Случилось так, что компания паломников, направляющихся на богомолье к святым мощам Фомы Бекета в Кентербери, ненароком встретилась в старой харчевне «Табард», позднее известной как «Табольд», в Соуерке, близ Лондона, и трактирщик предложил им коротать дорожную скуку, рассказывая по очереди всякие занимательные истории. Именно так, как известно, начинается бессмертное произведение великого поэта XIV века Джеффри Чосера «Кентерберийские рассказы». К несчастью, эти рассказы не были закончены, и, может быть, именно поэтому причудливые и любопытные «Кентерберийские головоломки» тоже не были увековечены пером прославленного поэта. Это тем более досадно, что мнение Чосера, который, по дошедшим до нас сведениям, был «изобретательным математиком» и автором «Трактата об астролябии», здесь особенно пригодилось бы. Представляя впервые некоторые из этих головоломок былых времен, я не стану задерживать внимание читателя на объяснении того, каким необычным образом они попали в мои руки, а прямо сейчас, без лишних разговоров дам возможность оценить их качество. Конечно, ныне встречаются головоломки и потруднее, но ведь трудность и занимательность – качества, которые вовсе не обязательно неотделимы друг от друга.

1. Головоломка Мажордома. Мажордом был хитрым и достаточно образованным человеком. По словам Чосера, «так овцам счет умел вести он, акрам и так подчистить свой амбар иль закром, Что сборщики все оставались с носом. Он мог решать сложнейшие вопросы…». Поэт отмечает также, что «он никогда не попадал впросак». Всякого рода забавные задачи и причудливые идеи без труда возникали в его остром уме. В одной придорожной таверне, где остановились паломники, его бдительный взор обнаружил несколько кругов сыра разной величины. И вот, попросив четыре табурета, он предложил показать одну из своих головоломок, которая могла бы позабавить путников во время отдыха. Затем Мажордом положил на крайний табурет восемь кругов сыра так, как это показано на рисунке.

– Вот загадка, – воскликнул он, – которую я задал однажды своим приятелям из Болдсуэлля, что находится в Норфолке, и, клянусь святым Иосифом, среди них не нашлось ни одного, кто осилил бы ее! Однако она очень проста, ибо все, что я хочу, так это, чтобы, перекладывая сыры с одного табурета на другой, вы перенесли все их на табурет, стоящий на другом конце, ни разу не положив какой-нибудь круг сыра на круг меньшего размера. Того, кто сумеет это сделать с наименьшим числом перекладываний, угощу я глотком самого лучшего вина, какое только найдется у нашего доброго хозяина.

Интересно решить эту головоломку с наименьшим числом перекладываний сначала с 8, затем с 10 и, наконец, с 21 кругом сыра.

2. Головоломка Продавца папских индульгенций. Кроткий Продавец папских индульгенций, «с товаром воротясь из Рима», попросил было пощады, но компания миловать его не собиралась.

– Друзья я братья-паломники, – сказал он, – по правде говоря, моя задачка простовата, но лучшей придумать я не смог.

Однако его выдумка встретила хороший прием. Он развернул план, приведенный на рисунке, и пояснил, что на нем изображены шестьдесят четыре города, которые он должен был посетить, и соединяющие их дороги. Он пояснил далее, что отправной точкой ему служил город, обозначенный заштрихованным квадратом.

Служителю церкви следовало посетить каждый из оставшихся городов по одному и только одному разу за 15 переходов, причем каждый переход должно было совершить по прямой. Кончить свой путь можно где угодно, но нельзя упускать из виду, что отсутствие короткой дороги в нижней части рисунка не случайно – пути здесь нет.

3. Головоломка Мельника. Теперь очередь была за Мельником. Этот «ражий малый, костистый, узловатый и бывалый» отвел компанию в сторону и показал девять мешков с зерном, которые стояли, как показано на рисунке.

– Слушайте и внемлите, – сказал он, – я загадаю вам загадку про эти мешки пшеницы. И заметьте, господа хорошие, что сбоку стоит по одному мешку, затем идут пары мешков, а посредине вы видите три мешка. Клянусь святым Бенедиктом, получилось так, что если мы умножим пару, 28, на один мешок, 7, то получится 196, что и указано на средних мешках. Но если вы умножите другую пару, 34, на ее соседа, 5, то не получите при этом 196. Теперь я прошу вас, добрые господа, переставить эти девять мешков, как можно меньше надрываясь, так, чтобы каждая пара, умноженная на своего соседа, давала число, стоящее в середине.

Поскольку условием Мельника было передвигать как можно меньшее число мешков, у данной головоломки – только один ответ, который, вероятно, каждый сумеет найти.

4. Головоломка Рыцаря. «Тот рыцарь был достойный человек. С тех пор как в первый он ушел набег, Не посрамил он рыцарского рода» и, по свидетельству Чосера, «редко кто в стольких краях бывал». На его славном щите, который он, как вы видите на рисунке, показывает всей честной компании в харчевне «Табард», согласно всем правилам геральдики по серебряному полю рассыпаны розы. Когда Рыцаря попросили загадать свою загадку, он сказал, обращаясь к компании:

– Эту загадку мне задали в Турции, где я сражался с неверными. Возьми в руку кусок мела, сказали мне, и определи, сколько правильных квадратов сможешь ты указать с одной из восьмидесяти семи роз в каждом углу.

Читателю тоже, наверное, небезынтересно подсчитать число квадратов, которые можно образовать на щите, соединяя между собой четыре розы.

5. Загадки Батской ткачихи. «Лицом бойка, пригожа и румяна», Батская ткачиха, когда ее попросили оказать честь компании, сказала, что не привыкла к подобным вещам, но вот ее четвертый муж был до них весьма охоч, и она как раз вспомнила одну из его загадок, которая, быть может, еще не известна ее спутникам-паломникам. Вот она:

– Чем затычка, плотно загнанная в бочку, похожа на другую затычку, только что выпавшую из бочки?

Паломники быстро отгадали эту загадку, но ткачиха на этом не кончила и рассказала, как однажды она сидела у себя в комнате и шила, когда вошел ее сын.

Получив родительский приказ: «Уходи, мой сын, и не мешай мне!» он ответил:

– Я и вправду твой сын, но ты не моя мать, и до тех пор, пока ты не растолкуешь мне, как это может быть, я не двинусь с места.

Эта загадка надолго погрузила всю компанию в глубокую задумчивость, но вряд ли она доставит много трудностей читателю.

6. Головоломка Трактирщика. Быть может, ни одна головоломка не вызвала такого веселья и не оказалась столь занимательной, как та, которую предложил хозяин гостиницы «Табард», присоединившийся к компании. Подозвав поближе паломников, он сказал:

– Любезные господа мои, теперь настала моя очередь слегка сдвинуть ваши мозги набекрень. Сейчас я покажу вам одну штуку, из-за которой вам придется поломать голову. И все же, думается мне, в конце концов она покажется вам очень простой. Вот здесь стоит бочка прекрасного лондонского эля, а я держу в руках две меры – одна в пять, а другая в три пинты величиной. Прошу вас, скажите, как мне налить в каждую меру ровно по одной пинте?

Разумеется, нельзя пользоваться никакими другими сосудами или приспособлениями, нельзя также делать отметки на мерах. Очень многие и сегодня не найдут эту задачу легкой. И все-таки она осуществима.

7. Головоломка Оксфордского студента. Когда молчаливого и задумчивого Оксфордского студента, которому «милее двадцать книг иметь, чем платье дорогое, лютню, снедь», убедили задать головоломку своим сотоварищам по путешествию, он сказал:

– Я тут как-то размышлял над теми странными и таинственными талисманами, охраняющими от чумы и прочих зол, в которых замешаны магические квадраты. Глубока тайна подобных вещей, а числа таких квадратов воистину можно назвать великими. Но та небольшая загадка, которую я придумал накануне для всей компании, не настолько трудна, чтобы ее нельзя было решить, вооружившись не надолго терпением.

Затем студент изобразил квадрат, показанный на рисунке, и сказал, что его надо разрезать на четыре части (вдоль прямых), которые можно было бы сложить заново так, чтобы при этом получился правильный магический квадрат.

У такого квадрата сумма чисел, стоящих в каждой строке, столбце и на каждой из двух больших диагоналей, равна 34. Эта головоломка для большинства читателей окажется нетрудной.

8. Головоломка Обойщика. Тут вперед выступил Обойщик, который, как вы догадались, обивал отнюдь не сосульки с крыш, а занимался обивкой стен. Он показал кусок красивого гобелена, который вы видите на рисунке.

– Этот кусок гобелена, сэры, – сказал он, – состоит из ста шестидесяти девяти маленьких квадратиков. Я хочу, чтобы вы указали мне способ, каким следует разрезать его на три части, дабы сложить из оных один новый кусок в форме правильного квадрата. Более того, поскольку это можно сделать разными способами, я хотел бы знать тот, при котором две из частей будут вместе содержать как можно больше этого богатого материала.

Обойщик, разумеется, считал, что разрезы должны проходить только по прямым, разделяющим квадратики. Кроме того, поскольку материал с обеих сторон не одинаков, части нельзя переворачивать, но особое внимание следует обратить на то, чтобы они точно подходили друг к другу по рисунку.

9. Головоломка Плотника. Плотник принес небольшой резной деревянный столбик и сказал:

– Живет в Лондоне один школяр, поднаторевший в астрологии и других странных науках. Как-то принес он ко мне деревянный брус, имевший три фута в длину, один в ширину и толщина которого тоже равнялась одному футу, и захотел, чтобы я вырезал из бруса столбик, который вы все здесь видите. Школяр пообещал, что заплатит мне за каждый кубический дюйм дерева, удаленный при работе. Я сперва взвесил брус. Оказалось, что он содержит ровно тридцать фунтов, тогда как этот столбик весит только двадцать. Значит, я удалил прочь один кубический фут (то есть одну треть) из бруса в три кубических фута. Но школяр уперся: нельзя, говорит, судить о плате за работу по весу, потому, мол, что брус в середине мог оказаться тяжелее или, наоборот, легче, чем снаружи. Как же я тогда проще всего смогу удовлетворить привередливого школяра и показать ему, сколько дерева было удалено?

На первый взгляд, этот вопрос кажется трудным, но ответ на него до того прост, что способ Плотника следует знать каждому, поскольку эта маленькая хитрость может пригодиться в повседневной жизни.

10. Головоломка Йомена. Среди пилигримов был и Йомен. По словам Чосера, «лесной охоты ведал он закон», и у него «За кушаком, как и наряд, зеленым Торчала связка длинных острых стрел, Чьи перья Йомен сохранить умел – И слушалась стрела проворных рук. С ним был его большой могучий лук…» Когда в один из дней вся компания остановилась в придорожной таверне под названием «Шашки», у входа в которую красовалась шахматная доска, он решил продемонстрировать товарищам по путешествию свое умение. Выбрав девять стрел, он сказал:

– Заметьте себе, добрые сэры, как я пущу эти стрелы – каждую в середину одной из клеток этой доски, причем ни одна из стрел не окажется на одной линии ни с какой другой стрелой.

На приведенном здесь рисунке показано, как он это сделал: действительно, ни одна из стрел не находится на одной вертикали, горизонтали или диагонали ни с какой другой стрелой. Тут Йомен добавил:

– А вот вам и головоломка. Передвиньте три стрелы, каждую на одну из соседних клеток, так, чтобы при этом все девять стрел расположились вновь таким образом, чтобы ни одна не лежала на одной прямой ни с какой другой стрелой.

Под «соседней» имеется в виду любая клетка, расположенная рядом с данной по вертикали, горизонтали или диагонали.

11. Головоломка Монахини. – Уверена, что среди вас нет ни одного, – сказала Монахиня при одной из следующих оказий, – кто не знал бы, что многие монахи часто проводят время в играх, которые не очень-то приличествуют их сану. Карты или шахматы они искусно прячут от глаз аббата на полках своих келий в толстых фолиантах, в которых внутри вырезают для этого углубления. Стоит ли после этого сурово порицать монахинь за то, что они поступают так же? Я покажу маленькую игру-головоломку, в которую мы иногда играем между собой, когда наша добрая аббатиса отлучается из монастыря.

С этими словами Монахиня достала восемнадцать карт, показанных на рисунке.

Она объяснила, что головоломка состоит в том, чтобы сложить из этих карт колоду, причем, если затем выложить верхнюю карту на стол, следующую – в низ колоды, следующую – опять на стол, следующую – снова в низ колоды, пока все карты не окажутся на столе, то в результате должны получиться слова CANTERBURY PYLGRIMS. Разумеется, каждую следующую карту нужно выкладывать на стол непосредственно справа от предыдущей. Это достаточно легко выполнить, если двигаться в обратную сторону, однако читатель должен попытаться получить ответ, не проделывая такой обратной операции и не пользуясь настоящими картами.

12. Головоломка Купца. Купец, который был среди паломников, отличался тем, что «курс экю высчитывать умел и знатно на размене наживался» и «… так искусно вел свои расчеты, Что пользовался ото всех почетом». Однажды утром, когда вся компания двигалась по дороге, Рыцарь и Сквайр, ехавшие рядом с Купцом, напомнили ему, что он все еще не порадовал компанию своей головоломкой.

– В самом деле? – оживился купец. – Тогда вот вам числовая головоломка, которую я предложу всей честной компании, когда мы остановимся отдохнуть «Сегодня утром нас движется по дороге тридцать человек. Мы можем двигаться один за другим, что называется гуськом, или пара за парой, или тройка за тройкой, или пятерка за пятеркой, или шестерка за шестеркой, или десятка за десяткой, или, наконец, все тридцать в ряд. Ехать каким-либо иным способом, так, чтобы в каждом ряду всадников было поровну, мы не можем. А вот некая компания паломников способна ехать шестьюдесятью четырьмя способами. Скажите мне, сколько в этой компании должно быть паломников.

Купец, очевидно, имел в виду наименьшее число всадников, которые могут ехать шестьюдесятью четырьмя способами.

13. Головоломка Юриста. «Был с ними важный, чопорный Юрист. Он, как искусный, тонкий казуист, На паперти был очень уважаем И часто на объезды назначаем». Вообще он был человеком весьма занятым, но, как и многие в наши дни, «работник ревностный, пред светом целым, Не столько был им, сколько слыть умел им». Однажды вечером, говоря о темницах и узниках, он заметил по ходу дела:

– То, о чем я говорил, напомнило мне о головоломке, которую я придумал сегодня утром, чтобы предложить вашему вниманию.

С этими словами Юрист вынул кусок пергамента, на котором был изображен странный план, приведенный на рисунке.

– Вот здесь, – сказал он, – изображены девять темниц. В каждой из них, кроме одной, находится по узнику. Эти узники перенумерованы в порядке 7, 5, 6, 8, 2, 1, 4, 3. Я хотел бы знать, как их можно расположить в порядке 1, 2, 3, 4, 5, 6, 7, 8 за наименьшее число перемещений. Одного узника за один раз можно перевести по переходу в пустующую темницу, но под страхом смерти запрещается двум узникам находиться одновременно в одной темнице. Как же решить задачу?

Если читатель набросает примерный план на листе бумаги и воспользуется перенумерованными фишками, то он сможет с интересом провести время, стараясь переместить узников за наименьшее число ходов. Поскольку на каждом ходе свободной оказывается только одна темница, последовательность перемещений можно записать весьма простым способом: 3–2 – 1–6 и т. д.

14. Головоломка Ткача. Когда Ткач развернул квадратный кусок ткани с искусно вышитыми львами и замками, паломники стали обсуждать между собой, что мог бы означать этот орнамент. Однако Рыцарь, будучи искушен в геральдике, пояснил, что скорее всего он происходит от львов и замков, украшавших доспехи Фердинанда III, короля Кастилии и Леона, дочь которого была первой женой английского короля Эдуарда I. В этом он был несомненно прав. Головоломка же, предложенная Ткачом, была такова:

– Давайте посмотрим, ради всего святого, – сказал он, – найдется ли кто-нибудь в этой компании, кто может показать, как следует разрезать кусок ткани на четыре части одинакового размера и формы, чтобы при этом на каждой части оказалось ровно по одному льву и замку.

Записи не говорят, удалось ли кому-нибудь решить эту головоломку, хотя ее вполне можно решить удовлетворительным образом. Никакой разрез не должен пересекать льва или замок.

15. Головоломка Повара. В компании паломников был и Повар. Его искусство, несомненно, пользовалось огромным признанием, ибо «Умел варить, тушить он, жарить, печь; Умел огонь как следует разжечь; Похлебку он на славу заправлял; Эль лондонский тотчас же узнавал». Однажды вечером, когда паломники в деревенской харчевне собирались приступить к трапезе, Повар встал у стола, возглавляемого Франклином, и сказал:

– Послушайте меня, господа мои, я задам вам одну головоломку. Клянусь святым Моденом, она из тех задач, на которые я сам не могу ответить. Одиннадцать паломников сидят за этим столом, на котором стоят пирог и блюдо с паштетом из оленьей печенки. И паштет, и пирог можно разделить на четыре части, но не больше. Теперь, заметьте, пятеро из нас любят пирог, но не прикоснутся к паштету, тогда как четверо обожают паштет, но воротят нос от пирога. Двое же оставшихся желают отведать оба блюда. Во имя всего святого, найдется ли кто-нибудь среди вас, кто смог бы мне сказать, сколькими способами этот достойный Франклин может выбрать тех, кого он захочет угостить?

Я должен сразу же предупредить читателя: если он будет невнимателен, то, заглянув в ответ, обнаружит, что ошибся на 40, как это и произошло со всей компанией. Только Оксфордский студент дал правильный ответ, да и то случайно – он попросту описался.

Удивительно, но пока компания сидела, погрузившись в задумчивость, Повар произвел какие-то манипуляции. Что же мог сделать этот хитрец посреди столь глубоких размышлений, как не стащить украдкой оба блюда! Когда голод заставил путников опять обратиться к трапезе, они обнаружили, что стол-то пуст. Тут все шумно потребовали у Повара объяснений.

– Господа мои, – объяснил он, – поняв, как трудна для вас эта головоломка, я отнес блюда в соседнюю комнату, где наши спутники с удовольствием их съели, пока они не остыли. Зато в здешней кладовой я обнаружил прекрасные хлеб и сыр.

16. Головоломка Пристава церковного суда. Пристав, путешествовавший с компанией паломников, был должностным лицом, в обязанности которого входило вызывать виновных в церковные суды. По признанию Чосера, «Он угреват был, глазки – словно щелки. И валик жиру на багровой холке». «Прожженный он игрок был и гуляка, Лихой добытчик, дерзкий забияка. За кварту эля он бы разрешил Блудить пройдохе, хоть бы тот грешил Напропалую, с простака ж он шкуру Сдирал, чтоб рот не разевал тот сдуру».

Однажды десять паломников остановились у деревенской таверны и потребовали себе ночлега; но хозяин мог принять только пятерых из них. Пристав предложил бросить жребий, а поскольку за время службы он поднаторел в таких делах, то поставил всех в круг и предложил счет «на вылет». Будучи все же рыцарем по натуре, он замыслил устроить дело таким образом, чтобы вылетели все, кроме дам. И вот он шепнул Батской ткачихе номер и велел ей считать по кругу по часовой стрелке; тот, на кого выпадет номер, выбывал из круга. Затем счет следовало начать заново со следующего по порядку человека. Однако леди кое-что недопоняла, а потому выбрала число 11 и начала счет с себя. В результате вместо мужчин выбыли по очереди все женщины, ибо каждой одиннадцатой в исходном круге была женщина.

– По правде говоря, это не моя ошибка, – сказал на следующий день Пристав всей компании, – а вот, кстати, и головоломка. Может ли кто-нибудь сказать, каким числом должна была воспользоваться Батская ткачиха и с кого из паломников следовало ей начать счет, дабы выбыли из круга пятеро мужчин?

Разумеется, нужно найти наименьшее из подходящих чисел.

17. Головоломка Монаха. Монах, ехавший со всей компанией, был большим любителем спорта. «Наездник страстный, он любил охоту и богомолье – только не работу». Однажды, обратясь к паломникам, он сказал:

– Есть одна вещь, которая заставляет меня порой сильно задумываться, хотя, конечно, она не столь и важна. Все же она может служить для проверки остроты ума. Я имею девять будок для собак, они расположены в форме квадрата, хотя среднюю конуру я не использую. Так вот, головоломка состоит в том, чтобы выяснить, сколькими различными способами могу я поместить своих собак во всех наружных будках так, чтобы число собак на каждой стороне квадрата равнялось десяти.

Небольшие диаграммы, приведенные на рисунке, показывают четыре таких способа, и хотя четвертый способ является лишь перевернутым третьим, он считается отличным от третьего. Любую будку можно оставить пустой. Эта головоломка, очевидно, представляет собой лишь разновидность известной головоломки об аббатисе и ее монахинях.

18. Головоломка Шкипера. Об этом персонаже нам известно, что «Корабль он вел без карт и без промера От Готланда до мыса Финистера, Все камни знал Бретонских берегов; Все входы бухт испанских и портов; Немало бурь в пути его встречало И выцветшую бороду трепало; От Гулля и до самой Картахены Все знали капитана „Маделены"».

– Вот это карта, – сказал Шкипер, – пяти островов, с жителями которых я веду торговлю. Каждый год мой славный корабль ходит по всем десяти указанным здесь путям, но никогда в один и тот же год я не хожу ни по одному пути дважды. Есть ли среди вас кто-нибудь, кто мог бы мне сказать, сколькими различными способами «Маделена» сможет совершить эти десять ежегодных плаваний, отправляясь всегда от одного и того же острова?

19. Головоломка Аббатисы. Аббатиса, которая путешествовала под именем Эглантина, по замечанию Чосера, «И по-французски говорила плавно, Как учат в Стратфорде, а не забавным Парижским торопливым говорком». Однако наша головоломка имеет отношение не столько к ее характеру и образованию, сколько к ее одежде. «Был ладно скроен плащ ее короткий, А на руке коралловые четки Расцвечивал зеленый малахит. На фермуаре золотой был щит С короной над большою буквой „А"». Именно эта брошь нас и интересует, поскольку, когда очередь задать головоломку дошла до Аббатисы, она показала это украшение всей компании и сказала:

– Один образованный человек из Нормандии подарил мне некогда эту прелестную вещицу, сопроводив это какими-то странными мистическими словами о том, что будто бы она родственна квадрату или что-то в этом роде, чего я совершенно не могла понять. Но добрый аббат из Чертси сказал мне, что этот крест можно искусно разрезать на четыре части, из которых затем удастся сложить правильный квадрат, хотя, клянусь верой, я не знаю, как это сделать.

Записи гласят, что паломники не смогли решить эту головоломку, и Оксфордский студент заключил, что Аббатиса все напутала. Леди это весьма раздосадовало, хотя благородный Рыцарь подверг бедного студента насмешкам – ведь тот сам прежде не справился с головоломкой, так что студент устыдился, а компания развеселилась.

20. Головоломка Доктора медицины. Этот Доктор, хотя и слыл образованным человеком, ибо «С ним в ремесле врачебном ни единый Врач лондонский соперничать не мог», так как «прекрасно знал болезней он – истоки», не был чужд греховной страсти стяжательства. «…Тратился он неохотно, Со дней чумы сберег мешочек плотный; И золото – медикамент целебный – Хранил, должно быть, как припас лечебный». Задача, которую Доктор предложил собравшимся паломникам, состояла в следующем. Он вынул два сферических сосуда и сообщил, что один из них имеет в окружности один фут, а другой – два фута.

– Я хотел бы, – сказал Доктор, – знать точные размеры двух других сосудов той же формы, но иного размера, которые вместе могли бы вместить ровно столько же жидкости, сколько и эти два сосуда.

Найти точные размеры, выражающиеся наименьшие ми возможными числами, – это один из самых крепких орешков, за которые я брался. Разумеется, мы пренебрегаем толщиной стеклянных стенок сосуда, а также горлышком и подставкой.

21. Головоломка Пахаря. Входивший в компанию пахарь был «Терпеньем, трудолюбием богат, За век свой вывез в поле он навоза Телег не мало; зноя иль мороза Он не боялся, скромен был и тих И заповедей слушался святых». Этот скромный человек был смущен предложением задать спутникам задачу – ведь головоломки не для простых умов вроде его, но если они настаивают, то он поведает им о том, что часто обсуждали между собой его умные соседи.

– У одного помещика из той части Суссекса, откуда я приехал, посажено в одном месте шестнадцать прекрасных дубов так, что они образуют двенадцать рядов по четыре дерева в каждом. Однажды мимо проезжал человек большой учености, который сказал, что шестнадцать деревьев можно посадить пятнадцатью рядами по четыре дерева в каждом. Не могли бы вы показать, как это сделать? Многие сомневались, вообще возможно ли это.

На рисунке показан один из многих «двенадцатирядных» способов. А как сделать пятнадцать рядов?

22. Головоломка Франклина. В компании находился и Франклин. «Не знал он отроду, что значит сплин. Не мог бы он на жизнь коситься хмуро – Был в том достойным сыном Эпикура». Это был гостеприимный и Щедрый человек: «Всегда его столы для всех накрыты, А повара и вина знамениты». Так повелось, что и в компании паломников он всегда председательствовал за одним из столов.

Однажды в харчевне где-то сразу же за Кентербери Компания потребовала от него причитающуюся головоломку. В ответ на это Франклин выставил на стол шестнадцать бутылок с номерами от 1 до 15, однако на последней бутылке был проставлен 0.

– Не иначе как, господа мои, – сказал он, – вам на память пришла сейчас головоломка с магическим квадратом, которую нам задавал этот достойный Оксфордский студент. Но я задам вам другую головоломку, которая может показаться похожей на нее, но на самом деле между ними мало общего. Перед вами выставлено в форме квадрата шестнадцать бутылок, и я прошу вас так переставить их, чтобы они образовали магический, квадрат, у которого сумма чисел вдоль каждого из десяти рядов равнялась бы 30. Но помните, что вы можете переставить не более десяти бутылок, ибо в этом случае головоломка становится более хитрой.

Эту небольшую головоломку удобно решать с помощью шестнадцати перенумерованных фишек.

23. Головоломка Сквайра. «Сквайр был веселый, влюбчивый юнец Лет двадцати, кудрявый и румяный». «Он уже не раз ходил в чужой предел» и в нашем «историческом» паломничестве сопровождал своего отца Рыцаря. Без сомнения, это был человек, которого в более поздние времена непременно назвали бы дэнди, ибо «Страданиями искусных дамских рук Наряд его расшит был, словно луг, И весь искрился дивными цветами, Эмблемами, заморскими зверями…Он ярок, свеж был, как листок весенний». На рисунке к задаче 26 вы видите юношу на заднем плане с бумагой в руках – ведь «Умел читать он, рисовать, писать, На копьях биться, ловко танцевать».

И вот Рыцарь поворачивается к нему с вопросом:

– Мой сын, чем это ты там так усердно занимаешься?

– Я думаю, – ответил Сквайр, – как бы мне нарисовать одним росчерком портрет нашего покойного сюзерена, короля Эдуарда III, тому, как он умер, уже десять лет. Головоломка состоит в том, чтобы указать, где росчерк должен начинаться и где он будет заканчиваться. Тому из вас, кто первым мне это скажет, я подарю портрет.

Я привожу здесь копию оригинального рисунка, который выиграл Юрист. Стоит отметить, что паломничество началось из Соуерка 17 апреля 1387 г., а Эдуард III умер в 1377 г.

24. Головоломка Кармелита. «Прыткий» Кармелит был веселым малым со сладкой речью и блестящими глазками. «Брат-сборщик был он – важная особа. Такою лестью вкрадчивою кто бы Из братьи столько в кружку мог добыть?… С приятностью монах исповедал, Охотно прегрешенья отпускал. Епитимья его была легка, Коль не скупилась грешника рука». «Звался он Губертом». Однажды, достав четыре мешочка с деньгами, он сказал:

– Если кармелит-сборщик получит пятьсот серебряных пенни, то скажите, сколькими способами он может разложить их по этим четырем мешочкам?

Славный человек объяснил, что порядок не играет роли (так что размещение 50, 100, 150, 200 считается таким же, как и размещение 200, 50, 100, 150) и что один, два или даже три мешочка могут оставаться пустыми.

25. Головоломка Священника. «Священник ехал с ними приходской. Он добр был, беден, изнурен нуждой. Его богатство – мысли и дела, Направленные против лжи и зла. Он человек был умный и ученый, Борьбой житейской, знаньем закаленный». Можно ли лучше сказать о человеке его сана! «Пусть буря, град, любая непогода Свирепствует, он в дальний край прихода Пешком на ферму бедную идет, Когда больной иль страждущий зовет». Именно о таких приходских визитах и шла речь в головоломке Священника. Он показал план части своего прихода, через которую протекала небольшая речка, через несколько сотен миль к югу впадавшая в море. Здесь приведена копия этого рисунка.

– Вот, мои достойные паломники, – сказал Священник, – одна странная головоломка. Обратите внимание, что рукава реки образуют островок, на котором стоит мой собственный скромный домик, а в стороне можно заметить приходскую церковь. Заметьте себе также, что в моем приходе через речку переброшено ровно восемь мостов. По дороге в церковь я хочу посетить нескольких своих прихожан и, совершая эти визиты, я перехожу ровно по одному разу через каждый мост.

Может ли кто-нибудь из вас найти путь, по которому я иду из дома в церковь, не выходя за пределы прихода? Нет-нет, друзья мои, я не переезжаю через речку на лодке, не переплываю ее и не перехожу вброд; я не прорываю себе ход под землей, как крот, и не перелетаю через речку, подобно орлу.

Существует способ, с помощью которого Священник может совершать свое странное путешествие. Сумеет ли читатель найти его? На первый взгляд это кажется невозможным, однако в условиях есть одна брешь, через которую можно добраться до решения.

26. Головоломка Галантерейщика. Много попыток было предпринято, чтобы побудить Галантерейщика предложить компании какую-нибудь головоломку, но они долго оставались безуспешными. Наконец, на одной из стоянок Галантерейщик сказал, что покажет всем нечто, отчего «их мозги перекрутятся, как веревка от колокола». Кстати, он сыграл с компанией шутку, ибо сам не знал ответа на головоломку, которую предложил.

Достав кусок материи в форме правильного равностороннего треугольника, он сказал:

– Есть ли среди вас кто-нибудь, кому приходилось бы раскраивать материю? Побожусь, что нет. Каждый умеет что-то свое, и школяр может чему-нибудь поучиться у простолюдина, а мудрец у дурака. Покажите мне, если умеете, каким образом этот кусок материи можно разрезать на четыре части так, чтобы потом из них удалось составить правильный квадрат.

Некоторые из наиболее образованных паломников сумели сделать это с пятью частями, но не с четырьмя. Но когда они насели на Галантерейщика, требуя от него правильного ответа, он после долгих увиливаний признался, что не умеет решать эту задачу ни для какого числа частей.

– Клянусь святым Франциском, – сказал он, – каждый мошенник, думается мне, может придумать головоломку, но она хороша для тех, кто умеет ее решать.

После этих слов он едва унес ноги. Но самое странное – это то, что, как я выяснил, задачу действительно можно решить для случая четырех частей, не переворачивая части другой стороной вверх. Задачу решить не просто, но, я думаю, читатель найдет ее одной из самых интересных.

27. Головоломка Красильщика. Чосер упоминает среди паломников и Красильщика, хотя больше ничего не говорит о нем, но, очевидно, до него просто не дошел черед – ведь «Рассказы» остались незаконченными. Так вот и от Красильщика компания долго не могла услышать головоломки. Бедняга пытался последовать примеру своих приятелей Обойщика, Ткача и Галантерейщика, но нужная идея все не посещала его голову, а бесплодные усилия изнуряли мозг. Однако все приходит к тому, кто терпелив, и однажды утром в состоянии крайнего возбуждения он объявил, что собирается задать паломникам одну задачку. Красильщик вытащил квадратный кусок шелковой ткани, на котором были изображены расположенные рядами лилии – вы видите его на рисунке.

– Лорды, – сказал Красильщик, – послушайте мою загадку. С тех пор, как я проснулся на заре от крика петухов (чтоб нашему хозяину было пусто за этот шум!), я все ищу на нее ответа, но, клянусь святым Бернардом, так и не нашел. На этом куске ткани изображены 64 лилии, а вы скажите, как мне удалить шесть лилий, чтобы при этом в каждом вертикальном и горизонтальном ряду осталось по-прежнему четное число цветов.

Красильщик был ошеломлен, когда каждый из присутствующих показал, как это сделать, причем все – по-разному. Но тут заметили, что славный Оксфордский студент что-то шепнул Красильщику, и тот поспешил добавить:

– Постойте, господа хорошие! Я еще не все сказал. Вы должны определить, сколькими разными способами это можно сделать!

Все согласились, что это совсем другое дело. И только несколько человек из всей компании дали правильный ответ.

28. Великий диспут между Кармелитом и Приставом церковногосуда. Чосер сообщает о том прискорбном факте, что гармония паломничества время от времени нарушалась ссорами между Кармелитом и Приставом церковного суда. Однажды последний пригрозил даже: «Свою побереги, приятель, кожу. И ты, монах, мне можешь плюнуть в рожу, Когда о братьях истины позорной Всем не раскрою я до Сиденборна», но здесь вмешался достойный Трактирщик и временно восстановил мир. К несчастью, ссора вспыхнула снова во время одного весьма любопытного диспута. Дело было так.

В одном месте путь паломников должен был пролечь вдоль двух сторон квадратного поля, и кое-кто из паломников настаивал, чтобы, не обращая внимания на заграждения, двигаться из одного угла поля в другой, как они и делают это на рисунке. И тут Кармелит поразил всю компанию, заявив, что нет нужды нарушать заграждения, ибо и при том и при другом способе придется преодолеть в точности одинаковые расстояния.

– Клянусь небом, – воскликнул Пристав, – ты сущий болван!

– Ничего подобного, – ответил Кармелит, – если только все выслушают меня терпеливо, то я докажу, что это ты болван, ибо твой мозг слишком скуден для того, чтобы показать, что диагональ квадрата мен