Инженер-капитан 3 ранга Г. СВЯТОВ

Давайте заглянем в школьный учебник физики. Почти на каждой его странице — знакомые рисунки, формулы. Книга чем-то напоминает музей. Музей тех великих открытий, которые теперь уже стали прописными истинами, словно бы вещами повседневного обихода. Даже нет, кажется, большой разницы в том, когда сделаны эти открытия. И теорема Жуковского о подъемной силе крыла, выведенная ученым в начале нашего столетия, и закон о плавании тел, открытый Архимедом в третьем веке до нашей эры, вошли в школьные программы. А это значит, что все такие закономерности изучены, как говорят, вдоль и поперек и добавить к известному вроде бы нечего.

Однако история показывает, что академическое спокойствие разгаданных истин время от времени нарушается. Познанные законы природы нет-нет да и получают новое преломление в техническом творчестве человека, делают его еще более могущественным. Не думал же Архимед, что его закон о плавании тел в воде потребуется когда-нибудь для создания аппаратов, плавающих в воздухе, — аэростатов или дирижаблей. Любопытно отметить, что только через две тысячи лет после смерти Архимеда начал строиться первый управляемый аэростат, который получил название дирижабля. Это произошло в России, в дни, когда на территорию страны вторглись полчища Наполеона. Дирижабль предназначался для обстрела и бомбардировки вражеских войск.

Не знал Архимед и того, что открытая им «поддерживающая сила, действующая на тело, погруженное в жидкость», не будет вечно существовать в одиночку, что у нее появится могущественная союзница — подъемная сила и что ее даст — кто бы мог подумать! — обыкновенное птичье крыло.

Вряд ли и сам «виновник» этого интересного события в истории техники — Н. Е. Жуковский подозревал, что его теорема о подъемной силе крыла сравнительно скоро понадобится судостроителям. Правда, ученый доказал свою теорему для жидкости, или, точнее сказать, для идеальной жидкости (то есть несжимаемой и не имеющей вязкости), которая одинаково хорошо (в известных пределах) сочетает свойства воздуха и воды.

Одним из важных показателей технического прогресса общества, пожалуй, можно считать время, которое проходит от разработки научной теории до создания орудий труда или средств вооружения, всесторонне использующих эти достижения науки. Двадцать веков потребовалось, чтобы закон Архимеда обрел новую жизнь в воздухоплавании, и меньше полвека понадобилось, чтобы крыло Жуковского погрузили в воду.

Известно, что самый дешевый транспорт — водный. Но он и самый тихоходный. Борьба за увеличение скорости судов — это не только борьба за экономичность, но и борьба за более высокие боевые, тактические качества. Однако всякое увеличение скорости надводных судов повышает и сопротивление корпуса. А если каким-то образом максимально вытащить корпус из воды? Ведь сопротивление его в воздухе во много раз меньше, чем в воде. Так-то и родилась идея ввести под воду крылья, которые благодаря своей подъемной силе, образующейся при движении судна, выталкивают вверх его тяжелый корпус. И скорость судов буквально скачком возросла в 1,5–2 раза.

Так появились и сразу получили бурное развитие суда на подводных крыльях. Особенно большие успехи в этом, как известно, достигнуты в Советском Союзе. Строят суда на подводных крыльях и за рубежом. Иностранные специалисты попытались использовать этот принцип для создания специальных военных судов, и в частности малых морских противолодочных кораблей. Однако выход их на морские просторы, как сообщалось в зарубежной печати, потребовал решить проблему повышения устойчивости хода на морских и океанских волнах. Это осуществляется путем создания специальных крыльевых систем с автоматическим регулированием их угла атаки в зависимости от характера волны. Такими устройствами обеспечен, в частности, малый противолодочный корабль «Хай Пойнт» (рис. 11). Как сообщалось в печати, большие суда на подводных крыльях еще не созданы, самые крупные имеют водоизмещение не более 300 т. Однако эти суда прельщают специалистов своими высокими скоростными качествами. Скорость «Хай Пойнт», например, 40 узлов (около 75 км/час), а другого противолодочного корабля «Плэйнвью» — 60 узлов.

Рис 11. Противолодочный корабль на подводных крыльях

Оказалось, что подъемную силу крыла можно с большой выгодой использовать и для подводного плавания. Первыми начали применять крылья в подводной технике конструкторы торпед. Известно, что торпеда, как и подводная лодка, обладает нулевой плавучестью. Это значит, что она, согласно закону Архимеда, вытесняет столько воды, сколько весит сама. А если построить торпеду с отрицательной плавучестью, т. е. вес ее сделать больше, чем вес вытесненной воды, и недостающую выталкивающую силу компенсировать подъемной, которую во время движения создадут специальные крылья? Выяснилось, что в этом случае можно повысить скорость, дальность хода и глубину погружения торпеды.

Как сообщалось в зарубежной печати, скорость одной из проектируемых крылатых торпед должна быть на 14 узлов выше скорости обычной. Кстати, и крылья для торпед, имеющих довольно большую отрицательную плавучесть, оказались невелики. При расчетной скорости 55 узлов и дальности хода 18 км длина крыльев 533-мм торпеды не превысит 9 см, а хорда, т. е. ширина крыла, будет чуть больше 7 см. Такие малые размеры получаются из-за того, что плотность морской воды примерно в 800 раз выше плотности воздуха. А так как плотность входит в формулу подъемной силы крыла (как и скорость потока, и площадь крыла), для создания одинаковой подъемной силы при одной и той же скорости площадь крыла в воде должна быть в 800 раз меньше, чем в воздухе.

Дальность хода крылатых торпед по сравнению с обычными, как считают зарубежные специалисты, может быть увеличена в три раза. Это объясняют тем, что в том же объеме корпуса можно теперь разместить более эффективное, но в то же время более тяжелое топливо, а также ставить и более мощные двигатели, которые при прежних размерах могут иметь существенно больший вес. Особенно это преимущество сказывается при движении торпед на высоких скоростях. Так, при скорости более 60 узлов величина отрицательной плавучести (т. е. тот самый «лишний» вес, который несет на крыльях торпеда) уже почти не сказывается на ее движении, так как гидродинамические силы, куда входит и подъемная сила крыльев, существенно преобладают над гидростатическими.

Большие возможности, как считают зарубежные специалисты, дает применение крыльев для увеличения глубины погружения торпед, которое необходимо для атаки глубоководных подводных лодок. Подсчитано, что при одной и той же прочности материала корпуса глубина погружения торпеды прямо пропорциональна толщине обшивки, т. е., по существу, весу корпуса. А он, как известно, составляет примерно 20 % от полного веса торпеды. Значит, если в два раза увеличить вес корпуса или, что то же самое, увеличить на 20 % отрицательную плавучесть торпеды, можно удвоить глубину ее погружения. Повышение же веса для крылатых торпед существенного значения, как мы видели, не имеет. На рис. 12 показаны общий вид крылатой торпеды, ее предполагаемые дальность и глубина хода (2) в сравнении с характеристиками обычной торпеды (1).

Рис. 12. Боевые возможности обычной (1) и крылатой (2) торпеды

Обратили пристальное внимание на возможности плавания под водой с отрицательной плавучестью и конструкторы подводных лодок. Однако до последнего времени их останавливало одно существенное обстоятельство. Если самолет при выходе из строя двигателя может совершить вынужденную посадку или летчик просто покинет машину, спасаясь на парашюте, остановка двигателя подводной лодки с отрицательной плавучестью неизбежно приведет к тому, что она провалится на большую глубину и будет раздавлена давлением воды. У торпедистов такой проблемы нет. Выход двигателя из строя в боевых условиях означает, что торпеда до цели не дойдет, а если уж это произошло, разрушение ее давлением воды на большой глубине значения не имеет.

Считают, что с появлением более надежных атомных двигателей к этой проблеме уже можно подступиться. Некоторые зарубежные специалисты выдвигают даже конкретную идею создания маленьких крылатых подводных лодок с отрицательной плавучестью, которые действовали бы с палубы большой подводной лодки-носителя. По существу, это уже должен быть подводный авианосец с подводными самолетами. Так опыт аэродинамики пытаются перенести в гидросферу.

У читателя может возникнуть вопрос: ну, хорошо, лодка с крыльями, но под водой — это естественно, а возможно ли, чтобы она, обладая крыльями, порывала, когда необходимо, с водной стихией и совершала полет в воздухе? Иными словами, может ли подводная лодка летать, как самолет?

Попробуем разобраться в этой проблеме.

В самой идее создания летающей подводной лодки вроде бы и нет ничего особенного. Ведь есть же птицы, которые ныряют и плавают под водой, в океане живут рыбы, способные парить в воздухе. Однако когда такой своеобразный гибрид — летающий и плавающий — задумали создать зарубежные военные специалисты, они столкнулись с немалыми трудностями.

Первый вопрос, который предстояло решить: что строить — погружающийся самолет или летающую лодку? Попробовали взять за основу гидросамолет — ведь он уже приспособлен для плаваний. И тут обнаружилось важное обстоятельство: по весу гидросамолеты близки к сверхмалым подводным лодкам, а по объемному водоизмещению к другому подклассу — малым лодкам. Таким образом, выяснилось, что в самолете не соблюден самый главный принцип подводного плавания, вытекающий из закона Архимеда, — равенство весового и объемного водоизмещения.

Следовательно, чтобы гидросамолет плавал под водой, нужно в несколько раз увеличить вес его корпуса и снизить запас плавучести с 300 %, скажем, до 15–30.

Но такая машина — весом 150–300 т — при прежней мощности двигателей не полетит. А если подвести под общий знаменатель лодку? Облегчить ее корпус и принять запас плавучести в 300 %? Такая лодка будет очень долго погружаться, причем лишь на незначительную глубину, низкими будут у нее ходовые и маневренные характеристики.

В зарубежной печати проектируемое подводно-летное средство назвали сабпланом, что означает погружающийся самолет. Это говорит о том, что за основу взят все-таки самолет. Предполагаемый вес сабплана 6–7 т, примерно тот же, что и у сверхмалой лодки. Рассчитывают, что он будет летать со скоростью 300–400 км/час при дальности полета 1000–1800 км и иметь скорость подводного хода 9—18 км/час при дальности плавания под водой 70–90 км. Глубина погружения сабплана 25–50 м, вес полезного груза до 700 кг.

Считают, что по формам машина будет напоминать современный гидросамолет (рис. 13). На сабплане думают установить три воздушно-реактивных двигателя: один на фюзеляже и два на пилонах над крыльями. Фюзеляжный двигатель предназначен для полета в район боевых действий, а крыльевые — после выполнения заданий.

Рис. 13. Возможный вид подводной лодки-самолета

Так какие же проблемы, по мнению зарубежных специалистов, встали при создании погружающегося самолета? Основная — уменьшение габаритов оборудования сабплана.

Объем его корпуса уменьшается по сравнению с гидросамолетом в 4 раза. А ведь в таком маленьком корпусе нужно разместить не только всю авиационную «начинку», но и оборудование сверхмалой подводной лодки: ее энергетическую установку, запасы энергии для подводного плавания, торпеды, мины или другое оружие весом до 700 кг. При всем этом хотя бы 30 % объема корпуса надо оставить для цистерн главного балласта, без которых нельзя погрузиться и всплыть.

В ходе проектирования возникают и другие проблемы. Как уже говорилось, в район выполнения боевой задачи сабплан полетит на одном фюзеляжном двигателе. Так как единица объема машины будет иметь значительный вес, этот двигатель должен быть небольшим, легким и достаточно мощным. В то же время сабплан должен обладать развитыми крыльями с большой подъемной силой. Тогда его взлетно-посадочная скорость будет небольшой, он сможет взлетать и садиться при значительных волнах.

Во время полета в заданный район сабплан израсходует примерно половину горючего, которое, как предполагают, разместится в цистернах главного балласта. Перед посадкой на воду машину надо подготовить к подводному плаванию. К этому моменту горючее в балластных цистернах должно быть или израсходовано или удалено, а другие переменные грузы размещены так, чтобы центр тяжести сабплана находился на одной вертикали и несколько ниже центра его водонепроницаемого объема.

Как же будет осуществляться плавание под водой? Для этого в кормовой части будет установлен гребной винт, приводимый в движение электромотором или парогазовой турбиной. Так как скорость подводного хода сабплана сравнительно невелика, сопротивление крыльев, очевидно, не будет очень большим. Однако на управляемость сабплана крылья окажут большое влияние.

Для плавания подводной лодки с нулевой плавучестью под водой крылья не нужны. Кстати, и наличие их практически не скажется на устойчивости движения лодки. Маневренные же характеристики крылатой подводной лодки в вертикальной плоскости даже улучшаются.

При погружении сабплана через каждые 10 метров давление на него будет возрастать на одну атмосферу. Значит, при глубине погружения 25–50 м корпус должен быть рассчитан на давление в 5—10 атм. С такими давлениями авиационным конструкторам обычно не приходится иметь дело. Следовательно, корпус сабплана должен быть построен не только по правилам строительной механики самолета, но и по законам строительной механики подводной лодки.

Выполнять боевую задачу под водой невозможно без современного гидроакустического оборудования, да и без обыкновенного перископа. Понятно, что без совмещения ряда функций приборов и органов управления, обеспечивающих полет и плавание сабплана, будет невозможно втиснуть всю аппаратуру в корпус машины. Совмещение потребуется и при обеспечении аварийно-спасательными средствами экипажа самолета на случай аварии под водой и в воздухе.

После выполнения боевой задачи сабплан должен выйти под водой из опасной зоны, всплыть к поверхности и взлететь с помощью двух крыльевых двигателей. Взлет — наиболее трудная проблема. Уже говорилось, что запас плавучести сабплана не может быть выше примерно 15–30 %. Поэтому при взлете крыльевые двигатели должны буквально вырвать машину из воды. Для этого, очевидно, будут использоваться рули высоты и закрылки, причем не только в воздухе, но и в воде.

Какова же будущность сабплана? Сейчас трудно утверждать что-либо определенное. Военные специалисты США считают, что «концепция целесообразна и осуществима». Современная техника может решить практически любую задачу. Вопрос, очевидно, будет заключаться в том, насколько такое специфическое боевое средство необходимо и насколько оно будет эффективнее обычного противолодочного гидросамолета и сверх-малой подводной лодки.

Надо сказать — и это подтверждают сами зарубежные специалисты, — что не всем из приведенных выше проектов суждено сбыться. Время, новые научные открытия могут также внести свои коррективы. Мы привели эти примеры лишь для того, чтобы проиллюстрировать мысль, к каким неожиданным поворотам в развитии техники, и в частности военной, может привести расширение границ применения тех или иных хорошо известных законов физики.

Теперь давайте обратимся к более близким по времени вопросам. Ведь использование разнообразных физических закономерностей играет важную роль и в совершенствовании обычных, традиционных форм подводных лодок. Чтобы убедиться в этом, любопытно рассмотреть одну очень важную проблему — пути увеличения глубины погружения подводных кораблей.

Пытливые умы человечества давно стремились проникнуть в глубины вод и за пределы атмосферы. Последние десятилетия были свидетелями штурма человеком, и в первую очередь советским, стратосферы, а затем и космоса. В то же время освоение гидросферы, начатое несколько столетий назад, двигается относительно медленно.

Хотя люди и научились создавать аппараты с глубинами погружения до нескольких тысяч метров, их пока единицы, и обладают они весьма ограниченными возможностями для изучения, а тем более освоения глубин океана. А ведь 70 % поверхности нашей земли покрыто океанами и морями. Значит, под водой скрыто по меньшей мере 2/3 богатств недр земли, не говоря уже о неисчерпаемых богатствах самих океанов и морей.

Большое значение в современных условиях имеют морские глубины для ведения войны на море. Известно, какое развитие получили в первую и вторую мировые войны подводные лодки. И на всех этапах существования подводного кораблестроения шла борьба за то, чтобы лодки могли действовать на все большей глубине. Так же, как большая высота полета самолетов при прочих равных условиях повышает их неуязвимость и боевые возможности в воздушном бою, большие глубины погружения подводных лодок улучшают их тактико-технические показатели — скрытность действий, маневренность, взрывостойкость, возможность уклонения от противолодочного оружия.

Сейчас, когда важнейшее боевое значение приобрели атомные подводные корабли, борьба за большие глубины плавания не только не ослабла, но усилилась.

Однако путь в глубину труден. Ведь при погружении на каждые 10 м гидростатическое давление возрастает на 1 атм. Это значит, что на глубине 100 м на каждый квадратный сантиметр поверхности прочного корпуса лодки действует давление 10 кг, на глубине 1 тыс. м — 100 кг и т. д.

Первой крупной жертвой на пути к большим глубинам атомных подводных кораблей стала новейшая американская подводная лодка «Трешер» с экипажем в 129 человек. Катастрофа произошла 10 апреля 1963 г. в Атлантическом океане во время глубоководного погружения.

В практике подводного кораблестроения используются следующие понятия глубин погружения: рабочая, предельная и расчетная (разрушающая). Отношение расчетной глубины к рабочей называется коэффициентом безопасности. Зарубежные специалисты принимают его равным 1,5–2. Рабочая глубина погружения подводных лодок периода второй мировой войны колебалась в пределах 100–150 м. У американских атомных подводных лодок постройки прошлого десятилетия она достигла 200–250 м, а у построенных в последние годы увеличена до 350–400 м.

Дальнейший рост глубины погружения зависит в первую очередь от возможности повышения прочности корпуса. Чтобы представить, какие громадные внешние силы давят на прочный корпус современной подводной лодки, достаточно произвести элементарный расчет. На каждый квадратный метр поверхности прочного корпуса на глубине 400 м действует сила в 400 т. При водоизмещении подводной лодки 4 тыс. т — 7 тыс. т площадь обшивки прочного корпуса исчисляется 2000–3500 м2, и следовательно, внешняя нагрузка на него на глубине 400 м достигает 800—1400 тыс. т!

Напомним, что на современной подводной лодке имеется два корпуса: прочный и легкий. В прочном корпусе размещается внутреннее оборудование, экипаж, а легкий образуют балластные цистерны погружения и всплытия.

Известно, что максимальная глубина Мирового океана— 11 тыс. м, но в океанах и морях имеется много мелководных районов. Какой должна быть глубина погружения будущих боевых подводных лодок? На этот вопрос можно ответить, если проанализировать распределение глубин по площади Мирового океана. Такой анализ показывает, что подводная лодка с глубиной погружения 5500 м может достичь дна на 90 % площади океанов и морей, а с глубиной погружения 4600 м — на 60 % площади.

Какова же должна быть конструкция прочных корпусов современных подводных лодок, чтобы выдержать на столь больших глубинах огромное давление? Наиболее оптимальная форма оболочки, рассчитанная на большое наружное давление, — сферическая, но она используется лишь при конструировании глубоководных батискафов. Корпуса же подводных лодок, для которых высокая скорость не менее важна, чем большая глубина погружения, делают, как известно, сигарообразными.

Развитие теории проектирования подводных лодок связано с анализом напряженного состояния цилиндрических и конических оболочек, подкрепленных кольцевыми ребрами-шпангоутами. Если обшивка воспринимает основную часть нагрузки, т. е. обеспечивает прочность, то шпангоуты увеличивают жесткость оболочки, создают ее устойчивость. Повышают устойчивость прочного корпуса и поперечные межотсечные переборки, устанавливаемые для непотопляемости.

Когда подводная лодка идет в глубину, с ростом глубины увеличивается давление на цилиндрический прочный корпус и трубопроводы забортной воды, охлаждающей различные агрегаты и механизмы. На современном этапе развития подводных лодок наиболее слабым местом считают трубопроводы.

Вот к каким выводам о возможных причинах гибели «Трешера» пришла специальная комиссия, несколько месяцев занимавшаяся этим вопросом. Вблизи предельной глубины погружения (400–500 м) в кормовом машинном отсеке разорвало один из трубопроводов. Вода под давлением в несколько десятков атмосфер (струя воды под таким давлением способна разрушать твердые породы грунта) начала поступать в отсек. Затопление отсека и короткие замыкания оборудования еще до его полного затопления повлекли за собой выход из Строя энергетической установки лодки. Это привело к потере ею хода. Лодка проваливалась все глубже, и на расчетной глубине погружения между шпангоутами появились сначала вмятины, затем отсеки начало коробить, и, наконец, вода через трещины хлынула во все отсеки и затопила их.

В качестве материала прочных корпусов современных боевых подводных лодок используется высокопрочная сталь с пределом текучести 70 кг/мм2. Это означает, что по прочностным качествам такая сталь приблизительно в два раза превосходит сталь, используемую в общем машиностроении. В настоящее время за рубежом признано, что дальнейший рост глубин погружения подводных лодок может быть обеспечен либо за счет утяжеления прочного корпуса, либо за счет дальнейшего повышения механических характеристик сталей, или посредством использования других высокопрочных материалов.

На современных подводных лодках на долю корпусных конструкций приходится около 40 % весового водоизмещения, причем на долю прочного корпуса — около 20 % веса лодки. В первом приближении можно считать, что при неизменном материале утяжеление прочного корпуса прямо пропорционально увеличению глубины погружения подводной лодки. Иностранные специалисты считают, что дальнейший рост глубин погружения лодок может быть обеспечен за счет увеличения толщины конструкционных элементов прочного корпуса.

Такой путь использован американскими специалистами при конструировании экспериментальной глубоководной подводной лодки «Дельфин» (рис. 14), строительство которой заканчивается на военно-морской верфи в Портсмуте. «Дельфин» — это подводная лодка, предназначенная для решения проблем, связанных со строительством атомных подводных лодок с увеличенными глубинами погружения.

Из-за отсутствия малогабаритных атомных энергетических установок, способных работать на большой глубине, на лодке будет смонтирована одновальная дизель-электрическая установка. Глубина погружения этой подводной лодки — около 1200 м, водоизмещение — порядка 1000 т, а в качестве материала цилиндрического прочного корпуса диаметром 5,8 м использована сталь с пределом текучести 70 кг/мм2. Поэтому у подводной лодки «Дельфин» на долю прочного корпуса приходится 50–60 % весового водоизмещения. Столь резкое уменьшение доли легких корпусных конструкций, фундаментов, механизмов, вооружения и оборудования стало возможным благодаря специальному назначению лодки, на которой энергетика не обеспечивает высокой скорости и большой дальности плавания, а вооружение состоит всего из одного экспериментального торпедного аппарата.

Рис. 14. Глубоководная подводная лодка «Дельфин» — такой представил ее художник

Однако есть и другой путь в глубину: повышение пределов текучести стали, из которой строится корпус лодки. Общепроектные требования развития подводных лодок медленно меняются в сторону увеличения доли прочного корпуса в общем весовом водоизмещении. Поэтому практически рост глубин погружения подводных лодок обычно следует за повышением предела текучести корпусной стали. Считается, что такое положение сохранится и в будущем.

Каковы же перспективы повышения механических характеристик корпусных сталей? Еще в начале этого десятилетия в качестве материала первой американской ракеты «Поларис» использовалась сталь с пределом текучести 140 кг/мм2. Подводники же до сих пор не перевалили за предел текучести 70 кг/мм2. Почему?

Дело в том, что толщина обшивки прочных корпусов современных подводных лодок превышает 40 мм. Сварка листов стали такой толщины — дело весьма сложное. Но не только трудности сварки листов препятствуют созданию сталей со значительно повышенными пределами текучести. Ограничения накладывают также специфические для подводных лодок требования взрывостойкости и усталостной прочности. И все же эти трудности постепенно преодолеваются. В настоящее время освоенной сталью для корпусов лодок иностранные специалисты считают сталь с пределом текучести 100 кг/мм2. Они не исключают возможности того, что к началу следующего десятилетия эта цифра удвоится.

Кроме строящейся экспериментальной глубоководной подводной лодки «Дельфин» со стальным корпусом в США построена экспериментальная океанографическая подводная лодка «Алюминаут», в качестве материала прочного корпуса которой использован высокопрочный несваривающийся алюминиевый сплав с пределом текучести 45 кг/мм2. Из-за несвариваемости этого сплава для основных корпусных конструкций использованы болтовые соединения со склеиванием стыков и пазов. Предельная глубина погружения «Алюминаута» — 4600 м, диаметр прочного корпуса — 2,14 м, толщина обшивки — 152 мм, вес научно-исследовательского оборудования — 2700 кг, скорость хода — 4,8 узла и дальность плавания 96 миль. Водоизмещение лодки — 68 т.

Оценивая эффективность использования алюминиевых сплавов для увеличения глубин погружения подводных лодок, надо иметь в виду, что строительство подводной лодки «Алюминаут» носит в значительной степени рекламный характер. Инициаторы ее постройки — руководители американской промышленности алюминиевых сплавов.

Иностранные специалисты изучают также проблемы освоения титановых, бериллиевых сплавов и стеклопластиков для корпусов глубоководных подводных лодок. Однако эти проблемы пока не находят практического решения в подводном кораблестроении.

Почему в последнее время внимание конструкторов-подводников привлечено к новому материалу — бериллию? Хотя стоимость этого материала еще выше стоимости титановых сплавов, но у него высокий модуль (мера) упругости (на 30 % выше, чем у стали) наряду с высоким пределом текучести.

Изучением проблемы использования стеклопластиков для корпусов подводных лодок заняты американские специалисты в Тейлоровском опытовом бассейне. Ими проведены модельные эксперименты со стеклопластиком с удельным весом порядка 2 г/см3, пределом прочности 50–60 кг/мм2 и модулем упругости в 4 раза меньшим, чем у стали. Интересно, что в ракетостроении сталь с пределом текучести 140 кг/мм2 не выдержала конкуренции со стеклопластиком. В настоящее время многие части корпуса ракеты «Поларис» изготовляются из стеклопластика. Характер распределения напряжений в цилиндрической оболочке, на которую действует гидростатическое давление, открывает большие возможности для стеклопластиков. Известно, например, что напряжения в продольных сечениях такой оболочки в два раза выше, чем в поперечных. Значит, если поперек цилиндра намотать в два раза больше стеклонитей, чем вдоль, материал конструкции будет использован наилучшим образом.

Таковы некоторые пути решения проблемы увеличения глубин погружения подводных лодок. К какому времени будет решена проблема создания боевых подводных лодок с глубинами до 5 тыс. м, трудно сказать. Пока же считается, что боевые лодки следующего десятилетия с прочными корпусами из стали с пределом текучести 210 кг/мм2 смогут погружаться на глубины до 1200 м.