Рассказы о математике с примерами на языках Python и C

Елисеев Дмитрий

2. Математические фокусы

 

 

Для «разминки» рассмотрим несколько фокусов, имеющих отношение к числам. Никаких особых сложностей в них нет, но их знание поможет развеселить или удивить знакомых знанием математики.

 

Умножение в уме числа на 11

Рассмотрим простой пример: 26 * 11 = 286

Сделать это в уме просто, если взять сумму чисел и поместить в середину: 26 * 11 = 2 [2+6] 6

Аналогично 43 * 11 = 473, 71 * 11 = 781 и так далее.

Чуть длиннее расчет, если сумма чисел больше либо равна 10. Но и тогда все просто: в середину кладется младший разряд, а 1 уходит в старший разряд:

47 * 11 = [4] [4 + 7 = 11] [7] = [4 + 1] [1] [7] = 517

94 * 11 = [9] [9 + 4 = 13] [4] = [10] [3] [4] = 1034

 

Возведение в квадрат числа, оканчивающегося на 5

Подсчитать это тоже просто. Если число рассмотреть как пару NM, то первая часть результата — это число N, умноженное на (N + 1), вторая часть числа — всегда 25. 352 = [3 * 4] [25] = 12 25

Аналогично:

252 = [2 * 3] 25 = 625 852= [8*9] 25 = 7225 и так далее.

 

Отгадывание результата

Попросим человека загадать любое число. Например 73. Затем чтобы еще больше запутать отгадывающего, попросим сделать следующие действия:

‐ удвоим число (146)

‐ прибавляем 12 (158)

‐ разделим на 2 (79)

‐ вычтем из результата исходное число (79 - 73 = 6)

В конце мы отгадываем, что результат — 6. Суть в том, что число 6 появляется независимо от того, какое число загадал человек.

Математически, это доказывается очень просто:

(2 * n + 12) / 2 - n = n + 6 - n = 6, независимо от значения n.

 

Отгадывание чисел

Есть другой фокус с отгадыванием чисел. Попросим человека загадать трехзначное число, числа в котором идут в порядке уменьшения (например 752). Попросим человека выполнить следующие действия:

‐ записать число в обратном порядке (257)

‐ вычесть его из исходного числа (752 - 257 = 495)

‐ к ответу добавить его же, только в обратном порядке (495 + 594)

Получится число 1089, которое «фокусник» и объявляет публике.

Математически это тоже несложно доказать.

‐ Любое число вида abc в десятичной системе счисления представляется так:

abc = 100 * a + 10 * b + c.

‐ Разность чисел abc - cba:

100 * a + 10 * b + c + 100 - 100 * c - 10 * b - a = 100 * a - 100 * c - (a - c) = 100 * (a - c) - (a - c)

‐ Т. к. по условию a - c > 0, то результат можно записать в виде:

100 * (a - c) - (a - c) = 100 * (a - c) - 100 + 90 + 10 - (a - c) = 100 * (a - c - 1) + 10 * 9 + (10 - a + c)

Мы узнали разряды числа, получающегося в результате:

a1 = a - c - 1, b1 = 9, c1 = 10 - a + c

‐ Добавляем число в обратном порядке:

a1b1c1 + c1b1a1 = 100 * (a - c - 1) + 10 * 9 + (10 - a + c) + 100* (10 - a + c) + 10 * 9 + a - c - 1

Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.