Инженер-подполковник И. БЕСКИН, кандидат технических наук
«Движение есть явление, по-видимому, всем знакомое, но между тем, несмотря на то, что философы написали об этом предмете большое количество толстых томов, важнейшие свойства движения остаются неизвестными…» Эти слова написаны более трех веков тому назад одним из основоположников естествознания, великим итальянским ученым Галилеем. С тех пор наука многое сделала для изучения движения. Однако практика, и в частности военное дело, ставит в этой области все новые и новые задачи, и, оказывается, даже в такой простой, узкой области движения, как перемещение из одной точки в другую, еще есть над чем потрудиться ученым и инженерам.
Ракетно-ядерное оружие властно преобразовало тактику и стратегию, сделало бой скоротечным и в высшей степени маневренным. А на стремительные прорывы, глубокие обходы, многокилометровые марши способны только полностью механизированные войска. Значительно возрос вес армейских грузов, увеличились расстояния, на которые их надо перебрасывать. Все это вызвало к жизни очень серьезные научно-технические задачи, связанные с созданием всевозможной армейской боевой и транспортной техники, способной надежно осуществить в требуемые сроки доставку армейских грузов. Решение поставленных задач потребовало проведения соответствующих теоретических работ и, в первую очередь, изучения физических процессов, происходящих при движении тел в различных средах.
Реальные случаи движения — в том смысле этого термина, который был определен в начале статьи, — всегда связаны с преодолением сопротивления внешней среды. Летящий самолет преодолевает сопротивление воздуха; мчащийся торпедный катер — и воздуха, и воды; погруженная подводная лодка — сопротивление воды, а движущийся танк — сопротивление грунта. С другой стороны, внешняя среда необходима для движения, так как само движение может осуществляться только при взаимодействии движущегося тела с окружающей его средой. Следовательно, и тело, и окружающая его среда должны рассматриваться совместно, в их диалектических связях и взаимодействии, так как они составляют единую систему, характеризующуюся наличием известного количества движения.
Оставив в стороне некоторые неизбежно сопутствующие явления, можно утверждать, что, например, для движущегося самолета или корабля справедлив закон сохранения количества движения. Этот закон, так же как и законы сохранения энергии и момента количества движения— одна из конкретных форм проявления в природе общего закона сохранения движения, впервые сформулированного М. В. Ломоносовым. Напомним его: «Суммарное количество движения замкнутой системы тел (не взаимодействующей с другими телами) остается постоянным».
где m i — массы тел, образующих систему;
v i — скорость этих тел;
Р — вектор количества движения системы.
Из закона сохранения количества движения, в частности, следует, что, например, корабль массой m 1 плывущий со скоростью v 1 , должен для осуществления своего движения перемещать массу воды m 2 со скоростью v 2 . При этом должно соблюдаться равенство
m 1 v 1 = m 2 v 2 .
Подобное равенство можно написать для любого движущегося тела, будь то самолет или ракета, танк или автомобиль, подводная лодка или железнодорожный состав.
В некоторых случаях можно отчетливо наблюдать перемещение внешней по отношению к движущемуся телу среды — это струя воды за винтом корабля или вихри воздуха за самолетом. Если же среда, с которой осуществляется взаимодействие, имеет достаточно большую массу, перемещение ее на глаз не заметно. Так, смещение железнодорожных рельсов происходит в основном в пределах упругих деформаций металла и только за длительный период проявляется в виде так называемого угона, измеряемого сантиметрами, а то и миллиметрами.
Итак, поскольку окружающая движущееся тело среда, с одной стороны, обеспечивает саму возможность передвижения, а с другой — оказывает сопротивление движению, решение задачи создания средств доставки армейских грузов должно начинаться именно с изучения свойств сред, в которых этот процесс происходит. Заметим, что такие разделы физики, как гидродинамика и аэродинамика, возникли и достигли нынешнего, столь высокого уровня развития именно в связи с необходимостью изучения свойств воды и воздуха при движении по ним кораблей и самолетов.
Однако вода и воздух, пожалуй, не самая сложная среда для движения. Свойства их достаточно однородны, сопротивления, оказываемые ими, зависят в основном от скорости движения и могут быть описаны сравнительно несложными математическими уравнениями. Поэтому и удалось отыскать совершенные гидро- и аэродинамические формы кораблей и самолетов, разработать достаточно эффективные конструкции их движителей — устройств для преобразования работы двигателя в работу, расходуемую на движение транспортных средств. Иными словами, высокая эффективность технических решений, примененных в конструкциях кораблей и самолетов, имеет своей первопричиной прежде всего однородность сред, в которых эти транспортные средства движутся. Всякое же изменение свойств среды, как показал опыт, требует соответствующей переработки конструкции. Например, изменения свойств взаимодействующего с самолетом потока воздуха при переходе к полетам со сверхзвуковыми скоростями привело к существенным переменам в конструкции самолета. Увеличение сопротивления воды при росте скорости движения кораблей оказалось настолько значительным, что пришлось прибегнуть к специальным конструкциям — подводным крыльям, позволившим судам вырваться из воды в среду с меньшим сопротивлением — в воздух. Следует напомнить, что и воздух, и вода, с точки зрения физического состояния вещества, — однофазные среды: воздух только газообразен, а вода только жидка.
Посмотрим теперь, как обстоит дело с третьим фазовым состоянием вещества — твердым. Транспортные средства, предназначенные для движения по твердым однородным средам (шоссейным и железным дорогам), также достигли высокой степени совершенства: они экономичны, рациональны по конструкции, недороги в производстве. Но в связи с отсутствием в природе твердых однородных сред для передвижения транспорта их приходится создавать искусственно — строить дороги. Это та цена, которую мы вынуждены платить за отсутствие транспорта, способного двигаться по бездорожью, т. е. в разнородной среде.
Итак, нынешний уровень развития и состояние науки и техники позволили найти оптимальные решения для транспортных средств, предназначенных для движения по любой однофазной и однородной среде. Вне расчетных условий внешней среды современные транспортные средства практически двигаться не могут, да и вряд ли кому-либо придет в голову требовать от тепловоза движения не по рельсам, а по воде, а от подводной лодки — по суше. Маневрирование, например, самолетов по аэродромам настолько экономически невыгодно, что предпочитают иметь автотягачи для их буксировки.
Иное дело армейские машины. Они не могут быть рассчитываемы на какую-либо стабилизацию условий, в которых должны работать. В условиях применения ядерного оружия движение по дорогам будет скорее исключением, нежели правилом. Мосты и переправы будут уничтожаться, дефиле — забиваться транспортом или заражаться радиоактивными осадками. Короче говоря, преимущество в бою будет на стороне той армии, техника которой не будет привязана к дорогам, а сможет совершать свободные маневры по бездорожью и появляться там и тогда, где и когда противник ее меньше всего ожидает. Поэтому к армейской технике и предъявляются требования уверенного передвижения по бездорожью. Военные машины должны двигаться по песку и болотам, скалам и снегам, преодолевать водные преграды на плаву. Неплохо было бы, чтобы они могли и в воздух подниматься…
Уже одно простое, далеко не полное перечисление таких требований показывает, что, в отличие от невоенных, армейские машины должны быть способными выполнять поставленную задачу не в однофазной, однородной окружающей среде, а в нескольких фазах, при широком диапазоне преодолеваемых во время движения внешних сопротивлений.
Задача создания таких машин очень не проста. Видный зарубежный специалист в области машин высокой проходимости М. Г. Беккер заявил однажды, что решение этой проблемы будет найдено тогда, когда к ней будут привлечены силы ученых такого масштаба, как Фруд и Рейнольдс, Мах и Жуковский. В чем же сложность? Корень трудностей кроется в том, что бездорожье, с точки зрения передвижения по нему, — среда с крайне разнообразными и часто меняющимися под влиянием внешних условий свойствами. Поэтому хорошо зарекомендовавшие себя конструктивные решения транспортных средств обычного типа оказываются неприменимыми или неэффективными при создании машин для, бездорожья.
В связи с отсутствием теоретической базы создание транспортных средств высокой проходимости велось, да и по сей день ведется в армиях многих стран методом «проб и ошибок». Конструкторы оснащают машину устройствами и приспособлениями, позволяющими ей хотя бы на короткое время выполнять задачу вне расчетных условий: агрегаты машины герметизируются, кузов увеличивается до размеров, обеспечивающих плавучесть, ставится специальный движитель для плавания и считается, что задача преодоления водных преград успешно решена. К обычному автомобилю добавляют несколько ведущих осей, резко усложняют трансмиссию, ставят лебедку, вводят шины с регулируемым давлением воздуха и, следовательно, с увеличенной площадью контакта с грунтом. Траки гусеничных машин делают настолько широкими, насколько это позволяют конструктивные соображения. Агрегаты всех армейских машин защищают от попадания влаги и пыли, водителя — от ослепления фарами, специальные устройства обеспечивают стабилизацию теплового режима при холоде и жаре…
Рациональны ли подобные конструктивные решения? Вряд ли, ибо конструкции армейских машин при этом резко усложняются, объем работ по их техническому обслуживанию и ремонту возрастает, становятся более строгими требования к квалификации обслуживающего персонала, надежность снижается, стоимость увеличивается, а собственный вес возрастает настолько, что для полезной нагрузки мало что остается.
Возникает и другой вопрос: оригинальны ли попытки конструкторов оснастить машину приспособлениями, повышающими проходимость, защитить ее специальными устройствами от всех невзгод? Давайте обратимся к литературной аналогии и вспомним небезызвестного чеховского героя — Беликова. Тот тоже, выходя из дома, на всякий случай надевал калоши и теплое пальто, затыкал уши ватой, укутывал шею шарфом, глаза предохранял темными очками, а для защиты от атмосферных осадков всегда таскал с собой зонтик. Есть ли смысл в конструировании армейских машин следовать идеям «человека в футляре»? До поры до времени этот этап был неизбежен. Сейчас же, по мнению многих специалистов, созрели условия для нового качественного скачка. На современном этапе нужны новые пути, новые конструктивные решения, которые могут быть найдены в результате проведения больших и серьезных теоретических и экспериментальных работ, глубокого проникновения в физику процессов, происходящих при движении машины по бездорожью. В связи с этим стоит подробнее рассмотреть, какие теоретические и экспериментальные данные, достижения каких разделов физики могут уже сейчас, сегодня, быть рекомендованы конструкторам для реализации в машинах высокой проходимости.
Прежде всего, условимся для краткости, что в дальнейшем под термином «грунт» мы будем понимать любую поверхность или среду, с которой может встретиться армейская машина, предназначенная для движения по бездорожью. Таким образом, понятием «грунт» охватываются пески и снег, грязь и болота. Движение по лесам, крутым оврагам и скалам — это предмет самостоятельного изучения, и касаться его мы не будем.
Что же такое грунт? В отличие от таких однофазных сред, как вода или воздух, он представляет собой многофазную среду. Любой объем грунта наряду с твердыми частицами, образующими так называемый скелет грунта, содержит жидкую фазу в виде обволакивающих твердые частицы водяных пленок и расположенных между частицами капелек, а также газообразную фазу, состоящую из паров воды и из воздуха. Следовательно, с точки зрения физики, грунты представляют собой сложные многофазные дисперсные системы. Физические свойства таких систем определяются силами связи между частицами.
Такая хорошо развитая дисциплина, как механика грунтов, изучает напряжения, деформации, условия прочности и устойчивости грунтов и изменения их состояния под влиянием внешних, главным образом механических, воздействий. Однако исторически эта наука развивалась, исходя из потребностей строительства зданий и дорожных сооружений, и поэтому исследовала деформации, возникающие под воздействием медленно нарастающих, а то и вообще статических, нагрузок. К тому же, поскольку здания и сооружения не возводятся на снегах, болотах, грязи, свойства этих разновидностей грунтов остались вне поля зрения механики грунтов. А значит, данные и методы этой дисциплины могут лишь в очень малой степени помочь при исследовании процессов, происходящих при движении транспортных средств по бездорожью.
В самом деле, нагрузки, передаваемые движущимися машинами на грунт, носят явно выраженный динамический характер. Мало того, проведенные исследования показали, что они вызывают еще и вибрации в зоне контакта движителя с грунтом. Есть также основания считать, что при контакте заряженных частичек скелета грунта с металлическими поверхностями (траками и т. п.) происходит утечка поверхностных электрических зарядов, что приводит к разрушению структуры грунта. А так как гусеницы большинства машин находятся под напряжением, обусловленным принятой однопроводной схемой электрооборудования, разрушения электростатических связей частиц грунта становятся еще более ощутимыми.
Все перечисленные и многие другие соображения и привели к возникновению новой научной дисциплины, которая за рубежом получила название механики системы «грунт-машина». Первый международный конгресс ученых, занимающихся этой дисциплиной, состоялся в 1961 г. в Турине. Наиболее фундаментальные работы по механике системы «грунт-машина» принадлежат перу упоминавшегося выше М. Г. Беккера. Значительное количество интересных трудов опубликовал в последние годы также польский ученый А. Солтынский. Несмотря на свою молодость, новая научная область уже сейчас располагает целым рядом данных, весьма полезных конструкторам, разрабатывающим армейские машины высокой проходимости.
Как мы уже говорили, передвижение — результат процесса взаимодействия движителя машины с грунтом. Это взаимодействие определяется величиной, характером и направлением нагрузок, передаваемых движителем на грунт. Установлено, что при прочих равных условиях движитель может быть оценен величиной и формой поверхности контакта с грунтом. Такой подход позволяет сравнивать между собой различные движители и оценивать их пригодность для передвижения по тем или иным грунтам.
Грунт воспринимает вес машины и тяговое усилие, развиваемое ее движителем. Очевидно, равнодействующая этих двух сил не должна вызывать разрушения структуры грунта, ибо в противном случае машина начнет зарываться, проходимость будет потеряна.
По своим свойствам все грунты могут быть подразделены на фрикционные и связные. У первых преобладают силы трения между частицами. К таким грунтам относятся песок и снег при низких температурах. У вторых решающее влияние оказывают силы сцепления между составляющими грунт частицами.
Движение машины по грунту возможно только в том случае, если напряжения в грунте, возникающие под воздействием движителя машины в момент ее прохода по данному участку, не превышают несущей способности грунта и сопротивления сдвигу. Однако увеличение веса машин и скорости их передвижения привело к тому, что деформации грунта стали больше величин, преодоление которых возможно при существующих конструктивных решениях движителей. Погружение машины в грунт, а следовательно, и сопротивление движению возрастают при этом настолько значительно, что машина теряет проходимость.
Выход заключается в уменьшении нагрузок на единицу поверхности грунта, находящуюся в контакте с движителем. При заданных нагрузках это решается путем увеличения площади опорной поверхности, передающей нагрузки на грунт. Увеличение площади в свою очередь достигается двояко. Если предполагаются достаточно интенсивные и длительные перевозки между двумя пунктами, то на грунте на всем протяжении маршрута возводится сооружение, распределяющее нагрузки по большой площади. Такое сооружение в зависимости от устройства называется либо железной, либо шоссейной дорогой. Если же интенсивность перевозок между двумя пунктами невелика или не представляется возможности заранее точно определить и подготовить маршрут движения (как для армейских машин), устройство, распределяющее нагрузки на большую площадь грунта — движитель, — становится принадлежностью самой машины.
Размеры и конфигурация движителя машины, естественно, должны определяться свойствами того грунта, для движения по которому машина предназначена. Отсюда конструкторы могут сделать для себя вывод: если они хотят проектировать вездеход — машину для движения по различным грунтам, она должна иметь изменяемую (гибкую) конструкцию движителя. В противном случае неизбежны большие потери мощности на разрушение грунта, а то и полная потеря проходимости.
В США в последние годы с этой целью были проведены исследования свойств грунтов. Было установлено, что увеличения тягового усилия, развиваемого движителем в зависимости от свойств грунта, по которому происходит движение, можно добиться двумя путями. На грунтах, где преобладают силы трения, для возрастания тягового усилия необходимо увеличивать среднее удельное давление машины на грунт. Повышение тягового усилия машины на пластичных грунтах, где ярко проявляются силы сцепления, вопреки распространенному мнению, может быть достигнуто за счет уменьшения среднего удельного давления.
Другой результат этих исследований, вытекающих из основных положений механики системы «грунт-машина», — вывод о том, что форма поверхности контакта движителя с грунтом и ее ориентация по направлению движения машины оказывают не менее важное влияние на эксплуатационные показатели машины, чем величина опорной поверхности. Иными словами, машины, имеющие одно и то же среднее удельное давление на грунт и одинаковые площади опорных поверхностей, будут тем не менее обладать различной проходимостью, если форма поверхности контакта их движителей с грунтом различна. При равных удельных давлениях на грунт автомобиль с узкими ведущими колесами большого диаметра будет обладать лучшей проходимостью, чем автомобиль с широкими колесами малого диаметра. Или — гусеничные машины с узкой и длинной гусеницей будут отличаться лучшей проходимостью, чем машины с широкой и короткой гусеницей.
Итак, проходимость определяется свойствами грунта, размерами, формой и ориентировкой поверхности контакта движителя с грунтом.
Следует заметить, что подобные исследования грунтов дали возможность прогнозировать проходимость машин, в частности танков, на отдельных участках местности, основываясь на данных инженерной разведки местности. Для этого были составлены таблицы классификации грунтов с точки зрения их «проезжаемости».
В целом же отмеченные исследования системы «грунт-машина» позволили выработать следующие исходные предпосылки, очень важные для конструкторов. Во-первых, создание транспортных средств для бездорожья не может быть осуществлено примитивными средствами без проведения необходимых теоретических работ. Во-вторых, создание транспортных средств для бездорожья — задача значительно более трудная, нежели разработка конструкций самолетов, кораблей, поездов, обычных автомобилей. Для ее решения должны быть сосредоточены соответствующие силы и средства. И в-третьих, создание транспортных средств для бездорожья в настоящее время может вестись не вообще, не абстрактно, а для определенных грунтовых условий, и работа должна быть начата именно с изучения этих условий.
Исследуя свойства грунтов, зарубежные специалисты установили, что способность грунта обеспечить передвижение той или иной машины не может быть оценена, двумя-тремя показателями (плотность, зависимость сопротивления от скорости и т. д.), т. е. так, как это делают для воды или воздуха в гидро- или аэродинамике. Поэтому и определение проезжаемости грунтов не может быть произведено примитивными приборами. Была сделана попытка оценить грунты комплексом из одиннадцати показателей, однако и этого количества не всегда было достаточно, не говоря уже о сложности измерения такого количества взаимосвязанных величин. Кроме того, нет никакой уверенности в том, что свойства грунта в момент взаимодействия его с движителем остаются такими же, какими они были при измерениях — практика подсказывает обратное. Тем не менее, привлекая материалы и методы смежных наук, все же удалось провести классификацию грунтов и накопить фактический материал по их проезжаемости. Исследования дали также довольно полную информацию о качественных показателях грунтов, необходимую при разработке и оценке новых конструктивных решений и эксплуатационных показателей созданных машин.
В наиболее общем виде можно сказать, что механика системы «грунт-машина» показала невозможность на современном техническом уровне создать вездеходную универсальную машину, годную для любых грунтов и дорог. Из-за существенных различий в свойствах грунтов машина, обладающая оптимальными показателями в одних условиях, не будет иметь их при работе в других. Стало очевидным, что в настоящее время для работы в каждой географической (грунтовой) зоне необходимо разрабатывать свой тип машины.
Вторым важным достижением механики системы «грунт-машина» следует считать разработку различных методов расчета эксплуатационных показателей проектируемых машин по их конструктивной характеристике. Это значительно упростило проведение исследований и сократило затраты времени на разработку новых конструктивных решений машин высокой проходимости.
Созданная механикой системы «грунт-машина» теоретическая база позволила проводить сравнительные исследования новых типов движителей — шнековых, на воздушной подушке, вибрационных, шагающих и других. Наряду с этим во многих странах идут широким фронтом поиски новых конструктивных решений по совершенствованию существующих типов движителей. В частности, не утихают дебаты о достоинствах и недостатках колесных и гусеничных движителей. При этом в качестве доводов обычно приводят результаты сравнительных испытаний. Однако результаты таких испытаний в части, касающейся системы «грунт-машина», нередко истолковываются чисто механически, что приводит к ошибочным выводам, при которых вместо разумных величин выдвигаются крайности. Сторонники колес или гусениц настойчиво доказывают свою правоту, не учитывая, что каждый из типов движителей подходит для своих, наиболее характерных для него условий. А такие условия должны быть определены на основе изучения взаимодействия движителя с грунтом.
Рассмотрим вкратце существующие за рубежом научные взгляды на этот счет. Полагают, что оценка эффективности движителя должна производиться в двух аспектах. Первый — внешний — относится к величине и форме поверхности контакта движителя с грунтом. Второй— внутренний — рассматривает движитель как механизм, преобразующий работу двигателя в работу передвижения машины. Он позволяет охарактеризовать внутренние потери, возникающие в процессе такого преобразования, т. е. коэффициент полезного действия движителя.
В чем состоят достоинства и недостатки колесного движителя? Если мы приподнимем краном автомобиль, то увидим, что на грунте остались отпечатки от его колес. Количество отпечатков, естественно, равно количеству колес, а площадь и форма каждого из отпечатков равны соответствующим показателям поверхности контакта колесного движителя с грунтом. Если сложить площадь всех отпечатков, то получится суммарная площадь контакта движителя автомобиля с грунтом. Чтобы сравнивать между собой автомобили различной величины, суммарную площадь контакта относят ко всей площади проекции автомобиля на горизонтальную плоскость и обозначают это отношение коэффициентом использования площади Кп. Само собой разумеется, что для движения по грунтам с низкой несущей способностью более пригоден тот автомобиль, у которого Кп больше.
Для зарубежных армейских автомобилей характерны следующие средние значения Кп: двухосные — 0,04; трехосные— 0,06; четырехосные — 0,10; четырехосные на пневмокатках — 0,17. Как видно, повышение значения коэффициента Кп достигается путем увеличения числа осей и ширины колес. Заметим, что эти данные во всех случаях учитывают возможность снижения давления воздуха в шинах и соответственное увеличение площади контакта шины с грунтом.
Колесо — один из самых старых типов движителя. Тем не менее работы по его совершенствованию не прекращаются и по сей день. Конечная цель многих из вносимых усовершенствований — увеличить площадь поверхности контакта движителя с грунтом. Самый простой путь — увеличение диаметра колеса. В США изготовлены и испытаны колесные снегоходы «Сноу Багги» и «Марш Багги» с колесами диаметром свыше 3 м. Не так давно появились сообщения о том, что в Канаде проектируется четырехколесная машина «Мамонт» с колесами диаметром свыше 17 м (с пятиэтажный дом). Очевидно, такие колеса сложны и в изготовлении, и в эксплуатации, но это — один из путей обеспечить возможность перевозки на колесах сколько-нибудь значительных грузов по бездорожью. Конечно, для движения в особых условиях отдельные образцы таких машин могут найти применение, однако не следует забывать, что для поворота колес большого диаметра необходимо значительное пространство внутри машины, что приводит к сужению рамы, уменьшению внутреннего объема корпуса, а следовательно, и к ухудшению плавучести, вызывает многие другие трудности.
Другой путь повышения коэффициента Кп — увеличение числа колес. Восьмиколесные армейские машины сейчас уже никого не удивляют, а сочлененные конструкции позволили в некоторых моделях увеличить количество колес до десяти. Однако для многоосных автомобилей высокой проходимости со всеми ведущими колесами потребовались очень сложные трансмиссии. Достаточно сказать, что для автомобиля 8×8 нужны, по крайней мере, три раздаточные коробки, 5–7 межосевых и меж-колесных дифференциалов, 12–16 редукторов и несколько десятков карданных валов. Все это значительно усложняет конструкцию, требует специальных дорогостоящих и не всегда эффективных мероприятий по обеспечению надежности, увеличивает трудоемкость технического обслуживания.
Таким образом, с точки зрения проходимости колесный движитель обладает существенным органическим недостатком— малой величиной площади контакта с грунтом. Однако мы рассмотрели пока лишь одну его функцию— создание опорной поверхности. Не менее важное значение для машин высокой проходимости имеет и вторая— реализация силы тяги.
Известно, что тяговые качества машины при прочих равных условиях тем выше, чем длиннее площадь контакта движителя с грунтом. Оценить конструкцию машины с этой точки зрения можно по отношению суммарной длины всех отпечатков колес одной стороны к длине машины (коэффициент использования длины Кд). Для зарубежных армейских автомобилей характерны следующие средние значения Кд: двухосные — 0,12; трехосные — 0,23; четырехосные — 0,32; четырехосные автомобили на пневмокатках — 0,26.
Теоретически для четырехосного колесного автомобиля при расстоянии между соседними колесами в 0,1 диаметра Кд не может быть выше 0,46. Кроме того, надо иметь в виду, что даже при сниженном давлении воздуха в шинах в контакте с грунтом находится не более 16 % окружности колеса. Остальные 84 % участия в образовании опорной и тяговой поверхности в каждый данный момент времени не принимают и, с инженерной точки зрения, являются лишь балластом. Правда, в печати приводятся сведения о попытках зарубежных специалистов обойти этот недостаток за счет применения некруглых (квадратных, трехгранных, овальных) колес. Однако из стадии эксперимента эти попытки не вышли. К тому же трудно представить себе что-либо более похожее на фрезу для разрушения грунта, чем современная армейская широкопрофильная шина с высокими грунтозацепами. Разрушение слабых грунтов идет настолько интенсивно, что движение колесных машин по ним практически нереально.
Таким образом, с точки зрения внешнего аспекта оценки эффективности движителя показатели колес оставляют желать лучшего. Иное дело — совершенство колеса, как механизма, преобразующего работу двигателя в работу передвижения машины. При движении по недеформируемому (не изменяющему форму) основанию эффективность колесного движителя с жестким колесом очень высока, его КПД приближается к 100 %. Однако при переходе от жесткого колеса к автомобильной шине, и особенно от жесткой бетонной дороги к грунту, эффективность колеса резко снижается. При движении по бетонной дороге на деформацию, т. е. изменение формы, шины затрачивается уже 3–5 % мощности двигателя, а применение шин низкого давления при движении по грунтам сопровождается потерями до 30 % мощности.
Достоинством колесного движителя считают его долговечность. Действительно, изготовленные из силиконовых каучуков покрышки современных автомобилей выдерживают 100–200 тыс. км пробега. Однако — это по дорогам. Иная картина при движении по бездорожью. Тут гарантийный срок службы шины резко падает — до 15 тыс. км, причем движение на пониженном давлении (т. е. именно то, что нужно для бездорожья) допускается только в пределах 5—15 % от общего пробега и на пониженной скорости.
С точки зрения надежности для армейской машины резиновые шины колесных машин также нельзя назвать удовлетворительными. Не говоря уже о боевых повреждениях — прострелах, наезд на камни, гвозди, стекла нередко приводит к необходимости заменять шины. Эта операция, не очень-то приятная и в мирной обстановке на шоссе, крайне трудно выполнима в бою, в грязи, с колесом большого диаметра и веса. Не случайно большие четырехосные армейские автомобили запасного колеса не имеют, поскольку в полевых условиях без подъемного крана все равно его заменить нельзя. При повреждении одного-двух колес приходится добираться до базы на оставшихся, сбросив при этом часть груза или соответственно ухудшив проходимость. Повреждение резиновой покрышки, следовательно, связано со срывом выполнения поставленной перед армейской машиной задачи.
И последнее достоинство колесного движителя — возможность движения с большой скоростью. Однако для армейских автомобилей при движении по бездорожью в боевых условиях эта возможность реализована быть не может, так как скорость движения ограничивается возрастающими сопротивлениями (грунт, неровности и т. д.).
Все вышесказанное позволяет наметить область применения армейских машин с колесными движителями. Это дороги (как с твердым покрытием, так и грунтовые), плотные грунты, обладающие достаточной несущей способностью. Что касается целесообразности использования колесных машин для перевозок по песку, то подобные грунты, как уже говорилось выше, лучше всего преодолевать на машинах с движителем, оказывающим значительное удельное давление и имеющим необходимую длину опорной поверхности. Опыт французской фирмы Берлиё, успешно эксплуатирующей в Сахаре трехосные большегрузные автомобили с шинами большого диаметра, подтверждает это.
Теперь рассмотрим достоинства и недостатки второго типа движителя — гусеничного.
По мнению ряда зарубежных специалистов, гусеничные машины, по сути дела, колесные. Это парадоксальное заключение они объясняют тем, что единственное отличие гусеницы от колес состоит в «рельсе», которая укладывается перед машиной и подбирается позади машины по мере ее прохождения. Эту рельсу обычно и называют гусеницей. Благодаря такому устройству, колеса (или опорные катки, как их называют в гусеничных машинах) не воздействуют непосредственно на грунт, а передают нагрузки через звенья гусеницы — траки. Форма и размеры поверхности соприкосновения движителя с грунтом в этом случае резко изменяются, чем и объясняется различие в проходимости колесных и гусеничных машин.
Зарубежные армейские гусеничные машины обычного типа характеризуются средними значениями коэффициента использования площади Кп = 0,20, а снегоболотоходные — Кп = 0,59. Таким образом, при прочих равных показателях гусеничные машины будут в состоянии двигаться по более слабым грунтам, нежели колесные, у которых Кп не превышает 0,17.
Второй оценочный показатель — коэффициент использования длины Кд у обычных армейских гусеничных машин в среднем равен 0,55 и у снегоболотоходов — 0,66. Эти значения превышают теоретически возможный для колесных машин предел Кд, равный 0,46, в 1,2–1,4 раза. Поэтому тягово-сцепные качества гусеничного движителя, пропорциональные длине поверхности контакта, будут соответственно выше, чем у колесных машин.
Поскольку величина пробуксовки определяется длиной площади контакта с грунтом, можно прийти к выводу, что колеса, которые имеют более короткую поверхность контакта, будут пробуксовывать при прочих равных условиях значительно больше, чем гусеницы. Соответственно, для передвижения колесной машины в тяжелых условиях потребуется затратить большую мощность.
В контакте с грунтом у гусеничного движителя находится не 16 % периметра, как у колеса, а 30–40, что также свидетельствует о его большей конструктивной экономичности по сравнению с колесным движителем.
Рассмотрим довольно наглядный график (рис. 15), которым зарубежные специалисты иллюстрируют сравнительную проходимость колесных и гусеничных машин. По горизонтальной оси здесь отложен некий обобщающий показатель «К», характеризующий свойства грунта. Чем он больше, тем лучше грунтовые условия. По вертикальной оси отложены значения удельной свободной силы тяги Ркр, характеризующие тягово-сцепные качества движителя. Тяговые показатели обеих машин и сопротивление, оказываемое буксируемым прицепом, показаны соответствующими кривыми.
Рис. 15. Показатели проходимости колесных и гусеничных машин
Из графика видно, что на грунтах с К < 3 колесные машины вообще двигаться не могут. При К = 4 сила тяги на крюке гусеничной машины равна 60 %, а у колесной — всего 15 % от веса машины. Один и тот же прицеп гусеничная машина сможет буксировать по грунту с К = 1,8, а колесная — только с К = 4. С увеличением значения К (улучшение грунтовых условий) разница в тягово-сцепных качествах колесного и гусеничного движителей быстро падает и при К = 12 практически уже не ощущается.
Как видно, у гусеничного движителя много достоинств. Однако, познакомившись с существующими сейчас зарубежными армейскими транспортными средствами, нетрудно заметить, что среди них преобладают не гусеничные, а колесные машины. В чем тут дело?
Эффективность гусениц, как движителя, значительно ниже, чем колеса — так до недавних пор утверждали многие конструкторы, основываясь на результатах сравнительных испытаний по дорогам с твердым покрытием и грунтовым. В самом деле, гусеницы армейских машин собираются из тяжелых стальных траков, шарнирно соединенных между собой. На перематывание гусеницы, трение в шарнирах траков расходуется не менее 10 % мощности двигателя, причем с увеличением скорости движения потери в гусеничной цепи возрастают настолько, что максимальная скорость гусеничных машин редко превышает 70 км/час. Мнение о неэффективности гусеничного движителя до последнего времени было настолько распространено, что конструкторы сосредоточили свое внимание на совершенствовании колесного движителя, тем более что здесь предоставилась широкая возможность использовать достижения коммерческого автомобилестроения.
В результате проходимость колесных машин за последние годы значительно возросла и во многих случаях стала приближаться к проходимости гусеничных. Однако оказалось, что чем ближе проходимость колесных и гусеничных машин, тем меньше разница в эффективности их движителей: в равных условиях бездорожья потери в обоих типах движителей мало чем отличаются друг от друга. Это обстоятельство, подтвержденное данными механики системы «грунт-машина», и заставило обратить внимание на совершенствование гусеничного движителя.
Были разработаны легкие конструкции гусениц — с разнесенными траками, ленточные, пневматические. Они показали высокую работоспособность, надежность и значительное увеличение срока службы в самых тяжелых условиях. В печати стало настойчиво высказываться мнение, что с точки зрения надежности гусеничный движитель отвечает требованиям, предъявляемым к армейским транспортным средствам в большей степени, чем колесный. Судя по зарубежным работам, область применения гусеничных движителей — бездорожье, грязь, снега, болота. Здесь их достоинства преобладают над недостатками.
Третий тип движителя, появление которого сопровождалось в иностранной печати большой шумихой, — так называемая воздушная подушка. Принцип действия этого движителя заключается в том, что между днищем машины и поверхностью, над которой она движется, нагнетается воздух, образующий прослойку («подушку»), которая приподнимает машину и уменьшает силы сопротивления движению до минимума. К настоящему времени первые восторги, с которыми было встречено появление машин на воздушной подушке, улеглись и появилась возможность дать им объективную оценку.
С точки зрения внешнего аспекта характеристики движителя машины на воздушной подушке представляются идеальными. Коэффициент использования площади Кп у них равен 1, т. е. максимально возможное значение достигнуто, чем, казалось бы, обеспечена и проходимость по самым слабым грунтам. Однако на этом достоинства подобных машин и кончаются.
Рассмотрим вторую функцию движителя на воздушной подушке — создание тягового усилия. Сила тяги здесь создается воздушными винтами. Поэтому динамический фактор (отношение силы тяги к весу машины) мал, сколько-нибудь существенных подъемов машина преодолевать не может, время разгона велико. Радиусы поворота очень большие, торможение воздушными винтами малоэффективно.
Основной же недостаток машин на воздушной подушке заключается в низкой экономичности движителя. Для того, чтобы приподнять машину над грунтом, необходимо нагнетать под ее днище огромную массу воздуха и затрачивать на это значительную мощность. У современных аппаратов на воздушной подушке удельная мощность (отношение мощности двигателя к весу машины) составляет 100–300 л.с./т, что в 8 раз больше, чем у остальных наземных машин. Соответственно увеличивается и расход горючего. Толщина воздушной подушки невелика — 10–30 см, это объясняется тем, что расход мощности на образование подушки растет пропорционально четвертой степени высоты парения. Вентиляторы машины при работе действуют подобно пылесосу, засасывая массу пыли, траву, щепки и другой мусор.
Все перечисленные и другие недостатки определили область применения машин на воздушной подушке: за рубежом в настоящее время они используются для перевозок над водными пространствами. Сведений об использовании их в качестве наземных армейских транспортных средств в печати не приводилось.
* * *
Рассмотрев зарубежные взгляды на использование различных типов движителей в целях повышения проходимости армейских машин, мы можем сделать вывод, что решение вопроса о применении того или иного типа движителя для армейской машины должно базироваться на изучении физики процесса взаимодействия движителя с грунтом, на всестороннем учете грунтовых условий, для которых эта машина предназначена. Должна быть статистически оценена частота воздействия тех или иных факторов на машину и в зависимости от этого на основе данных механики системы «грунт-машина» определены оптимальные размеры и форма поверхности контакта движителя с грунтом, а следовательно, и тип движителя.
Движителей, которые были бы в равной степени эффективны на дорогах и там, где кончается асфальт, на любых грунтах, в настоящее время нет. Однако поиски таких конструкций ведутся весьма интенсивно. Что они будут собой представлять, покажет время.