Кентерберийские головоломки

Дьюдени Генри Эрнест

Задачи на шахматной доске

 

 

От сильного порыва ветра каминная труба сорвалась с крыши и рухнула прямо под ноги случайному прохожему. Он сказал спокойно:

– Мне это ни к чему: я не курю.

Некоторые читатели, увидев головоломку на шахматной доске, склонны сделать столь же невинное замечание:

– Мне это ни к чему: я не играю в шахматы.

Такое отношение в значительной мере результат общераспространенного, но ошибочного убеждения, что обычная шахматная головоломка из тех, которые мы привыкли встречать в периодике (и которые по каким-то соображениям называют задачами), связана с самой игрой в шахматы. Однако в шахматной игре отсутствуют правила, которые обязывали бы нас делать мат в два, три или четыре хода, тогда как большинство позиций в этих головоломках таково, что у одного из игроков (если бы это происходило в реальной шахматной партии) преимущество оказалось бы настолько большим, что другой игрок просто признал бы свое поражение, не доиграв партию до конца. Решение этих головоломок вряд ли поможет вам (да и то косвенным образом) при игре в шахматы; известно, что мастера шахматных головоломок – весьма посредственные игроки, и vice versa. Если случайно кто-то оказывается силен и в той и в другой области, то это лишь исключение из правила.

И все же разделенная на клетки доска и ходы шахматных фигур сами по себе весьма примечательным образом приводят к изобретению наиболее занимательных головоломок. Здесь имеется такой простор для всевозможных вариаций, что истинный любитель головоломок не сможет пройти мимо. Именно охраняя интересы тех читателей, которые пугаются одного вида шахматной доски, я публиковал первоначально головоломки этого типа под различными причудливыми одеждами. Одни из этих задач я все еще оставляю в завуалированном виде, другие же я перевел на язык шахматной доски. В большинстве случаев читателю не потребуются вообще никакие познания в области шахмат, но все же для тех, кто не знаком с терминологией, ходами и обозначениями шахматной игры, я ниже дам краткие пояснения.

Сначала мы будем иметь дело с некоторыми вопросами, относящимися к самой шахматной доске, затем – с некоторыми статическими задачами, связанными поочередно с ладьей, слоном, ферзем и конем, затем – с динамическими головоломками, связанными с теми же шахматными фигурами, и, наконец, речь пойдет о смешанных головоломках на шахматной доске. Я надеюсь, что формулы и таблицы, приведенные после статических головоломок, окажутся интересными сами по себе, поскольку публикуются впервые.

 

Шахматная доска

Шахматная доска представляет собой квадратную плоскую поверхность, разделенную прямыми линиями, пересекающимися под прямым углом, на 64 квадрата. Первоначально они не были раскрашены поочередно в черный и белый (или какие-либо два других) цвета, и это усовершенствование было введено, просто чтобы помочь глазу при игре. Польза такой раскраски несомненна. Например, она облегчает манипуляции со слонами, позволяя с одного взгляда оценить, что наш король или пешки на черных клетках не находятся под угрозой вражеского слона, передвигающегося по белым клеткам. И все же раскраска шахматной доски не существенна для самой игры как таковой. Точно так же, когда мы формулируем головоломки на шахматной доске, часто неплохо помнить, что дополнительный интерес может представлять «обобщение» на случай доски с любым числом клеток или ограничение задачи некой конфигурацией клеток, не обязательно квадратной. Мы приведем несколько головоломок такого типа.

115. Разбиения шахматной доски. Как-то я задался вопросом: сколькими различными способами можно разбить шахматную доску на две части одинаковой формы и размера, если разрезы проводить по границам клеток? Выяснилось, что эта задача одновременно и занимательна и трудна. Я представляю ее в упрощенном виде, взяв доску меньших размеров.

Очевидно, что доску, состоящую из 4 клеток (2×2), можно разделить лишь одним способом (прямой, проходящей через центр), ибо повороты и отражения мы не будем рассматривать как новые решения. В случае доски из 16 клеток (4×4) существует ровно 6 различных способов. Они все приведены здесь, на рисунке, и читателю не удастся найти еще какое-нибудь решение. Теперь возьмите большую доску, 6×6, и попытайтесь определить число способов в этом случае.

116. Львы и короны. Юная леди, которую вы видите на рисунке, при раскройке столкнулась с небольшой трудностью, помочь преодолеть которую предлагается читателю. По неким причинам, о которых она умалчивает, ей нужно разрезать этот квадратный кусок дорогой ткани на 4 части одинаковых размеров и формы, но важно, чтобы в каждой из частей оказалось по льву и по короне.

Поскольку леди настаивает на том, чтобы разрезы пришлись только на границы квадратов, она весьма озадачена. Можете ли вы показать ей нужный способ? Существует только один возможный способ раскройки ткани.

117. Доски с нечетным числом клеток. Рассмотрим доски, которые содержат нечетное число клеток. Начнем с доски 3X3. Ее можно разрезать на равные части, лишь удалив центральную клетку. Вполне очевидно, что это можно сделать только одним способом, как показано в случае а. Части А и В имеют одинаковые размеры и форму, и при любом другом способе разрезания получатся такие же части, а, как мы знаем, в подобном случае способы не считаются различными.

Я предлагаю читателю разрезать на две части одинакового размера и формы максимальным числом различных способов доску 5×5 (случай 6). На рисунке приведен один из таких способов. Сколько всего существует различных способов? Часть, которая при перевертывании другой стороной кверху принимает ту же форму, что и другая часть, не считается обладающей отличной от нее формой.

118. Задача Великого ламы. Жил некогда Великий лама, у которого была шахматная доска из чистого золота, прекрасно выполненная и, разумеется, огромной ценности. Каждый год в Лхасе среди лам проводился турнир, и тому из них, кому удавалось выиграть у Великого ламы, воздавались большие почести, его имя гравировалось на оборотной стороне доски, а в клетку, где был поставлен мат, вправляли драгоценный камень. После четырех поражений Великий лама умер (возможно, от огорчения).

Новый Великий лама был неважным игроком и предпочитал другие виды невинных развлечений: он больше любил рубить людям головы. Шахматы он считал загнивающей игрой, которая не способствует совершенствованию разума или морали, и полностью отменил турниры. Затем он послал за четырьмя ламами, имевшими дерзость играть лучше Великого ламы, и сказал им:

– Ничтожные варвары, именующие себя ламами! Знаете ли вы меру своей дерзости? Вы осмелились претендовать на то, что в чем-то превосходите моего предшественника?! Возьмите эту доску и прежде, чем рассвет займется над камерой пыток, разрежьте ее на 4 равные части одинаковой формы, чтобы каждая содержала по шестнадцать целых клеток и по одному драгоценному камню! Если вы в сем деле не преуспеете, то, к вашей же печали, мы придумаем другое испытание. Идите!

Четверо лам преуспели в этом на первый взгляд безнадежном деле. Можете ли вы показать, как следует разрезать доску на 4 равные части одинаковой формы, содержащие по драгоценному камню, если разрезы проводить исключительно по границам клеток?

119. Окно аббата. Однажды аббат монастыря святого Эдмондсбери от излишней для его головы «набожности» так занемог, что не в силах был подняться с постели. Он лежал без сна, и голова его беспокойно металась по подушке, отчего внимательные монахи заключили, что их настоятеля беспокоит какая-то навязчивая мысль. Однако никто не решился спросить его, в чем дело, ибо аббат отличался суровым характером и не потерпел бы никаких расспросов. Внезапно он позвал отца Джона, и вскоре этот почтенный монах предстал перед ложем.

– Отец Джон, – сказал аббат, – знаешь ли ты, что я пришел в этот грешный мир в сочельник?

Монах кивнул утвердительно.

– А не говорил ли я тебе, что, родившись в сочельник, я не люблю ничего нечетного? Смотри! – Аббат указал на большое окно трапезной, которое вы видите на рисунке. Монах взглянул на него и задумался.

– Заметил ли ты, что шестьдесят четыре просвета расположены так, что их число вдоль вертикалей и горизонталей четно; но вдоль всех диагоналей, за исключением четырнадцати, их число нечетно? Почему так происходит?

– По правде говоря, отец мой, это лежит в самой природе вещей и не может быть изменено.

– Нет, это следует изменить. Я повелеваю тебе сегодня же закрыть некоторые из просветов так, чтобы число просветов вдоль каждой прямой оказалось четным. Смотри, чтобы это было сделано без промедления, иначе погреба будут заперты на целый месяц и другие не менее тяжкие кары падут на твою голову.

Отец Джон, ломая голову, едва не лишился разума, но, посоветовавшись наконец с одним монахом, искушенным в тайных науках, сумел все же удовлетворить прихоть аббата. Какие просветы были заделаны, чтобы число оставшихся просветов вдоль каждой вертикали, горизонтали и диагонали оказалось четным, а число заделанных просветов при этом было минимальным?

120. Китайская шахматная доска. На какое максимальное число различных частей можно разрезать шахматную доску (все разрезы проводятся только вдоль линий) так, чтобы при этом никакие две части не оказались полностью одинаковыми? Помните, что части, отличающиеся расположением черных и белых клеток, считаются различными. Так, единственная белая клетка отличается от единственной черной клетки; ряд из трех клеток, две из которых белые, а одна черная, отличается от такого же ряда с двумя черными и одной белой клетками и т. д. Если две части нельзя расположить на столе так, чтобы они выглядели совершенно одинаковыми, то они считаются различными; а поскольку на обратной стороне доски рисунок не нанесен, то части нельзя переворачивать другой стороной кверху.

121. Буквы из шахматных клеток. Однажды я развлекался тем, что пытался разрезать обыкновенную шахматную доску на буквы, из которых удалось бы сложить какую-нибудь фразу. На рисунке видно, как мне удалось составить предложение CUT ТНУ LIFE с точками между словами. Однако идеальное предложение должно было бы содержать, конечно, лишь одну точку, но мне не удалось его получить.

Эта фраза представляет собой призыв к преступнику покончить с той полной зла жизнью, которую он ведет. Сможете ли вы опять сложить из этих букв правильную шахматную доску?

 

Статические шахматные головоломки

122. Восемь ладей. На рисунке а видно, что каждая клеточка доски либо занята, либо находится под угрозой нападения одной из ладей и что каждая ладья «защищена» (если бы они были попеременно белыми и черными, то мы бы сказали «атакована») другой ладьей.

Поместив 8 ладей на любую горизонталь или вертикаль, мы получим тот же эффект. На рисунке б каждая клетка снова либо занята, либо находится под угрозой, но в этом случае каждая ладья не защищена. Теперь скажите, сколькими различными способами 8 ладей можно расположить на шахматной доске так, чтобы при этом каждая клетка оказалась либо занятой, либо под угрозой нападения, но чтобы ни одна ладья не была защищена другой ладьей? Я не хочу здесь вдаваться в вопросы, касающиеся отражений и поворотов, так что если вы расположите ладьи на другой диагонали, то это будет считаться другим расположением, аналогичным образом обстоит дело и с расположениями, получающимися из некоторого расположения с помощью поворотов.

123. Четыре льва. Эта головоломка состоит в том, чтобы выяснить, сколькими различными способами можно расположить четырех львов так, чтобы при этом на любой горизонтали и вертикали находилось не более чем по одному льву. Отражения и повороты не считаются различными.

Так, в приведенном на рисунке примере расположение львов вдоль второй диагонали мы не будем считать отличным от исходного. Действительно, если вы поднесете второе расположение к зеркалу или повернете его на четверть полного оборота, то получите первое расположение. Это простая маленькая головоломка, но она требует некоторого внимания.

124. Незащищенные слоны. Расположите наименьшее число слонов на обычной шахматной доске таким образом, чтобы каждая клетка оказалась либо занятой, либо под угрозой нападения. Можно заметить, что ладья в этом отношении более могуча, чем слон, ибо, где бы она ни располагалась, под ее угрозой всегда находятся 14 клеток, тогда как под угрозой слона может находится 7, 9, 11 или 13 клеток в зависимости от того, на какой диагонали он стоит, Здесь не лишне напомнить, что, говоря о диагоналях шахматной доски, мы не ограничиваемся двумя большими диагоналями, соединяющими противоположные ее углы, а имеем в виду и более короткие прямые, параллельные этим большим диагоналям. Читателю стоит хорошенько это запомнить, дабы избежать недоразумений в будущем.

125. Защищенные слоны. Сколько теперь потребуется слонов, чтобы каждая клетка оказалась либо занятой, либо под угрозой, а каждый слон находился под защитой другого слона?

126. Собрание слонов. Наибольшее число слонов, которых можно поместить на одной шахматной доске так, чтобы ни один слон не атаковал другого, равно 14. На рисунке показано простейшее расположение такого типа.

Фактически на квадратной доске любого размера число слонов, которых можно расположить так, чтобы они не атаковали друг друга, всегда на 2 меньше удвоенного количества клеток, расположенных вдоль одной из ее сторон. Интересная головоломка состоит в том, чтобы определить, сколькими различными способами 14 слонов можно расположить на обычной шахматной доске так, чтобы они не атаковали друг друга. Я приведу крайне простое правило, позволяющее определить число таких способов для доски любого размера.

127. Восемь ферзей. Ферзь на шахматной доске – куда более сильная фигура, чем слон. Если вы поместите ферзя на один из четырех квадратов в центре доски, то под его угрозой окажется не менее чем 27 других клеток, а если вы попытаетесь запрятать его в угол, то все равно он будет атаковать 21 клетку. Восемь ферзей можно расположить на доске таким образом, чтобы ни один из них не атаковал другого.

Существует старая головоломка (впервые предложенная Науком в 1850 г.), которая состоит в том, чтобы определить число различных способов, какими это можно сделать. Один такой способ приведен на рисунке, а всего число существенно различных способов равно 12. Если же мы будем считать повороты и отражения различными способами, то из этих 12 образуется 92 способа. Расположение, приведенное на рисунке, обладает определенной симметрией. Если вы перевернете страницу вверх ногами, то получите то же самое расположение, однако если вы повернете доску так, чтобы внизу оказалась одна из боковых сторон, то получите расположение, отличное от исходного. Если вы зеркально отразите эти 2 расположения, то получите еще 2 способа. Далее, все другие 11 расположений не симметричны, и, следовательно, из каждого из них с помощью таких поворотов и отражений получается по 8 способов. Таким образом, становится понятно, почему 12 существенно различных решений порождают 92 расположения, как я уже говорил, а не 96, как получилось бы, если бы все 12 решений оказались несимметричными. Следует ясно представлять себе природу поворотов и отражений, когда имеешь дело с головоломками на шахматной доске.

Сумеет ли читатель расположить 8 ферзей на шахматной доске таким образом, чтобы ни один из них не атаковал другого и чтобы никакие 3 ферзя не располагались ни на какой наклонной прямой одновременно? Взглянув еще раз на рисунок, мы можем заметить, что приведенное там расположение не удовлетворяет нужным условиям, поскольку на двух наклонных прямых, указанных пунктиром, располагается по три ферзя. Среди 12 существенных решений есть только одно, удовлетворяющее нашему дополнительному условию. Сможете ли вы найти его?

128. Восемь звезд. В этой головоломке 8 звезд нужно расположить на приведенной на рисунке доске так, чтобы пи одна звезда не оказалась на одной горизонтали, вертикали или диагонали с другой.

Вы видите, что одна звезда уже поставлена в клетку, передвигать ее нельзя, поэтому читателю придется расставить лишь 7 остальных звезд. Но вы не должны помещать звезды на заштрихованные клетки. Существует только одно решение данной головоломки.

129. Мозаика. Искусство создания рисунков или узоров из кусочков по-разному окрашенных твердых материалов очень и очень древнее. С ним, безусловно, были знакомы во времена фараонов, а в библейской книге Эсфирь мы находим упоминание о «мостовых из красного и голубого, и белого, и черного мрамора». Некоторые из дошедших до нас древних мозаик, особенно римских, показывают, что даже там, где геометрический узор и не бросается в глаза, над внешне беспорядочными расположениями их создатели в свое время изрядно поломали голову. Особенно в тех случаях, когда работа выполнялась с ограниченным числом цветов, они свидетельствуют об удивительной изобретательности, благодаря которой удалось добиться того, чтобы одинаковые оттенки не располагались вблизи друг друга. Читательницы, знакомые с искусством шитья всевозможных лоскутных одеял, покрывал, подушек и т. п., знают, сколь желательно при ограниченном выборе материала избежать близкого расположения одинаковых кусочков ткани. Наша головоломка в равной мере может относиться и к лоскутным одеялам, и, например, к выложенному плитками полу.

На рисунке видно, как квадратный участок пола можно выложить 62 квадратными плитками восьми цветов: фиолетового (Ф), красного (К), желтого (Ж), зеленого (3), оранжевого (О), розового (Р), белого (Б) и голубого (Г) так, чтобы при этом ни одна плитка не находилась на одной горизонтали, вертикали или диагонали с плиткой того же цвета «Шестьдесят четыре плитки при тех же условиях выложить было бы невозможно, но два заштрихованных квадратика заняты решетками вентиляции.

Головоломка состоит в следующем. Эти две решетки вентиляции следует переместить на квадраты, обведенные жирными линиями, а в угловые заштрихованные квадраты поместить две плитки. Сможете ли вы переместить 32 плитки так, чтобы в результате ни одна из плиток не оказалась на одной вертикали, горизонтали или диагонали с другой плиткой того же цвета?

130. Под «вуалью». Изучив приведенный здесь рисунок, читатель увидит, что я расположил на нем восемь букв V, восемь Е, восемь I и восемь L таким образом, что ни одна из букв не находится на одной горизонтали, вертикали или диагонали с такой же буквой. Так, ни одно V не лежит на одной прямой с другим V, ни одно Е – с другим Е и т. д.

Существует огромное число различных способов размещения букв при данном условии. Головоломка состоит в том, чтобы найти расположение, приводящее к наибольшему числу слов из четырех букв, которые можно читать сверху вниз, снизу вверх и по диагонали. Все повторения считаются другими словами, а всего можно использовать пять вариаций: VEIL, VILE, LEVY, LIVE и EVIL.

Все станет совершенно ясным, если я скажу, что на приведенном рисунке различных слов – восемь, поскольку первая и последняя горизонталь дают VEIL, вторая и седьмая вертикаль – VEIL, а две диагонали, начинающиеся от L в 5-й горизонтали от Е в 8-й горизонтали обе дают как LIVE, так и EVIL. Всего слова можно прочитать восемь раз.

Эта трудная головоломка со словами приводится как пример использования шахматной доски при решении задач такого типа. Только тот, кто хорошо знаком с задачей о восьми ферзях, может надеяться решить ее.

131. Квадрат Баше. Одна из старейших карточных головоломок была, я полагаю, опубликована Клодом Гаспаром Баше де Мезириаком в 1624 г. В ней требовалось расположить 16 валетов, дам, королей и тузов в виде квадрата так, чтобы ни в каком ряду из четырех карт, вертикальном, горизонтальном или диагональном, не было двух карт одинаковой масти или одинакового достоинства. Это сделать довольно просто, но в головоломке требовалось указать, сколько всего существует таких способов. Выдающийся французский математик А. Лябосн в своем современном издании Баше приводит неправильный ответ. И все же головоломка очень проста. Любое расположение с помощью поворотов и зеркальных отражений, которые Баше рассматривал как новые решения, порождает еще семь расположений.

Обратите внимание, что речь идет о «ряде из четырех карт»; поэтому из диагоналей придется рассматривать лишь две большие диагонали.

132. Тридцать шесть ячеек с буквами. На рисунке показан ящик, содержащий 36 ячеек с буквами. Головоломка состоит в том, чтобы переставить ячейки таким образом, чтобы никакое А не оказалось на одной вертикали, горизонтали или диагонали с другим А, ни одно В – с другим В, ни одно С – с другим С и т. д.

Вы обнаружите, что поместить все буквы в ящик при этих условиях невозможно, однако постарайтесь поместить максимально возможное число таких букв. Естественно, разрешается пользоваться лишь буквами, изображенными на рисунке.

133. Теснота на шахматной доске. В головоломке требуется переставить 51 шахматную фигуру, приведенную на рисунке, таким образом, чтобы ни один ферзь не атаковал другого ферзя, ни одна ладья не атаковала другую ладью, ни один слон не атаковал другого слона и ни один конь не атаковал другого коня.

При этом мы не должны обращать внимания на то, что в промежутке между фигурами данного типа могут оказаться фигуры Других типов. Например, мы будем считать, что два ферзя атакуют друг друга даже в том случае, если на линии атаки окажутся, скажем, слон, конь и ладья. Это же относится и ко всем остальным типам фигур. Нетрудно расположить на доске фигуры каждого типа по отдельности; но сложности возникают при попытке совместить все эти расположения на одной доске, ибо для некоторых фигур может не оказаться свободного места.

134. Цветные фишки. На рисунке показаны 25 фишек, окрашенных в 5 цветов: красный (К), желтый (Ж), голубой (Г), оранжевый (О) и зеленый (З), причем фишек каждого цвета – по 5 штук (они отмечены номерами 1, 2, 3, 4 и 5).

Требуется так расположить их в виде квадрата, чтобы никакие два одинаковых цвета и никакие два одинаковых номера не оказались на одной из пяти горизонталей, пяти вертикалей и ни на одной из двух диагоналей. Сможете ли вы это сделать?

135. Деликатное «искусство» лизания марок. Страховой акт служит наиболее плодовитым источником занимательных головоломок, особенно занимательных, если вы случайно окажетесь среди освобожденных от налога. Кто-то предложил следующую небольшую головоломку, касающуюся деликатного «искусства» лизания марок. Если ваша карточка разделена на 16 квадратиков (4 X X 4), а у вас много марок достоинством в 1, 2, 3, 4 и 5 пенсов, то на какую наибольшую сумму вы сумеете наклеить на нее марок, если министр финансов запрещает вам наклеивать две марки одинакового достоинства на одной и той же горизонтали, вертикали или диагонали?

Разумеется, в каждую клетку можно наклеивать лишь одну марку. Вероятно, читатель, заглянув в решение, обнаружит, что его провели так же, как он сам проводил языком по маркам. Скорее всего, до максимума ему не хватит двух пенсов. Один мой приятель спросил в почтовом ведомстве, как следует наклеивать марки, но там его послали к чиновнику по таможенным и акцизным сборам, который направил его в страховое агентство, где ему посоветовали обратиться в некое общество, там в свою очередь его послали… так он и ходит до сих пор.

136. Сорок девять фишек. Сможете ли вы расположить 49 изображенных здесь фишек в виде квадрата так, чтобы при этом никакие две одинаковые буквы и никакие две одинаковые цифры не оказались на одной вертикали, горизонтали или диагонали?

Здесь под «диагоналями», как и на шахматной доске, понимаются прямые, параллельные любой из двух больших диагоналей.

137. Три овцы. У фермера было 3 овцы и 16 загонов, отделенных друг от друга жердями, как показано на рисунке. Сколько существует различных способов, которыми фермер может поместить этих овец в отдельные загоны так, чтобы каждый загон оказался либо занятым, либо расположенным на одной вертикали, горизонтали или диагонали с по крайней мере одной овцой? Я привел одно расположение, удовлетворяющее этим условиям.

Сколько других расположений сумеете найти вы? Решения, полученные с помощью поворотов и отражений из какого-то одного решения, мы не считаем отличными от него. Читатель может рассматривать овцу как ферзя. Тогда задача будет сводиться к тому, чтобы расположить трех ферзей таким образом, чтобы каждая клетка была либо занята, либо атакована по крайней мере одним ферзем, причем это следует сделать максимальным числом способов.

138. Головоломка с пятью собаками. В 1863 г. К. Ф. де Яниш первым стал обсуждать «Головоломку о пяти ферзях», где требовалось расположить 5 ферзей на шахматной доске так, чтобы каждая клетка либо оказалась занятой, либо находилась под угрозой нападения. Яниш показал, что если ни одному ферзю нельзя атаковать другого ферзя, то существует 91 способ размещения пяти ферзей, если не различать способы, полученные из данного с помощью поворотов и отражений. Если ферзям разрешается атаковать друг друга, то здесь существуют сотни способов.

На рисунке условно изображены 64 конуры. Можно заметить, что в 5 из них сидит по собаке, а при более пристальном взгляде обнаруживается, что каждая конура находится на одной прямой с по крайней мере одной из собак (по горизонтали, вертикали или диагонали). Возьмите любую конуру, какую пожелаете, и вы увидите, что всем удастся провести из нее прямую в одном из трех упомянутых направлений, проходящую через собаку.

Головоломка состоит в том, чтобы переставить 5 собак и определить, сколькими различными способами их можно разместить по 5 конурам вдоль прямой так, чтобы каждая конура всегда была на одной прямой по крайней мере с одной собакой. Размещения, получающиеся с помощью поворотов и отражений, мы здесь считаем различными.

139. Пять византийских полумесяцев. Когда Филипп Македонский, отец Александра Великого, при осаде Византии столкнулся с громадными трудностями, он послал своих людей сделать подкоп под стены. Однако замыслам полководца не суждено было осуществиться, ибо едва операция началась, как в небе появился месяц и, осветив все вокруг, выдал план Филиппа противнику. Византийцы, естественно, ликовали и в знак благодарности воздвигли храм в честь Дианы, а полумесяц стал с тех пор символом страны. Перед статуей Дианы квадратный участок пола был выложен 64 драгоценными плитками. Все они были однотонными, за исключением пяти, на которых был изображен полумесяц. Эти пять плиток по неким оккультным причинам были размещены таким образом, чтобы каждая плитка оказалась под наблюдением (то есть на одной вертикали, горизонтали или диагонали) по крайней мере одного из полумесяцев. Византийский архитектор выбрал расположение, приведенное на рисунке.

Закрыть один из этих полумесяцев значило совершить страшное кощунство, за которое виновного ожидала долгая и мучительная смерть. Но по случаю некоего празднества пришлось на этот участок пола положить квадратный коврик максимально возможных размеров (его размеры на рисунке показаны штриховкой).

Головоломка состоит в том, чтобы показать, как именно архитектор, если бы он предвидел ситуацию с ковром, мог бы расположить свои пять полумесяцев в соответствии с указанными условиями, предусмотрев место для квадратного ковра максимальных размеров, не закрывающего не только ни один полумесяц, но даже часть его.

140. Головоломка с ферзями и слоном. Обратите внимание на то, что каждая клетка приведенной на рисунке доски либо занята, либо находится под угрозой нападения.

Требуется поставить слона вместо ладьи на ту же клетку, а затем 4 ферзя переставить на другие места так, чтобы каждая клетка вновь оказалась либо занятой, либо под угрозой.

141. Южный Крест. На приведенном здесь рисунке изображены 5 планет и 81 неподвижная звезда, причем 5 звезд закрыты планетами.

Можно заметить, что каждая звезда, за исключением звезд с черным пятном в середине, расположена на одной вертикали, горизонтали или диагонали по крайней мере с одной из планет. Нужно так переставить планеты, чтобы все звезды оказались на одной прямой по крайней мере с одной планетой.

Переставляя планеты, вы можете каждую из них передвинуть один раз по вертикали, горизонтали или диагонали. Разумеется, после перестановки они закроют 5 новых звезд, отличных от тех, которые закрыты сейчас.

142. Головоломка с вешалками для шляп. Теперь я хочу представить головоломку с пятью ферзями, которую я в причудливом одеянии сформулировал в 1897 г. Поскольку тогда ферзи предстали в облике шляп, висящих на 64 вешалках, то я сохраняю ее название. На рисунке можно заметить, что каждая клетка либо занята, либо находится под угрозой нападения.

Требуется передвинуть одного ферзя на другую клетку так, чтобы каждая клетка все еще оставалась либо занятой, либо под угрозой; затем нужно передвинуть второго ферзя при том же условии, затем – третьего и, наконец, – четвертого. После того как будет передвинут четвертый ферзь, каждая клетка должна быть либо занята, либо находиться под ударом, но ни один ферзь не должен быть атакован другим ферзем. Разумеется, вы можете передвигать ферзей не обязательно «ходом ферзя», а просто переставлять их на любое место доски.

143. Амазонки. Эта головоломка основана на одной задаче, предложенной капитаном Тертоном. Передвиньте 3 ферзя на другие клетки так, чтобы на доске оказалось 11 клеток, не находящихся под угрозой нападения. Перемещения не обязательно должны совершаться «ходом ферзя». Вы можете переставлять ферзей, куда пожелаете. Существует только одно решение данной головоломки.

144. Головоломка с пешками. Поставьте две пешки в центр доски в позиции d4 и е5. Далее, разместите оставшиеся 14 пешек (всего 16) таким образом, чтобы никакие 3 пешки не располагались на одной прямой, идущей в любом направлении.

Обратите внимание, что я сознательно говорю о пешках, а не о ферзях, ибо здесь под прямыми понимаются не вертикали, горизонтали и диагонали, по которым ходит ферзь, а произвольные геометрические прямые; пешки же рассматриваются просто как геометрические точки, совпадающие с центром клетки, занятой данной пешкой.

145. Охота на льва. Мой друг капитан Потхэм Холл, знаменитый охотник, говорит, что нет ничего более захватывающего, чем столкновение со стадом – табуном – стаей (я добрую четверть часа вспоминал нужное слово, пока наконец не вспомнил) – с прайдом львов. Почему именно группа львов называется «прайдом», группа собак – «сворой», а группа тетеревов – «выводком», относится к тайнам филологии, в которые я здесь не буду вдаваться.

Так вот, капитан говорит, что если смелый лев пересечет ваш путь в пустыне, то ситуация становится острой, ибо лев обычно выслеживает человека так же, как и человек охотится за царем зверей. И когда они встречаются, между ними всегда происходит схватка. Некоторое размышление по поводу этой несчастной и искони длящейся кровной вражды навело меня на мысль подсчитать вероятность встречи человека со львом. Во всех подобных случаях приходится начинать с некоторых более или менее произвольных допущений, вот почему, подумалось мне, окажется полезным рисунок, на котором вы видите строго регулярные дорожки в пустыне. Хотя капитан уверяет меня, что пути львов обычно весьма близки к такому расположению, я в этом сильно сомневаюсь.

Головоломка состоит просто в том, чтобы выяснить, сколькими различными способами человека и льва можно поместить в два различных места, не расположенных на одной и той же тропе. Под «тропами» понимаются лишь указанные прямые. Так, за исключением угловых положений, каждый соперник находится на двух и не более тропах. Можно заметить, что имеется большой простор для того, чтобы они избежали друг друга з пустыне; мы всегда понимаем это обстоятельство.

146. Защита коней. Конь – это не более чем безответственный презренный шут шахматной доски. «Это очень ненадежный, трусливый, но деморализующий негодяй, – сказал о нем один американский писатель. – Он может ходить лишь на расстояние двух клеток, однако берет качеством там, где не хватает количества, ибо он может прыгать на одну клетку вбок, подобно коту, может стоять на одной ноге посреди доски и прыгнуть на любую из восьми клеток, на какую ему заблагорассудится, может находиться по одну сторону изгороди и подло убить троих или четверых, стоящих по другую ее сторону; он обладает неприятной особенностью влезать в безопасные места, откуда он может угрожать королю, заставляя его менять позицию, а затем способен проглотить ферзя. По изворотливости конь не знает себе равных, и когда вы прогоните его через одну щель, он влезет в другую». Одна за другой предпринимались безуспешные попытки дать простое, краткое и точное определение хода коня. В действительности он проходит одну клетку как ладья, а другую как слон, причем все это происходит за один скачок, так что несущественно, занята или нет первая клетка, через которую он проходит. Практически это единственный скачкообразный ход в шахматах. Но хотя этот ход и трудно определить формально, даже ребенок постигнет его за несколько минут.

Я показал на рисунке, как можно расположить на шахматной доске 12 коней (наименьшее возможное число), чтобы при этом каждая клетка оказалась либо занятой, либо под угрозой нападения коня. Переберите по очереди все клетки, и вы обнаружите, что дело обстоит именно таким образом. Определите теперь наименьшее число коней, которое требуется, чтобы каждая клетка оказалась либо занятой, либо под ударом, а каждый конь был защищен другим конем. Как следует расставить этих коней? Можно заметить, что из 12 изображенных на рисунке коней лишь 4 защищены подобным образом.

 

Охраняемая шахматная доска

На обычной шахматной доске 8×8 каждую клетку можно сделать защищенной (то есть либо занятой, либо атакованной) с помощью пяти ферзей – наименьшего возможного количества. Существует ровно 91 фундаментально различное расположение, при котором ни один ферзь не атакует другого ферзя. Если каждый ферзь должен атаковать другого ферзя (или быть им защищенным), то существует по меньшей мере 41 расположение, и я нашел 150 способов, при которых некоторые ферзи атакованы, а некоторые нет, но в последнем случае очень трудно точно перечислить все решения.

На обычной шахматной доске каждую клетку можно защитить восемью ладьями (наименьшее число) 40 320 способами, если ни одна ладья не имеет права атаковать другую ладью, но не известно, сколько среди них существенно различных способов (см. выше решение задачи «Восемь ладей»). Я не пересчитал способы, при которых каждая ладья защищена другой ладьей.

На обычной шахматной доске каждую клетку можно защитить восемью слонами (наименьшее число), если ни одному слону не разрешается атаковать другого слона. Если каждый слон должен оказаться защищенным, то необходимо 10 слонов (см. выше головоломки «Незащищенные слоны» и «Защищенные слоны»).

На обычной шахматной доске каждую клетку можно защитить двенадцатью конями, если все кони, кроме четырех, не защищены. Но если каждый конь должен оказаться защищенным, то требуется 14 коней (см. выше головоломку «Защита коней»).

Если иметь дело с ферзями на досках п×п, где п меньше 8, то представляют интерес следующие результаты:

1 ферзь защищает доску 2×21 существенным способом;

1 ферзь защищает доску 3×31 существенным способом;

2 ферзя защищают доску 4×43 существенными способами (защищая друг друга);

3 ферзя защищают доску 4×42 существенными способами (не защищая друг друга);

3 ферзя защищают доску 5×5 37 существенными способами (защищая друг друга);

3 ферзя защищают доску 5×52 существенными способами (не защищая друг друга);

3 ферзя защищают доску 6×61 существенным способом (защищая друг друга);

4 ферзя защищают доску 6×6 17 существенными способами (не защищая друг друга);

4 ферзя защищают доску 7×75 существенными способами (защищая друг друга);

4 ферзя защищают доску 7×71 существенным способом (не защищая друг друга).

Расположения на шахматной доске, не находящиеся под угрозой нападения.

Мы знаем, что п ферзей можно всегда разместить на квадратной доске с п 2 клетками (если п › 3), чтобы ни один ферзь при этом не атаковал другого ферзя. Однако общей формулы, позволяющей найти число всех таких размещений, еще не найдено; вероятно, ее просто не существует. Известны следующие результаты:

при п = 4 существует 1 фундаментальное решения, а всего 10 решений;

при п = 5 существует 2 фундаментальных решения, а всего 10 решений;

при п = 6 существует 1 фундаментальное решение, а всего 4 решения;

при п = 7 существует 6 фундаментальных решений, а всего 40 решений;

при п = 8 существует 12 фундаментальных решений, а всего 92 решения;

при п = 9 существует 46 фундаментальных решений;

при п = 10 существует 92 фундаментальных решения;

при п = 11 существует 341 фундаментальное решение.

Очевидно, п ладей можно разместить на доске п×п так, чтобы они не атаковали друг друга, п! способами, но вот сколько среди них существенно различных, мне удалось узнать лишь для четырех случаев, когда п равно 2, 3, 4 и 5. Ответами будут соответственно 1, 2, 7 и 23 (см. головоломку «Четыре льва»).

Мы можем разместить 2п – 2 слонов на доске п×п двумя способами (см. головоломку «Собрание слонов»). Для досок со стороной в 2, 3, 4, 5, 6, 7 и 8 клеток существует соответственно 1, 2, 3, 6, 10, 20, 36 фундаментально различных размещений. В случае нечетного п существует 21/2(n-4) таких размещений, каждое из которых порождает с помощью поворотов и отражений по 4 других размещения, и 2 п- 3 – 21/2(n-3) размещение, порождающие по 8 других размещений. В случае четного п их существует 21/2(n-2), каждое с помощью поворотов и отражений порождает по 4, и 2n-3 – 21/2(n-4), порождающих по 8 размещений.

На доске п×п мы можем разместить 1/2 (n 2 + 1) коней, не атакующих друг друга, в случае нечетного п одним существенным способом, а когда п четно, то 1/2 n 2 коней удается разместить также одним существенным способом. В первом случае мы всех коней размещаем на клетках того же цвета, что и центральная, а во втором случае мы их всех ставим только на черные или только на белые клетки.

 

Задачи с двумя фигурами

На доске с п 2 клетками два ферзя, две ладьи, два слона или два коня всегда можно расположить (безотносительно к тому, атакуют ли они друг друга или нет) (n 4 -n 2 )/2 способами. Следующие формулы показывают, сколькими из способов две фигуры можно расположить при условии взаимной атаки и без нее.

(См. головоломку «Охота на льва».)

 

Динамические шахматные задачи

147. Турне ладьи. Единственную ладью требуется передвигать по всей доске так, чтобы она посетила каждую клетку ровно по одному разу и закончила свое турне в той клетке, с которой его начала. При этом следует сделать как можно меньшее число ходов, но если вы будете не очень внимательны, то совершите ровно на один ход больше, чем нужно.

Разумеется, клетка считается «посещенной» как в случае, если вы просто проходите через нее, так и в случае остановки в ней, Нас не должны волновать софизмы вроде того, что мы дважды посещаем исходный квадрат. Будем считать, что мы посещаем его один раз.

148. Путешествие ладьи. В названии этой головоломки я не случайно употребил слово «путешествие», поскольку слово «турне» означает возвращение в исходное место, а в данном случае мы не будем этого делать. Ладья делает 21 ход, посетив каждую клетку доски ровно по одному разу, останавливается в клетке 10 в конце десятого хода и заканчивает путешествие в клетке 21.

Два последовательных хода нельзя делать в одном и том же направлении; другими словами, вы должны поворачивать после каждого хода.

149. Еще одна томящаяся дева. Злой барон в добрые старые времена заточил одну невинную деву в глубокую темницу, которая находилась подо рвом замка. На рисунке вы видите 63 камеры темницы, которые соединены между собой открытыми дверьми, и камеру, где прикована дева. Некий доблестный рыцарь, который любил эту деву, сумел вызволить ее из рук врага. Добравшись до входа в темницу, как показано на рисунке, он затем дошел и до камеры, где томилась дева, посетив по дороге каждую камеру ровно по одному разу. Возьмите карандаш и попытайтесь обозначить его путь. Преуспев в этом, попробуйте свести этот путь к 22 прямолинейным отрезкам. Это можно сделать, по-прежнему не посетив ни одну камеру дважды.

150. Подземелье. Случилось когда-то во Франции, что один узник за собственные ли грехи или грехи чужие был брошен в подземелье, где насчитывалось 64 камеры, связанные между собой открытыми дверьми, как показано на рисунке. Дабы чем-то скрасить однообразие заточения, он придумывал себе разные головоломки. Вот одна из них.

Как, начиная с указанной на рисунке камеры, он мог бы посетить каждую камеру ровно по одному разу, сделав при этом как можно больше поворотов? Первая попытка узника отмечена на рисунке пунктиром. Можно заметить, что путь узника состоит из 55 прямолинейных участков, но после многих попыток ему удалось улучшить этот результат. Можете ли вы получить большее число отрезков? Заканчивать путь разрешается в любой камере. Попробуйте решить головоломку с карандашом в руках на шахматной доске. При желании вы можете рассматривать прямолинейные участки как ходы ладьи.

151. Лев и человек. Некогда на одной из людных площадей Рима находилась тюрьма. Она представляла собой 64 камеры под открытым небом, которые соединялись между собой, как показано на рисунке. За происходившими в ее стенах состязаниями наблюдали с высокой башни. Толпу особенно увлекало зрелище того, как в лабиринте камер искали друг друга (или избегали) христианин и лев. Их помещали в диаметрально противоположные камеры при всех открытых дверях. Как-то человеку дали в руки меч. Он оказался не из трусливых и старался найти льва так же? как лев, несомненно, искал его.

Человек посетил каждую камеру ровно по одному разу, преодолев наименьшее возможное число прямолинейных участков пути, пока не достиг камеры, где первоначально находился лев. Лев, как это ни странно, тоже посетил каждую камеру ровно по одному разу, пробежав наименьшее возможное число прямолинейных участков пути, пока не добрался до камеры, где первоначально находился человек. Они покинули исходные камеры одновременно, двигались с одинаковой скоростью, и хотя порой мелькали в поле зрения друг друга, но так ни разу и не встретились. Головоломка состоит в том, чтобы показать путь каждого из них.

152. Визиты слона. Белые клетки на шахматной доске изображают те места, которые хочет посетить слон. Поместите слона на любую, какую пожелаете, клетку, и сделайте так, чтобы он мог посетить все желаемые места (делая обычные ходы слона) за наименьшее число ходов. Разумеется, все клетки, через которые он проходит, считаются «посещенными». Вы можете посетить любую клетку более одного раза, но вам не разрешается передвигаться дважды между одними и теми же смежными клетками. Чему равно наименьшее число ходов? Слон не обязан заканчивать свои визиты в том же месте, откуда отправился.

153. Новая головоломка с шашками. Вот одна новая головоломка с передвигающимися шашками или монетами, которая на первый взгляд должна выглядеть невероятно простой, но затем окажется, что над ней нужно поломать голову. Я привожу ее здесь по причинам, которые выяснятся, когда мы перейдем к следующей головоломке.

Перерисуйте на листе бумаги в увеличенном виде приведенную здесь схему; затем поставьте 2 белые шашки на кружки 1 и 2, а две красные шашки – на кружки 9 и 10. Головоломка состоит в том, чтобы поменять белые и красные шашки местами. За один раз вы можете передвинуть любую шашку вдоль любой прямой, соединяющей кружки, с тем единственным ограничением, что красная шашка никогда не должна находиться на одной прямой с белой шашкой. Так, первый ход можно делать лишь с 1-й или 2-й на 3-ю либо с 9-й или 10-й на 7-ю.

154. Новая головоломка со слонами. Это весьма занимательная маленькая головоломка. Поставьте 8 слонов (4 черных и 4 белых) на уменьшенную шахматную доску, как показано на рисунке. Задача состоит в том, чтобы поменять черных и белых слонов местами, причем ни один слон не должен ни разу атаковать слона противоположного цвета. Они должны ходить по очереди – сначала белый, затем черный, потом снова белый и т. д. Когда вам удастся это сделать, попытайтесь найти наименьшее число ходов.

Если вы оставите на месте слонов, стоящих на черных клетках, и будете передвигать лишь тех слонов, что стоят на белых клетках, то обнаружите мою предыдущую головоломку, повернутую на бок.

155. Турне ферзя. Головоломка, в которой ферзь совершает полное турне по шахматной доске за наименьшее число ходов (где клетки разрешается посещать более одного раза), впервые была предложена Сэмом Лойдом в его книге «Шахматная стратегия». Но приведенное ниже решение он поместил в книге «Американские шахматные орешки» (American Chess-Nuts), вышедшей в 1868 г. Я записал по крайней мере 6 различных решений с минимальным числом ходов (14), но это наилучшее среди них, причины чего я объясню.

Если вы посмотрите на клетки, отмеченные буквами, то поймете, что на шахматной доске существует только 10 действительно различно расположенных клеток (они очерчены жирной линией), все другие получаются из них с помощью отражений и поворотов. Например, каждое А – угловая клетка, а каждое J – центральная. Следовательно, поскольку указанное решение обладает точкой поворота в очерченной клетке D, мы можем получить решение (начав и кончив в любой клетке, отмеченной буквой D), просто поворачивая доску. Далее, эта схема приведет к турне, начинающемуся из любого A, B, С, D, E, F или H, тогда как ни один другой известный мне путь не удается приспособить более чем к пяти различным начальным точкам. Не существует турне ферзя в 14 ходов (вспомним, что турне должно заканчиваться в той же клетке, откуда началось), которое начиналось бы с G, I или J. Но мы можем построить невозвратный путь, проходящий за 14 ходов через всю доску и начинающийся с любой заданной клетки. Отсюда получается следующая головоломка.

Начните с J в очерченной части буквенной диаграммы и посетите каждую клетку доски за 14 ходов, заканчивая свой путь, где пожелаете.

156. Звездная головоломка. Поставьте кончик карандаша на одну из белых звезд на рисунке и, не отрывая карандаша от бумаги, вычеркните все звезды за 14 прямых непрерывных движений, закончив второй белой звездой.

Ваши прямолинейные движения могут совершаться в любом направлении, только поворачивать каждый раз следует на какой-нибудь звезде. Любую звезду разрешается вычеркивать и более одного раза. В этом случае, когда вы и начинаете, и заканчиваете путь на жестко зафиксированных клетках, вы не сумеете получить решение, ни разрывая турне ферзя, ни вообще каким-то образом прибегая лишь к ходу ферзя. Но вам разрешается пользоваться наклонными прямыми, такими, например, как та, что соединяет верхнюю белую звезду непосредственно со звездой, расположенной в углу.

157. Состязание яхт. Ну-ка вы, сухопутные увальни, поднимайте-ка ваши паруса, распускайте вымпелы!

Наше состязание состоит в том, чтобы, начав от буя, где дрейфует на рисунке яхта, коснуться каждого из 64 буев за 14 прямых курсов и возвратиться в конце маршрута к бую, от которого начали плавание. Седьмой курс должен закончиться у буя, на котором развевается флажок.

Эта головоломка потребует недюжинной сноровки в морском деле из-за острых углов, под которыми порой придется менять курс. Кончик простого карандаша да добрый морской глаз – вот и все, что вам нужно.

Это задание усложняет условие, касающееся буя с флажком, а также необходимость вернуться в исходную точку. Но зато нам снова разрешается пользоваться прямыми с произвольным наклоном.

158. Занятный конькобежец. Вы видите на рисунке 64 звездочки, отмеченные на льду конькобежцем, который собирается, начав с того места, где он сейчас стоит, проехаться по каждой из них, прочертив 14 прямолинейных участков пути. Как он сможет это сделать? Разумеется, нет никаких возражений против того, чтобы он проезжал через любую точку более одного раза, однако последний прямолинейный участок пути должен привести его к месту старта.

Вам нужно просто взять карандаш и, начиная с того места, где стоит нога конькобежца, вычеркнуть все звездочки, проведя непрерывную ломаную из 14 звеньев, кончающуюся там же, где она и начинается.

159. Сорок девять звезд. В данном случае вам нужно просто взять карандаш и, начиная с одной черной звезды, вычеркнуть все звезды за 12 прямолинейных движений, закончив вычеркивание на другой черной звезде. Можно заметить, что на рисунке это сделано за 15 движений. Каждое изменение направления должно происходить на какой-нибудь звезде, а прямые обязаны быть параллельными сторонам и диагоналям квадрата, как показано на рисунке.

В данном случае мы имеем дело с шахматной доской уменьшенных размеров, но используем лишь ходы ферзя (не выходя за пределы доски, как в предыдущем случае).

160. Путешествие ферзя. Поместите ферзя на его собственную клетку, как показано на рисунке, а затем попытайтесь определить наибольшее расстояние, какое он может проделать по доске за 5 своих ходов, не пересекая при этом никакую клетку дважды.

Отметьте путь ферзя на доске и проследите за тем, чтобы он ни разу не пересек собственный след. Это кажется довольно простым, но читатель, быть может, обнаружит, что он попался в ловушку.

161. Святой Георгий и дракон. Вот небольшая головоломка на уменьшенной шахматной доске из 49 клеток.

Святой Георгий хочет поразить дракона. Как известно, уничтожение драконов было его обычным времяпровождением, а поскольку он делал это верхом на коне, то, естественно, ему хотелось бы добиться своего, сделав серию ходов конем. Можете ли вы показать, как, начиная с центральной клетки, он сумеет посетить каждую клетку ровно один раз, проделав непрерывную цепочку ходов конем, в конце которой, на своем последнем ходу, он доберется до дракона? Разумеется, перед ним большое разнообразие путей, так что попытайтесь найти тот, который выглядел бы покрасивее, когда вы отметите каждый ход прямой линией, идущей из одной клетки в другую.

162. Пшеничные поля фермера Лоуренса. Одним из самых красивых мест, куда можно летом прогуляться из Лондона, является часть Бэкингемшира, известная как Шахматная долина. Правда, с тех пор как ее обнаружил один спекулянт земельными участками, там многое изменилось. В начале нашего века жил в тех краях неподалеку от Лейтимерса богатый, но эксцентричный фермер по имени Лоуренс. У него была любопытная странность: он полагал, будто каждому, кто живет близ берегов Шахматной реки, следует познакомиться с благородной игрой того же названия. Дабы укрепить эту мысль в сознании соседей и домочадцев, фермер порой прибегал к довольно странной терминологии. Например, когда овца приносила ягненка, он говорил что она «провела пешку в ферзи»; когда он ставил новый амбар у дороги, то говорил, что «делает малую рокировку», а когда он посылал человека с ружьем прогнать соседних птиц со своих полей, то называл это «атакой ладей противника». Соседей забавляли эти небольшие шутки фермера, и только один мальчишка (деревенский шут), которому этот пожилой джентльмен однажды надрал уши за воровство «шахматных головоломок», позволил себе предположить, что старик выжил из ума.

Был год, когда Лоуренс засеял пшеницей и рожью большое квадратное поле, разделенное на 49 квадратных участков, как показано на рисунке. Причем сделал это так, что участки, соответствующие белым квадратам, были засеяны пшеницей, а черным – рожью. Когда подошло время уборки урожая, он распорядился, чтобы его люди начали с пшеницы на участке 1, а потом всякий раз убирали участок, до которого от последнего убранного участка можно добраться одним ходом коня. Кроме того, тринадцатым по счету следовало убрать участок 13, двадцать пятым – участок 25, тридцать седьмым – участок 37 и последним, сорок девятым, – участок 49. Это было слишком много для его поденщиков, и каждый день фермеру Лоуренсу приходилось самому идти в поле и показывать, какой именно участок следует убирать. Однако эта задача, вероятно, не затруднит моих читателей.

163. Головоломка с борзой. В этой головоломке речь идет о 20 конурах, которые отделены друг от друга низкой стенкой. Единственным их обитателем является борзая, которая живет в левом верхнем углу. Когда ее выпускают погулять, то на свободу она должна выбираться не иначе, как побывав в каждой конуре ровно по одному разу и сделав серию ходов коня, чтобы выскочить в правом нижнем углу, где находится выход. Линиями на рисунке показано одно из решений.

Головоломка состоит в том, чтобы определить, сколькими различными путями борзая может выбраться из своей конуры наружу.

164. Четыре кенгуру. Сначала я хочу пояснить, что рисунок изображает 64 загона, отделенных друг от друга изгородями, которые находятся где-то в Австралии. Я, конечно, далек от того, чтобы утверждать, будто наши родичи «с той половины» всегда разгораживают свои земли столь методичным образом. Можно заметить, что на каждом угловом участке сидит по кенгуру. Я не могу вам объяснить, почему кенгуру имеют пристрастие именно к угловым участкам, но по поводу того, что они всегда прыгают ходом коня, с уверенностью берусь утверждать, что «ход коня» был бы непременно «ходом кенгуру», если бы шахматы не были изобретены задолго до кенгуру.

Так вот головоломка состоит в следующем. Однажды утром каждый кенгуру отправился на прогулку и, сделав 16 последовательных ходов коня, посетил ровно 15 различных загонов и вернулся в свой угол. Н-и один загон не посещался более чем одним кенгуру. На рисунке показано, как им удалось это сделать. Вам же нужно показать, каким образом они могли бы добиться своей цели, чтобы при этом ни один кенгуру не пересек центральной горизонтальной прямой, разбивающей квадрат на две равные части.

165. Доска, разбитая на отсеки. Нельзя разбить обычную шахматную доску на 4 равных квадратных отсека и описать конем полное турне или даже только путь в каждом из них. Однако, разделив доску на 4 части, как это показано на рисунке (две части по 12 клеток, а две другие – по 20), можно получить интересную головоломку. Вам предлагается проделать полное турне на этой доске, начав с любой клетки, но переходя из одного отсека в другой не прежде, чем посетив все клетки данного отсека и сделав последний ход конем в исходную клетку. Это сделать нетрудно, но головоломка окажется весьма занимательной и небесполезной.

Возможно ли «турне» или полный «путь» коня на прямоугольной доске заданных размеров, зависит не только от размеров доски, но и от ее формы. Турне, очевидно, невозможно на доске, содержащей нечетное число ячеек, такой, как 5×5 или 7X7, и вот почему. Каждый последовательный скачок коня должен совершаться с белой клетки на черную и с черной на белую поочередно. Но если число клеток, или ячеек, нечетно, то число клеток одного цвета на 1 больше числа клеток другого цвета. Следовательно, путь должен начинаться с клетки того цвета, которого больше, и заканчиваться тем же цветом, а поскольку ход конем между клетками одинакового цвета невозможен, то путь не может быть возвратным. Однако правильное турне можно совершить на прямоугольной доске любых размеров, содержащей четное число клеток, если число клеток на одной ее стороне не меньше 6, а на другой – не меньше 5. Другими словами, наименьшей прямоугольной доской, на которой возможно турне, будет доска 6×5.

Полный путь коня (не возвратный) по всем клеткам доски невозможен на доске, у которой размер одной из сторон равен всего лишь 2 клеткам, а также на квадратной доске меньше 5×5. Так что на доске 4×4 мы не сможем совершить конем ни турне, ни даже полного пути; одну клетку придется оставить непосещенной. И все же на доске 4×3, содержащей на 4 клетки меньше, полный путь удается совершить 16 различными способами. Читатель, быть может, захочет отыскать их сам. Каждый путь, начинающийся или заканчивающийся на других клетках, здесь считается другим решением, так же как и путь, получающийся с помощью поворота.

166. Турне четырех коней. Я повторяю, что если разбить шахматную доску на 4 равные части, как показано на рисунке жирными линиями, то на одной из частей невозможно осуществить турне коня.

На рисунке вы видите лучшую из попыток такого турне, при которой конь дважды вынужден выйти за пределы своего участка. Попробуйте разбить доску на 4 части одинаковых размеров и формы так, чтобы на каждой из них оказалось возможным осуществить турне коня. Разрезы вдоль пунктирных линий не подходят, ибо тогда 4 центральные клетки оказались бы отделены либо просто висели бы на ниточке.

167. Кубическое турне коня. Несколько лет назад я где-то прочитал, что Абни Вандермонд, известный математик, который родился в 1736 г., а умер в 1793 г., большое внимание уделял турне коня. Я не уверен относительно точных результатов его исследований, но один момент привлек мое внимание: он поставил вопрос о турне коня на шести гранях куба, каждая из которых представляет собой шахматную доску. Нашел ли он решение или нет, я не знаю, но я нигде не встречал опубликованного решения, а поэтому сразу же сел за изучение этой интересной задачи. Может быть, читатель захочет ею заняться?

168. Четыре лягушки. На рисунке показано восемь грибков, на 1-м и 3-м из них сидят белые лягушки, а на 6-м и 8-м – черные.

Головоломка состоит в том, чтобы, передвигая за один раз по одной лягушке в любом порядке вдоль прямых линий от одного грибка до другого, поменять лягушек местами, то есть черные лягушки должны занять грибки 1 и 3, а белые – 6 и 8. Воспользовавшись четырьмя шашками и приведенной схемой, вы найдете эту задачу совсем простой, но несколько труднее будет сделать это за 7 перемещений, где любое число последовательных ходов одной лягушки считается одним перемещением. Разумеется, на одном грибке одновременно может сидеть лишь одна лягушка.

169. Головоломка мандарина. Следующая головоломка обладает особой пикантностью, так как ее правильное решение позволило одному молодому китайцу добиться руки своей возлюбленной. Хи-Чум-Чоп был богатейшим мандарином во всей округе на сотню миль от Пекина, не счесть было числа поклонников его прекрасной дочери Пики-Бо. Самым пылким из них оказался Винки-Хи. Когда он попросил у старого мандарина руки его дочери, тот предложил ему головоломку, пообещав свое согласие, если юноша принесет ему правильный ответ в течение недели. Винки-Хи, следуя обычаю, принятому среди некоторых любителей головоломок и до сего дня, предложил головоломку всем своим друзьям, а затем, сравнив решения, лучшее выдал за собственное. Мандарин выполнил свое обещание. Для свадебного пира был заколот откормленный щенок, и когда Хи-Чум-Чоп передал Винки-Хи, согласно китайскому обычаю, кусок печенки, то гости расценили это как пожелание вечного благополучия.

У мандарина был стол, разделенный на 25 квадратов, как показано на рисунке. На каждом из 24 квадратов находилась шашка с номером, это показано на рисунке. Головоломка состоит в том, чтобы расставить шашки в правильном порядке, передвигая по одной шашке за один раз способом, который мы называем ходом коня. Шашку 1 следует поставить туда, где стоит 16; 2 – туда, где 11; 4 – где 13 и т. д. Можно заметить, что все шашки на заштрихованных квадратах стоят там, где и положено. Разумеется, на один квадрат нельзя ставить одновременно две шашки. Сумеете ли вы решить головоломку за наименьшее возможное число ходов?

Дабы сделать способ передвижения шашек совершенно ясным, я отмечу, что первый ход конем можно сделать лишь шашками 1, 2 или 10. Предположим, что я пошел шашкой 1, тогда следующий ход я должен сделать шашками 23, 4, 8 или 21. Поскольку каждый раз свободным оказывается лишь один квадрат, то порядок ходов можно указывать следующим образом: 1 – 21–14 – 18–22 и т. д. Чтобы попрактиковаться, вам следует набросать рисунок в большем масштабе, использовав вместо шашек кусочки картона.

170. Упражнение для узников. На рисунке вы видите план северного крыла некой тюрьмы, где имеется 16 камер, соединенных между собой открытыми дверьми. Пятнадцать заключенных разместили по этим камерам, присвоив им номера. Узникам разрешается менять камеры, как они пожелают, но если когда-либо двое заключенных окажутся в одной камере, их ждет суровая кара.

И вот, дабы уменьшить растущее ожирение и сочетать физические упражнения с развлечением для ума, узники решили по предложению одного из собратьев, который интересовался турне шахматного коня, перестроиться таким образом, чтобы каждый номер располагался в одном ходе коня от предыдущего, не нарушив при этом тюремных правил и оставив в конце правую нижнюю камеру свободной, как и в начале. Самое смешное состояло в том, что в итоге они расположились следующим образом:

Надзиратели проглядели важное обстоятельство: узники не могли так расположиться без того, чтобы иногда двое из них не оказались в одной камере. Возьмите перенумерованные фишки, набросайте укрупненно схему, и вы обнаружите, что дело обстоит именно так. Во всем остальном данное решение вполне корректно, поскольку каждый заключенный оказывается в одном ходе от предыдущего, а угловая камера остается свободной.

Головоломка состоит в том, чтобы, начиная с указанного на рисунке расположения, добиться желаемого за наименьшее число перемещений, оставив неподвижными как можно большее число узников.

Поскольку каждый раз оказывается свободной лишь одна камера, нужно просто выписать подряд номера тех заключенных, которые в нее переходят. Ясно, что лишь малое число узников не будет участвовать в передвижениях, но я предоставляю читателю самостоятельно определить, чему оно равно, так как это очень важный момент в данной головоломке.

171. Головоломка с конурами. У одного человека было 25 собачьих конур, связанных между собой проходами, как показано на рисунке.

Он хотел разместить в них 20 собак, чтобы они образовали непрерывный путь коня от 1-го до 20-го номера, причем 5 нижних конур должны были, как и ранее, остаться пустыми. Это следовало сделать путем перемещения в свободную конуру за один раз одной собаки. Собаки были хорошо вышколены, так что можно было не сомневаться, что каждая останется в той конуре, куда ее посадят, но следует помнить, что, если в одну конуру попадут две собаки, между ними возникнет смертельная схватка. Как можно решить головоломку за наименьшее число перемещений, избежав того, чтобы две собаки в какой-то момент оказались в одной конуре?

172. Две пешки. Вот небольшая приятная головоломка на комбинаторику. Сколькими различными способами две данные пешки (см. рисунок) можно продвинуть на восьмую клетку?

Вы можете передвигать их в любом порядке, образуя при этом различные последовательности ходов. Так, вы можете пойти первой пешкой на аЗ или а4, а потом второй на h3, либо передвигать первую пешку, сколько хотите, не касаясь второй. Любая последовательность ходов допустима, но только в данной головоломке пешка, достигнув восьмой клетки, погибает, а не превращается в другую шахматную фигуру, как в обычной игре. Можете ли вы подсчитать число различных последовательностей? На первый взгляд это выглядит весьма трудным, но я покажу, что при правильном подходе все гораздо проще.

 

Смешанные задачи

173. Расстановка шахматных фигур. У меня есть единственная шахматная доска и единственный набор шахматных фигур. Сколькими различными способами можно правильно расставить фигуры перед началом игры? Я обнаружил, что в большинстве своем при подсчете все делают ошибку в одном и том же месте.

174. Подсчет прямоугольников. Можете ли вы сказать, сколько квадратов и других прямоугольников содержит шахматная доска? Другими словами, сколькими способами можно обозначить квадрат или другой прямоугольник с помощью линий, отделяющих клетки друг от друга?

175. Мат ладьей. Белые ладьи не могут выйти за пределы малого квадрата, в который они заключены, за исключением последнего хода, когда они делают шах и мат.

Головоломка состоит в том, чтобы выяснить, как можно сделать мат черным за наименьшее число ходов ладьей 5, причем остальные ладьи должны располагаться вдоль сторон малого квадрата в правильном числовом порядке с разрывом между 1 и 7.

176. Пат. Несколько лет назад была предложена головоломка, где требовалось построить воображаемую шахматную игру, в которой белым ставился бы пат за наименьшее возможное число ходов при наличии всех 32 фигур. Сможете ли вы добиться такой позиции менее чем за 20 ходов?

177. Охота за королем. Постройте позицию, указанную на рисунке.

Теперь белые должны сделать мат в 6 ходов. Несмотря на сложности, я покажу, как игру можно сконцентрировать на небольшом числе линий, а здесь отмечу лишь, что первые два хода белых менять нельзя.

178. Крестоносец. Вот призовая головоломка, которую я предложил несколько лет назад. Придумайте шахматную партию, где после 16 ходов все 16 фигур белых оказываются на своих исходных позициях, а у черных остается лишь король (не обязательно в исходной позиции). После этого белые обязаны сделать мат в три хода.

179. Неподвижные пешки. Какое наименьшее число ходов потребуется для того, чтобы, начиная со стандартного исходного расположения фигур, прийти к позиции, изображенной на рисунке?

Разумеется, обе стороны должны ходить в строгом соответствии с правилами игры, хотя в результате получится весьма странная шахматная позиция.

180. Тридцать шесть матов. Расположите 8 оставшихся белых фигур (см. рисунок) так, чтобы белые смогли в один ход сделать любой из 36 возможных матов.

Каждый ход, дающий мат и приводящий к новому расположению, считается новым матом. Фигуры, изображенные на рисунке, трогать нельзя.

181. Поразительная дилемма. Мистер Блэк и мистер Уайт сели за шахматы. Мистер Блэк попал в затруднительное положение, и, как это часто бывает, оказалось, что ему надо спешить на поезд. Он предложил Уайту закончить игру в его отсутствие, но при условии, что он не будет делать ходов за Блэка, а станет ходить только своими белыми фигурами. Мистер Уайт согласился, однако, к своему смущению, обнаружил, что при таких условиях совершенно невозможно выиграть. Как он ни старался, ему не удалось поставить мат своему противнику. На какой клетке оставил мистер Блэк своего короля? Другие фигуры на рисунке изображены в своих истинных позициях.

Уайт может ставить шах Блэку сколько угодно раз, ибо это не играет роли, так как он все равно не сумеет добиться матовой позиции.

182. Шах и мат! Забредя в одну из комнат некоего лондонского клуба, я обратил внимание на позицию, оставленную на доске двумя ушедшими игроками.

Эта позиция показана на рисунке. Очевидно, что белые поставили черным мат. Но как им удалось это сделать? Вот в чем головоломка.

183. Странные шахматы. Можете ли вы расположить на доске 2 белые ладьи и белого коня так, чтобы черный король (который должен находиться на одной из четырех центральных клеток) оказался под шахом и ему некуда было ходить? «Другими словами, – скажет читатель, – черному королю будет поставлен мат». Хорошо, если хотите, пользуйтесь этим термином, хотя я сознательно не употребил его сам. Достаточным основанием для этого служит, например, то обстоятельство, что на доске отсутствует белый король.

184. Древняя китайская головоломка. Считается, что головоломка, которую я вам сейчас представляю, родилась в Китае много сотен лет назад и интерес к ней никогда не ослабевал.

В ситуации, показанной на рисунке, белые ходят и ставят мат, сделав каждой из трех фигур ровно по одному ходу.

185. Шесть пешек. Сколькими различными способами я могу расположить 6 пешек на шахматной доске так, чтобы на каждой горизонтали и вертикали оказалось четное число незанятых клеток? Мы здесь вовсе не рассматриваем диагонали, а также не исключаем отражения и повороты; каждые 6 различных клеток дают новое решение.

186. Солитер с шашками. Вот небольшая игра – солитер. Она довольно проста, но не настолько, чтобы сделаться неинтересной. Вы можете либо нарисовать клетки на листе бумаги или картона, либо воспользоваться частью шахматной доски. На рисунке я снабдил шашки номерами, дабы облегчить решение, но вы можете пользоваться шахматными пешками или обычными шашками без номеров.

Головоломка состоит в том, чтобы удалить все шашки, кроме 1. Вы перепрыгиваете какой-нибудь шашкой через другую на расположенную за ней свободную клетку, но не разрешается прыгать по диагонали. Следующие ходы сделают все совершенно ясным: 1–9, 2 – 10, 1–2 и т. д. Здесь 1 перепрыгивает через 9, и вы удаляете 9 прочь с доски; затем 2 перепрыгивает через 10, и вы удаляете 10; далее 1 прыгает через 2, и вы удаляете 2. Таким образом, при каждом ходе вы убираете по одной шашке, пока на доске не останется лишь шашка под номером 1.

187. Солитер на шахматной доске. Вот дальнейшее развитие предыдущей головоломки. Вам нужна только шахматная доска да 32 фигуры или такое же число шашек или фишек. На рисунке изображены перенумерованные шашки. Головоломка состоит в том, чтобы удалить все шашки, за исключением двух, и эти две должны первоначально находиться на одной стороне доски, то есть обязаны обе принадлежать либо к группе с номера 1 по 16, либо к группе с номера 17 по 32. Как и в предыдущей головоломке, одна шашка перепрыгивает через другую на расположенную непосредственно за ней свободную клетку, но не разрешается прыгать по диагонали. Следующий набор ходов пояснит правила игры: 3 – 11, 4 – 12, 3–4, 13 – 3. Здесь 3 перепрыгивает через

11, и вы удаляете 11; 4 перепрыгивает через 12, и вы удаляете 12 и т. д. Эта маленькая игра окажется занимательной, но она требует терпения, а для ее решения потребуется проявить изобретательность.

188. Нелепость. Однажды в рождественский вечер я ехал на поезде в небольшое местечко, расположенное в одном из южных графств. Купе было переполнено, и пассажиры сидели, тесно прижавшись друг к другу. Мой сосед в углу пристально изучал позицию на одной из тех миниатюрных шахматных досок, которые умещаются в кармане. Я не смог удержаться от того, чтобы тоже не посмотреть на нее. Эта позиция показана здесь на рисунке.

Внезапно повернув голову, спутник поймал мой озадаченный взгляд.

– Вы играете в шахматы? – спросил он.

– Да, немного. А что это? Задача?

– Задача? Нет, игра.

– Невозможно! – воскликнул я довольно невежливо. – Эта позиция – сущая нелепость!

Он вынул из кармана почтовую открытку и протянул ее мне. На одной стороне открытки был написан адрес, а на другой – «Kpf2 – g1».

– Это игра по почте, – объяснил он. – Здесь написан последний ход моего друга, а я обдумываю свой ответ.

– Вы меня извините, но позиция кажется совершенно невозможной. Как, например, скажите на милость…

– А! – прервал он меня, улыбаясь. – Я вижу, вы новичок; вы играете, чтобы выигрывать.

– Но не хотите же вы сказать, что стремитесь к поражению или ничьей!

Он громка рассмеялся:

– Вам следует еще многому научиться. Мой друг и я играем не ради результатов того, древнего, образца. Мы ищем в шахматах все удивительное, причудливое, сверхъестественное. Видели вы когда-нибудь подобную позицию?

Я про себя порадовался, что нет.

– Эта позиция, сэр, материализует извилистое развитие и синкретическую, синтетическую и синхронную конкатенацию двух церебральных индивидуальностей. Это продукт амфотерического и интерколейторного обмена, который…

– Вы читали вечерний выпуск, сэр? – вмешался человек, сидевший напротив, – протягивая мне газету.

Я заметил на полях рядом с его пальцем несколько слов, написанных карандашом. Поблагодарив его, я взял газету и прочитал: «Безумен, но совершенно безвреден. Находится под моим наблюдением».

После этого я предоставил бедняге самому предаваться своим диким мыслям до тех пор, пока они оба не вышли на следующей станции.

Но странная позиция запечатлелась в моей памяти вместе с последним ходом черных: Kpf2 – g1; а спустя непродолжительное время я обнаружил, что к такой позиции действительно можно прийти за 43 хода. Сможет ли читатель построить такую партию? Как белые умудрились привести свои ладьи и королевского слона в такую позицию, если черные ни разу не ходили своим королевским слоном? Здесь не применялось никаких недозволенных трюков и все ходы совершались строго по правилам.