, прополки, сбора урожая и доставки, также не используются. И, помимо всего этого, мы можем восстановить леса на старых сельскохозяйственных землях, замедлив тем самым разрушительный процесс сокращения биологического разнообразия.

Так как же все это работает? Питание, естественно, поступает посредством гидро- или аэропоники. Кроме того, растениям нужен солнечный свет, поэтому вертикальные фермы устроены так, чтобы максимально обеспечивать его доступ. Параболические зеркала отражают свет от всех поверхностей внутри здания, в то время как наружные стены покрыты слоями этилентетрафторэтилена (ЭТФЕ) – это революционный полимер, необычайно легкий, прочный, самоочищающийся и прозрачный как вода. Освещение для теплиц тоже используется, как ночью, так и в пасмурные дни, и электричество, необходимое для их работы, будет генерироваться из энергии, которая сейчас впустую утекает в канализацию. «Один только Нью-Йорк, – говорит Деспомьер, – спускает в унитаз эквивалент девятисот миллионов киловатт электричества каждый год».

Возможно, самое важное обстоятельство заключается в том, что пища в сегодняшней Америке в среднем проезжает 2400 км, прежде чем ее съедят. И это только в среднем. Типичная порция еды в США включает пять ингредиентов, выращенных в других странах. Ужин в Лос-Анджелесе запросто может состоять из чилийской говядины (8988 км), риса из Таиланда (13 298 км), итальянских оливок (10 224 км), грибов из Новой Зеландии (10 474) и бокала неплохого австралийского шираза (12 210 км). Поскольку 70 % финальной розничной цены продукта составляют транспортировка, хранение и обработка, все эти километры быстро суммируются.

Вертикальные фермы в корне меняют дело. Дни, которые проходят, прежде чем еда доберется до наших тарелок, превращаются в минуты, которые нужны, чтобы спуститься с салатом-латуком на десять этажей вниз. И, несмотря на футуристический облик этих ферм, никакие принципиально новые технологии в их работе не используются, поэтому такие фермы уже сегодня приносят урожаи. Есть целый ряд пилотных проектов в Соединенных Штатах и еще более масштабных – за океаном. Япония, хоть пока и не переключилась с горизонтального на вертикальное производство, приступила к строительству нескольких сотен «фабрик растений», чтобы обеспечить пищевую безопасность страны. Используя технологии «чистой комнаты» и нанимая пожилых людей для ухода за растениями, японцы теперь могут выращивать двадцать урожаев латука в год вместо одного-двух, которые получаются при использовании традиционных методов.

Тем временем шведская компания Plantagon уже работает над пятью проектами вертикальных ферм: двумя в Швеции, двумя в Китае и одной в Сингапуре. Стандартная модель такой фермы – огромная стеклянная сфера с ящиками для растений, организованными в гигантскую спираль, – позволяет теплице площадью в 10 000 квадратных метров выращивать продукцию, которая при горизонтальном земледелии занимала бы в десять раз бóльшую площадь.

Однако настоящие преимущества вертикальных ферм проявятся, когда технологии завтрашнего дня объединятся с сегодняшними идеями. Представьте себе повсеместно встроенные сенсоры, регулирующие температуру, pH-баланс и поступление питательных веществ. Добавьте искусственный интеллект и робототехнику, которые смогут оптимизировать посев, выращивание и сбор урожая на каждом квадратном метре. Учитывая, что производство продовольствия ограничено возможностью растений преобразовывать солнечный свет в энергию, как насчет того, чтобы использовать ГМО для улучшения и этого процесса? Исследователи Университета штата Иллинойс уже какое-то время работают над этой идеей. Они полагают, что в течение следующих 10–15 лет оптимизация фотосинтеза сможет увеличить урожайность до 50 %. Выращиванием этого оптимизированного урожая на вертикальных фермах – и настройкой светодиодных ламп на оптимальный для растений спектр – мы сможем сэкономить даже больше энергии (удалив диапазон частот, который не используется растениями) и значительно сильнее поднять продуктивность.

Все это означает, что для тех 70 % человечества, которые вскоре будут жить в городах, вертикальные фермы предлагают самый надежный способ покончить с голодом и недоеданием. Эти фермы уже сейчас способны увеличить объем выращиваемой еды на один урожай во много раз и в десять раз увеличить количество урожаев. И они способны делать все это, требуя на 80 % меньше земли, на 90 % меньше воды, на 100 % меньше пестицидов и практически вообще не требуя затрат на перевозку. Включите сюда несколько новых технологий – аквапонику для замкнутой системы производства белка; сбор урожая с помощью роботов для снижения трудовых затрат; системы искусственного интеллекта, присоединенные к биосенсорам для лучшей регуляции окружающей среды; продолжающееся развитие систем, использующих энергию биомассы (части растений, которые не идут в пищу, перерабатываются в топливо); улучшение и продолжающуюся интеграцию систем переработки мусора (чтобы еще надежнее замкнуть кольцо и уменьшить затраты на энергию) – и мы придем к золотому стандарту экологически устойчивого сельского хозяйства: полностью местному производству еды и системе дистрибуции, в которой полностью отсутствуют отходы и где имеется нулевое воздействие на окружающую среду и потенциал накормить весь мир.

 

Белок

У нас все еще есть проблема. Стратегии, которые мы обсуждали в этой главе, касаются улучшения растениеводства, но оптимальное здоровое питание должно включать в себя 10–20 % белка (от общего количества потребленных калорий). Мы с вами можем есть тофу, но для большинства людей в мире более предпочтительный выбор – мясо. Пусть мы даже не считаем употребление мяса убийством – это потребление определенно убивает нашу планету. Возьмем для начала крупный рогатый скот – он затрачивает очень много энергии (стандартное соотношение затраченной на производство энергии / полученной говядины составляет 54:1). К тому же коровам нужно очень много земли: их стада занимают 70 % всех сельскохозяйственных угодий на планете. Домашний скот производит больше парниковых газов, чем все автомобили в мире; кроме того, пасущиеся животные – это основная причина эрозии почвы и сокращения лесного покрова. Еще одна проблема – болезни. Тесно скученные стада – резервуары пандемий. Ожидается, что всемирный спрос на мясо к 2050 году увеличится вдвое, поэтому, если что-то не изменится, угроза глобальных эпидемий только возрастет.

Опасность становится все более грозной. По мере повышения уровня жизни растет и потребление мяса. С 1990 по 2002 год уровень потребления мяса в Китае удвоился. В 1961 году средний китаец съедал 3,6 кг мяса в год. К 2002 году это количество подскочило до 52,4 кг. Схожую тенденцию можно наблюдать повсеместно.

Но кое-что меняется – а если точнее, происходят два изменения. Во-первых, в ближайшем будущем мы станем свидетелями прогресса аквакультуры (аквакультивирования) – выращивания водных организмов в естественной (или искусственной) среде. Во-вторых (это дело более отдаленного будущего), мы будем выращивать мясо in vitro, то есть в пробирке.

Аквакультура – не новое явление. Насколько не новое – интересный вопрос. Рукописи V века до нашей эры демонстрируют, что уже в древнем Китае практиковались рыбные фермы. Как египтяне, так и римляне выращивали устриц. Более современная реинкарнация этой технологии появилась после Второй мировой войны и с тех пор неудержимо развивается. С 1950 до 2007 года производительность рыбных садков и плантаций моллюсков и водорослей во всем мире увеличилась с 2 млн тонн до 50 млн. В то время как морское рыболовство находится в упадке (пик его расцвета пришелся на 1980-е годы), потребление рыбы в мире все время увеличивается благодаря рыбным фермам. Аквакультура в данный момент является самой быстрорастущей системой производства еды животного происхождения – и она обеспечивает почти 30 % всех наших морепродуктов.

И это количество должно значительно вырасти. В 2003 году журнал Nature сообщил, что 90 % всех видов крупной морской рыбы исчезло – было выловлено человеком либо для непосредственного употребления в пищу, либо на корм домашним животным, либо ради изготовления удобрений или рыбьего жира. В этот список попали тунец, рыба-меч и марлин, а также большие придонные рыбы, такие как треска, палтус, скат и камбала. Все они подвержены опасности полного вымирания из-за слишком активной рыбной ловли и промышленных технологий рыболовства. Как объясняла на страницах National Geographic знаменитый океанограф Сильвия Эрл (наделенная шутливым титулом «Ваша Бездонность»),

траловое рыболовство уничтожает огромное количество прилова, птиц, млекопитающих – большое разнообразие форм жизни. Бесчисленные создания, многим из которых мы даже не успели дать имя, уже вымерли – они погибли, когда по дну океана волочили сети, чтобы выловить креветок, камбалу и других обитателей дна. А крючковые снасти – с наживленными через каждый метр крючками – могут тянуться на 80 и больше километров через океан, чтобы ловить всех, кто попадется. На крючке нет никакого указателя, предупреждающего рыбу-меч или тунца, чтобы они не попались на крючок, а именно эти два вида рыбы сейчас нельзя ловить. Если мы хотим, чтобы их популяции восстановились, нам нужно дать им передышку.

Аквакультура становится важной частью этой передышки. Это возобновляемое и масштабируемое производство. К тому же эта технология помогает защищать наши океаны. Национальное управление океанических и атмосферных исследований США (National Oceanic and Atmospheric Administ-ration, NOAA) считает, что рыбные фермы могут снизить потребность Америки в импорте морепродуктов (на 10 млрд долларов в год), создать рабочие места, уменьшить внешнеторговый дефицит и повысить продовольственную безопасность. Другие специалисты высказываются с большей осторожностью. Чтобы в условиях рыбной фермы накормить один килограмм хищных рыб, таких как лосось, требуется два килограмма рыбы, пойманной в дикой природе. Фермы по разведению рыбы страдают от всех проблем индустриализированного сельского хозяйства: при концентрации тысяч рыбин в одном месте возникает проблема отходов и болезней. Еще одна беда – разрушение природных обиталищ. Выращивание креветок, например, уничтожило прибрежные мангровые леса во многих регионах мира.

Но здесь мы тоже учимся на собственных ошибках. Благодаря сильному международному давлению индустрия выращивания креветок начинает реформироваться. Улучшенные растительные белки и переработанные животные отходы с добавлением аминокислот пришли в качестве корма на смену дикой рыбе на большинстве лососевых ферм. А объединение интегративного сельского хозяйства с аквакультурой позволяет добиться еще бóльших преимуществ.

Если взглянуть в меньшем масштабе, мы увидим, как азиатские рисовые фермеры используют рыбу для борьбы с паразитами риса, такими как золотистая улитка, и это одновременно повышает урожайность злака и увеличивает потребление рыбы (поскольку они заодно и выращивают ее). Мы увидим, как фермеры в Африке заводят рыбные пруды в своих огородах – ведь из ила на дне пруда получается отличное, богатое минералами удобрение. Если же взять более крупный масштаб, то самая впечатляющая инновация, возможно, принадлежит Уиллу Аллену, лауреату стипендии Фонда Макартуров («гранта для гениев»), основателю и руководителю компании Growing Power, которая строит одну из первых вертикальных ферм в США. Аллен, пионер урбанистической аквакультуры, собирается отвести первый этаж своей вертикальной фермы под рыбный садок. В резервуаре объемом примерно 415 000 литров будут выращивать 100 000 штук тилапии, желтого окуня и, возможно, солнечника в год. Отходы жизнедеятельности рыб будут перерабатываться в удобрения для растений на более высоких этажах теплицы.

Но это только начало. Если мы по-настоящему серьезно отнесемся к защите наших океанов и сохранению морепродуктов как источника белка, интегрированное сельское хозяйство должно стать серьезной частью всей нашей пищевой цепочки. Сильвия Эрл продолжает:

Если мы ценим океан и здоровье океана, то мы должны понять, что рыба критически важна для сохранения целостности океанических систем, которые, в свою очередь, поддерживают жизнь на планете. Мы слишком эгоистично относились к рыбе, думая, что она хороша только в приготовленном виде, вместо того чтобы задуматься о том, что она важна для экосистемы, которая имеет для нас огромную ценность.

 

Культивация мяса

В 1932 году Уинстон Черчилль сказал: «Через пятьдесят лет мы не будем абсурдно выращивать целую курицу с целью съесть ее грудку или ножку и вместо этого будем выращивать эти части отдельно в подходящей среде». Биотехнологам потребовалось на несколько десятилетий больше, чем обещал Черчилль, но уже сейчас очевидно, что результат стоил ожидания.

Культивируемое мясо (или, как некоторые предпочитают его называть, мясо из пробирки) – это мясо, выращенное из стволовых клеток. Процесс был впервые запущен NASA в конце 1990-х: агентство предположило, что выращивание мяса in vitro может стать хорошим способом обеспечить астронавтов пищей во время длительных космических полетов. К 2000 году из клеток золотой рыбки удалось вырастить съедобный мышечный белок, и исследования пошли полным ходом. К 2007 году прогресс набрал такой темп, что группа ученых из разных стран организовала Консорциум мяса из пробирки (In Vitro Meat Consortium), чтобы вывести производство культивируемого мяса на промышленный уровень. В следующем году экономический анализ, представленный на Симпозиуме мяса in vitro в Норвегии, продемонстрировал, что мясо, выращиваемое в гигантских резервуарах-биореакторах, может стоить примерно столько же, сколько стоит говядина в Европе. Организация «Люди за этическое обращение с животными» (PETA) учредила приз в один миллион долларов, чтобы стимулировать развитие проекта. К 2009 году ученые в Нидерландах успешно превратили в чашке Петри свиные клетки в съедобную свинину. С тех пор было проделано еще немало работы, и, хотя мы все еще находимся примерно в десятилетии от вывода этой технологии на рынок, мы определенно движемся в верном направлении.

Обеспечение людей белком – не единственная движущая сила этих изменений. Говорит Джейсон Мэтини, директор «Нового урожая» (New Harvest) – некоммерческой организации, которая спонсирует исследования в области культивируемого мяса:

Разведение крупного рогатого скота всегда будет экологической катастрофой, и говяжий фарш всегда будет вреден. Если даже говорить только о сокращении эмиссии парниковых газов, то переход на культивируемое мясо – это все равно как если бы все в Америке вдруг пересели из автомобилей на велосипеды. А что касается здоровья, то «натуральная» говядина всегда будет содержать жирные кислоты, которые вызывают заболевания сердечно-сосудистой системы. Невозможно превратить корову в лосося, но культивируемое мясо позволяет сделать именно это. Из мяса in vitro мы сможем изготовить гамбургер, который будет предотвращать инфаркты, вместо того чтобы вызывать их. [351]

Выращивая мясо в биореакторах, мы также уменьшаем риск новых быстро распространяющихся инфекционных заболеваний (источник 70 % таких заболеваний – домашний скот) и биологического заражения (что может произойти, например, если рабочий на бойне случайно вспорет внутренности у туши). У культивированного мяса нет внутренностей, поэтому нет и риска, что в нашу пищу попадут вредные бактерии. Существует, конечно, опасность, что культивированное мясо будет встречено с такой же враждебностью, что и ГМО-урожаи, но вспомним, что медики сейчас активно работают над регенерацией органов. Если мы готовы жить с выращенной в лаборатории почкой, которая постоянно будет находиться в нашем теле, какие у нас могут быть возражения против культивированной говядины, которая проведет несколько часов в наших желудках?

Но дело не только в пользе для нашего здоровья: 30 % тех площадей, которые сейчас используются под содержание домашнего скота, могут быть вновь засажены лесами. Участки амазонской сельвы размером с Бельгию, которые ежегодно вырубают под пастбища крупного рогатого скота, будут сохранены, 40 % мирового зерна, которое сейчас идет на корм скоту, останется в распоряжении людей, а сорок миллиардов животных, которых убивают каждый год в одних только США, перестанут страдать ради нашего удобства. Как сказала президент PETA Ингрид Ньюкирк в интервью журналу The New Yorker,

если люди не желают прекратить пожирать миллиарды животных, то какой радостью будет дать им животную плоть, полученную без ужасов бойни, транспортной фуры, без увечий, боли и страданий промышленного сельского хозяйства.

 

Между сейчас и потом

Все три технологии, которые мы обсудили в этой главе, потенциально способны накормить весь мир, но не все связанные с ними проблемы еще решены. В то время как аквакультура уже активно развивается, ГМО-индустрия в основном работает только с тремя культурами (хлопком, кукурузой и соей) и пока еще не распространилась на весь рынок растениеводства. Правда, золотистый рис (с повышенным содержанием витамина А) вот-вот преодолеет административные препоны и войдет в пищевую цепочку. Многие надеются, что золотистый рис спасет миллионы жизней, поэтому его появление, возможно, ускорит столь необходимый переворот в общественном мнении и облегчит принятие обществом других биокультур. Однако, учитывая административные преграды и прогнозы развития ГМО, до существенных изменений осталось еще 5-10 лет.

Появления культивированного мяса, вероятно, также придется подождать 10–15 лет, и такая же перспектива, скорее всего, ожидает вертикальные фермы. Более того, вертикальные фермы разработаны для размещения в городах или на прилегающих территориях, в то время как большая часть голодающих и недоедающих людей на Земле живет в нищете сельской глуши. Поэтому понятна необходимость промежуточных мер. Всеобъемлющей технологии пока не существует, но прямо в данный момент появляется целый комплекс сельскохозяйственных практик, которые объединяют в себе лучшее в агрономии, лесном хозяйстве, экологии, гидрологии и целом ряде других прикладных наук. Этот комплекс практик называется агроэкологией, и его основная идея – разработать пищевые сети, которые будут подражать дикой природе. Вместо стремления к нулевому воздействию на окружающую среду агроэкологи хотят создать системы, которые будут производить больше продовольствия на меньшей площади земли и одновременно укреплять экосистемы и способствовать биологическому разнообразию.

И у них получается. Недавнее исследование ООН обнаружило, что агроэкологические проекты в пятидесяти семи странах увеличили урожайность в среднем на 80 %, а в некоторых случаях – на 116 %. Одной из самых успешных оказалась двухтактная система, разработанная, чтобы помочь кенийским фермерам, выращивающим кукурузу, справиться с эпидемиями, вездесущими паразитическими сорняками и плохими почвами. Если не углубляться в технические детали, то двухтактная система – это взаимодействие совмещенных культур, для чего фермеры сажают между рядами кукурузы определенные растения. Некоторые растения испускают неприятные для насекомых запахи (и таким образом отгоняют их). Другие, такие как липкая паточная трава, «притягивают» насекомых, действуя как природная липучка для мух. Используя этот простой способ, фермеры увеличили урожайность на 100–400 %.

Что еще более важно: эти агроэкологические технологии сегодня широко доступны (триста тысяч африканских фермеров уже используют двухтактную систему), но мы только начинаем осознавать их истинный потенциал. Хотя сами эти практики определенно выглядят не слишком технологичными, данные для них приходят из информационных наук – то есть тех, которые сегодня развиваются по экспоненте. Более того, на агроэкологию не распространяется предубеждение против ГМО, и по мере появления все более совершенных биотехнологий новые семена могут быстро интегрироваться в эти экологически устойчивые системы. Как объяснила в своей статье для журнала Economist фитопатолог Калифорнийского университета в Дэвисе Памела Рональд, это может оказаться лучшим способом продвижения вперед:

Основная предпосылка почти любой сельскохозяйственной системы (конвенциональной, органической, любой промежуточной) заключается в том, что семена – это еще не всё. Фермерские практики, которые используются для культивации семян, не менее важны. Одни только генно-модифицированные растения не могут предоставить все изменения, необходимые в сельском хозяйстве. Также, безусловно, необходимы экологические системы земледелия и другие технологические изменения, вкупе с переменами в государственной политике. В то же время… сейчас ученые достигли явного согласия по вопросу о том, что генно-модифицированные растения и экологические фермерские практики могут сосуществовать, и, если мы серьезно относимся к построению экологически устойчивого сельского хозяйства в будущем, так оно и должно быть.

 

Сложная задача

Итак, что мы имеем сейчас: долговременную схему устойчивого повышения производительности, базирующегося на агроэкологических принципах, ГМО, синтетической биологии, многолетних поликультурах, вертикальных фермах, робототехнике и AI, интегрированном сельском хозяйстве, продвинутой аквакультуре и начинающемся буме культивированного мяса. Все это понадобится, чтобы накормить мир, который будут населять девять миллиардов людей. Это окажется непростой задачей. Все эти технологии нужно будет масштабировать одновременно, и чем быстрее, тем лучше. Последнее здесь главное. У нас есть мера количества растений, которые массово производятся каждый год. Она называется первичной продуктивностью. Так как каждое животное на Земле ест растения или других животных, которые едят растения, это хорошая мера для исследования того, как влияет потребление еды человечеством на всю планету. Прямо сейчас мы потребляем 40 % первичной продуктивности Земли. Это опасно высокая цифра. Насколько близко точка невозврата? Возможно, 45 % будет достаточно, чтобы запустить катастрофическую потерю биологического разнообразия, от которой наши экосистемы не смогут оправиться. Возможно, этой цифрой окажется 60 %. Пока никто этого не знает точно. Известно одно: если мы не выясним, как уменьшить наше воздействие на планету, то у нашей постоянно растущей популяции останется очень мало надежд на экологически устойчивое будущее. Но если мы будем следовать схеме, кратко очерченной в этой главе, мы сможем радикально повысить первичную продуктивность планеты, защитить ее биологическое разнообразие и одновременно исполнить старейший гуманистический зарок человечества: накормить голодных. Причем сможем сделать это в духе истинного изобилия.