Генерал-майор инженерно-технической службы запаса Г. БУРАГО, профессор, доктор технических наук

В удивительном прогрессе авиации с момента ее зарождения и до наших дней, наряду с колоссальным ростом грузоподъемности самолетов, высоты и дальности полета, особенно выделяются успехи в штурме скоростей. Взгляните на график (рис. 6). На нем показано, как из года в год росли абсолютные рекорды скорости полета самолетов. Из графика видно, что с 1906 по 1962 год скорость увеличилась примерно от 50 до 3 тыс. км/час, т. е. в 60 раз! Какими путями был достигнут такой гигантский скачок скоростей? Конечно, прежде всего увеличением мощности авиационных двигателей, и главный прирост в рекордах скоростей произошел с внедрением в авиацию реактивных двигателей. Да и материалы, из которых делают самолеты, стали более прочными.

Рис. 6. Так росли по годам абсолютные рекорды скорости полета самолетов

Обратите также внимание на то, как изменилась за эти годы форма самолетов, их внешний вид. Случайно ли это? Прихоть ли руководила конструкторами, стремление к более красивым формам или какая-то закономерность, целесообразность? Конечно, не прихоть. Внешние формы быстроходных самолетов подсказаны необходимостью. Посмотрите еще раз на график. Случайно ли, что силуэты тихоходных самолетов в нижней части кривой чем-то напоминают цаплю или аиста в полете, а в верхнем — стрижа, ласточку или сокола, сложившего крылья для стремительного броска на добычу? Нет, не случайно. И в том и в другом случае в борьбе за скорость надо было уменьшить сопротивление воздуха. Но человек, однако, не копировал птицу. Он шел к этой целесообразной форме крыла современных скоростных самолетов своим, сложным путем.

Впервые летчики почувствовали неладное в конструктивных формах довоенных самолетов при полетах с большой дозвуковой скоростью. Она достигалась при крутом пикировании и в тех случаях, когда использовались ракетные ускорители. В этот момент с самолетом начинали происходить странные и опасные явления: он трудно поддавался управлению, а то и совсем выходил из-под контроля летчика.

Стало ясно, что нельзя безнаказанно увеличивать скорость полета, устанавливая на самолетах все более мощные двигатели, пока не будет определена физическая причина этих и других непонятных явлений. Почему еще в дозвуковом полете самолет вдруг начинает испытывать какое-то дополнительное и очень большое сопротивление? И почему он при этом становится неуправляемым? За выяснение этой загадочной картины взялись ученые-аэродинамики.

Надо сказать, что в механике, в этом старейшем разделе физики, за последние десятилетия очень сильно развилась аэродинамика — наука о движении воздуха. С тех пор как Н. Е. Жуковский разгадал тайну птичьего крыла и объяснил механизм образования его поистине чудодейственной подъемной силы, которая затем помогла поднять в небо аппараты намного тяжелее воздуха, ученые немало сделали для развития авиации. Не одна научная проблема, важная для практики, была решена ими. И вот теперь предстояло решить новую.

Были созданы специальные аэродинамические трубы с большими дозвуковыми и сверхзвуковыми скоростями потока. В них подверглась тщательному исследованию модели самолетов различной формы. В результате множества опытов было установлено, что при обтекании околозвуковым потоком модели самолета с толстым крылом большого удлинения (то есть имеющего большое отношение размаха крыла к хорде или, попросту говоря, ширине) около поверхности машины образуются обширные зобы со сверхзвуковой скоростью потока. В конце этих зон возникают сильные ударные волны, которые и оказываются источником большого дополнительного сопротивления, названного поэтому «волновым».

Похожие результаты ученые получили и при сверхзвуковых скоростях потока в трубе, если модель самолета имела тупую носовую часть и крылья были установлены под большим углом (так называемым углом атаки) к направлению потока. Более простыми оказались течения воздуха около тонких тел с заостренной носовой частью и около тонких крыльев с острой передней кромкой и малыми углами атаки.

Таким образом, было установлено, что обычные прямые крылья большого удлинения и большой относительной толщины (по отношению к ширине крыла), очень хорошие при малых скоростях полета, совершенно непригодны для самолетов с большими дозвуковыми и сверхзвуковыми скоростями. Слишком велико их волновое сопротивление. Кроме того, при переходе к большим дозвуковым скоростям полета (вспомним пикирование) происходит резкое перераспределение давления воздушного потока на поверхности самолета, что сразу же ухудшает его управляемость и даже может вывести из повиновения летчику.

Этими недостатками, как выяснилось, почти не страдают тонкие стреловидные или треугольные крылья с малым удлинением. И чем большая предполагалась максимальная скорость самолета, тем большим должен был быть угол стреловидности, меньше удлинение и относительная толщина крыла. Так самолеты-цапли стали самолетами-ласточками, а точнее — застывшим изображением птиц в самой выгодной для данной скорости полета форме. Однако этой внешней аналогии не стоит придавать большого значения: ведь самой быстрой птице не угнаться за самым тихоходным самолетом, и тем более птицам никогда не узнать, что такое волновое сопротивление, рожденное сверхзвуковыми скоростями.

Итак, благодаря могучим современным двигателям и найденной совершенной форме крыла скорости самолетов на сегодня перевалили рубеж 3 тыс. км/час. А как будет дальше? Конечно, скорости будут расти, ведь техника не может стоять на месте, жизнь требует новых, более быстроходных самолетов. Ученые — аэродинамики и термодинамики — с уверенностью говорят, что наука уже дала ответ на то, какие скорости полета в авиации могут быть освоены в недалеком будущем. Называют цифры, превышающие скорость звука в 10–12 раз! Такие скорости длительного и экономичного полета в атмосфере могут дать в будущем, как считают зарубежные специалисты, прямоточные воздушно-реактивные двигатели.

Но одно дело наука, другое — практика. Пока что освоены скорости, равные только трем звуковым. Но уже при такой скорости появились проблемы, которые начинают всерьез волновать специалистов. Вот хотя бы посадка самолетов. Практика показывает, что с возрастанием максимальной скорости неизбежно увеличивается и посадочная. Сейчас она у некоторых самолетов стала превышать 250 км/час. Пришлось принимать специальные меры, чтобы обезопасить посадку. Однако, по мнению зарубежных специалистов, ни удлинение посадочных полос, ни использование тормозных парашютов не сняло определенной тревоги за каждый самолет, идущий на посадку с большой скоростью. Режим посадки находится уже на грани аварийного. Каков же выход из этого положения?

Ответ в общем-то давно известен. Уменьшить посадочную скорость можно, используя на посадке крылья дозвуковых самолетов, тех, что находятся в нижней части нашего графика. Но такие крылья, как мы уже говорили, для сверхзвуковых полетов совершенно неприемлемы. Они ведь должны быть стреловидными. А если объединить два этих качества в одно — сделать крыло с изменяющимся положением относительно самолета и потока воздуха? Подлетает, скажем, такой самолет к аэродрому, разворачивает, подобно птице, стреловидное крыло, делает его прямым и начинает планировать, совершая посадку с малой скоростью…

Идея создать крылья с изменяющейся в полете конфигурацией, вообще говоря, не нова. Однако зарубежные специалисты долгое время считали, что достигнутый уровень современной техники не позволяет осуществить надежную конструкцию такого крыла.

В последнее время в среде зарубежных военных специалистов не раз обсуждался вопрос о том, как создать самолет, который обладал бы одновременно качествами боевых машин разного назначения, например истребителя-перехватчика и тактического бомбардировщика. Однако истребитель должен обладать способностью длительно патрулировать в воздухе на самом экономичном режиме дозвукового полета и при необходимости резко набирать большую скорость, а бомбардировщик — иметь возможность на низкой высоте преодолевать на сверхзвуковой скорости зону действия наземных радиолокационных станций противника.

И все это, оказывается, возможно осуществить, если самолет уподобить соколу или орлу, которые раскидывают крылья и делают их прямыми при длительном полете— парении и складывают для стремительного броска на добычу. Проект такого самолета, «самого спорного в мире», как назвала его зарубежная печать, был разработан в США. Построен и опытный образец, известный под названием многоцелевого сверхзвукового истребителя-бомбардировщика F-111.

Максимальная скорость этого самолета составляет 2655 км/час на высоте 18,3 км. При взлете, патрулировании и посадке стреловидность его крыла минимальная — 16°, а размах крыла при этом равен 19,2 м. При крейсерском режиме полета стреловидность максимальная — 75,5° и размах — 9,7 м. Различные положения крыла F-111 показаны на рис. 7.

Рис. 7. Самолет, у которого в полете может изменяться форма крыла

Во время одного из летных испытаний при умеренной скорости полета — 740 км/час посадочная скорость F-111 составила всего 125 км/час. В другом полете со скоростью 1900 км/час даже отказ тормозного парашюта, как сообщала печать, не помешал летчику произвести безаварийную посадку.

Некоторые из зарубежных специалистов считают, что крыльями с изменяющейся в полете геометрией будут обладать в будущем только многоцелевые самолеты, т. е. такие, которые способны решать несколько различных задач. Но есть и другие мнения, согласно которым подобные крылья будут иметь более широкое применение, например в сверхзвуковой транспортной авиации и даже на гиперзвуковых самолетах. Кстати, как сообщалось в печати, крыло с изменяющейся в полете геометрией собирается использовать фирма «Боинг» при постройке нового сверхзвукового транспортного самолета. Считают, что это позволит улучшить взлетно-посадочные характеристики и уменьшит необходимую длину взлетно-посадочной полосы.

А вот пример из арсенала сторонников первой точки зрения. Экспериментальный гиперзвуковой пилотируемый самолет Х-15А-2 имеет неподвижное прямое крыло. В том, что крыло сделано прямым, видно стремление конструкторов в какой-то мере облегчить посадку. Но крыло тонкое и имеет малое удлинение, а это уже дань большой сверхзвуковой скорости, так как этот самолет рассчитан на максимальную скорость 8800 км/час на высоте 30,5 км. Х-15А-2 снабжен ракетным двигателем и не может взлетать с земли. Он доставляется на определенную высоту самолетом-носителем. Однако садится машина по-самолетному, но с громадной посадочной скоростью (340 км/час, а по некоторым данным, и выше), требующей от пилота поистине циркового искусства в точности приземления.

Таковы вкратце некоторые проблемы, с которыми сталкивались и сталкиваются специалисты при конструировании новых самолетов больших сверхзвуковых скоростей. Однако как будут выглядеть будущие гиперзвуковые самолеты, сказать сейчас трудно. Этот вопрос находится еще, как мы видим, в стадии предварительных исследований и разработок. Большой отпечаток на внешнюю форму гиперзвукового самолета может наложить сложная проблема защиты конструкций от аэродинамического нагрева.