В конечном счете вся жизнь на Земле зависит от процесса фотосинтеза, происходящего в зеленых растениях; поэтому весьма огорчительно, что эффективность этого процесса составляет всего несколько процентов. Дедал отмечает, что скорость роста растений существенно ограничена медленным током питательных веществ в их тканях. Если бы удалось ускорить движение соков, переносящих питательные вещества от корней к листьям, то и все процессы жизнедеятельности растений протекали бы быстрее. Для этого Дедал намерен использовать явление электроосмоса — движение жидкости сквозь пористую среду под действием электрического поля. По расчетам Дедала, вертикально направленное электрическое поле напряженностью несколько киловольт на метр способно удвоить скорость движения соков в растениях. Для создания такой напряженности поля над травинкой потребуется напряжение в несколько сотен вольт, над колосом — несколько киловольт, над высоким деревом — сотни киловольт. Благодаря высокому электрическому сопротивлению растительных тканей ток утечки будет очень мал и потребляемая мощность составит всего несколько ватт. Ботаники фирмы КОШМАР устанавливают высоковольтные генераторы, питающиеся энергией ветра, на макушках сосен и натягивают над нивами паутину проводов (одновременно она может служить защитой от птиц). Это произведет революцию в сельском хозяйстве. Хлеба будут созревать в считанные недели, деревья вымахают за год в полный рост, и вообще наступит новая эра растительного изобилия. Электрифицированными растениями будет очень легко управлять. Уменьшая напряжение, мы замедлим их рост; если изменить полярность напряжения, то рост остановится и растение как бы заснет; при достаточно высоком напряжении обратной полярности соки потекут вспять и растение погибнет. Очистить заросший сорняками участок можно будет, набросив на него металлическую сетку и подключив ее к источнику высокого напряжения, что позволит обойтись без применения химии. Используя электрифицированную сетку, мы сможем придавать живым изгородям любую желаемую форму, создавать настоящие зеленые скульптуры. А электрическая «газонорастилка» фирмы КОШМАР, представляющая собой просто металлический лист с отверстиями, который перемещают в нескольких сантиметрах над землей, обеспечит нам идеальный газон, покрытый травниками абсолютно одинаковой высоты.

New Scientist, January 15, 1981

Электрический садовник: фигурная сетка, находящаяся под напряжением, останавливает рост побегов, как только они касаются ее, придавая растению заранее заданную форму.

Из записной книжки Дедала

Соки поднимаются по стеблю растений вверх под действием осмотического давления, которое должно быть как минимум равно гидростатическому давлению (составляющему 1 атм на каждые 10 м высоты растения, илн 104 Н/м2 на метр). Чтобы заметно влиять на скорость движения соков, электроосмотическое давление должно иметь по крайней мере такой же порядок величины. Какое для этого потребуется напряжение?

Давление р Н/м2, создаваемое разностью потенциалов V В в жидкости с относительной диэлектрической проницаемостью ε, заключенной в пористых капиллярах радиусом r, и при контактной разности потенциалов между жидкостью и пористой средой ξ В равно р = 8Vξεε0/r2, где ε0 = 8,85×10-12 Ф/м — диэлектрическая проницаемость вакуума. Таким образом в растении с капиллярами радиусом 10 мкм (r = 10-5 м), заполненными жидкостью с ε = 81, и при ξ = 0,05 В электроосмическое давление величиной 104 Н/м2 будет развиваться при напряжении V = pr2/8ξεε0 = 104×10-10 (8× 0,05 × 81 × 8,85×10-12) = 3500 В = 3,5 кВ.

Следовательно, для заметного ускорения движения соков в растениях понадобится разность потенциалов в 3,5 кВ на каждый метр высоты растения. Какая при этом потребуется мощность?

Удельное электрическое сопротивление сухой древесины составляет 108–1011 Ом•м; сопротивление живой растительной ткани, конечно, меньше: допустим, 106 Ом•м. Тогда сопротивление ствола дерева радиусом 5 см равно R = 106/(π×0,052) = 1,3×108 Ом на метр длины. При разности потенциалов Е = 3,5 кВ на этом сопротивлении рассеивается мощность Р = E2/R = 0,1 Вт (т. е. на дереве высотой 10 м рассеивается мощность 1 Вт). Величина тока составит E/R = 30 мкА. Мощности, рассеиваемые на мелких растениях, будут вообще мизерны: колос сечением 1 мм2 будет потреблять мощность 13 мкВт на метр высоты при токе в 4 нА. Это вселяет надежду.

Комментарий Дедала

Вскоре после публикации моей заметки журнал получил письмо от читателя (New Scientist, Febr. 12, 1981, p. 456), обратившего наше внимание на две статьи В. Блэкмана, опубликованные еще в 1924 г. (Journal of Agricultural Science, 14, 1924, p. 240, 268). В этих статьях описывается положительное влияние высокого электрического напряжения на рост таких злаков, как овес и ячмень; при этом упоминаются все описанные мной атрибуты — металлическая сетка над растениями, постоянное (а не переменное) напряжение в несколько десятков киловольт, токи в миллиардные доли ампера на каждое растение. Скорость роста при таких условиях увеличивалась в среднем на 20%.

Опоздав со своим открытием на 60 лет, я нахожу утешение в том, что мне удалось подвести теоретическую основу под экспериментальный факт, казавшийся загадочным. Позднее были описаны другие опыты по изучению влияния электрического поля на растения (New Scientist, Febr. 12?—№, p. 406; March 19, 1981, p. 741). Быть может, этот метод вновь привлечет внимание исследователей.

Электроосмотическое ускорение роста. Проволочная сетка, находящаяся под «ускоряющим» потенциалом, способствует дальнейшему росту достигших ее растений. Низкорослые растения, не достающие до сетки, не испытывают ее благотворного действия.