Арифметика — раздел математики, изучающий числа, их свойства и отношения — является одной из основных математических наук. История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом.

Когда и при каких обстоятельствах возникла арифметика, мы видимо никогда не узнаем из-за давности событий. Ведь даже животные умеют различать большее и меньшее количество точек на кормушке и идут именно к той, за которой прячется пища. А что уж говорить о людях…

Первые научные сведения об арифметических знаниях обнаружены в исторических памятниках Вавилона и Древнего Египта, относящихся к III–II тысячелетиям до н. э. Большой вклад в развитие арифметики внесли греческие математики, в частности пифагорейцы, которые пытались с помощью чисел определить все закономерности мира. Арифметика развивалась в Индии и странах ислама и только затем пришла в Европу.

Изначально основной областью применения арифметики была торговля. Лишь кXVII веку мореходная астрономия, механика, более сложные коммерческие расчёты поставили перед арифметикой новые запросы и дали толчок к дальнейшему развитию.

Возникновение арифметики

Ещё в доденежные первобытные времена, когда происходил натуральный обмен товарами между племенами, обмениваемые предметы раскладывались в два ряда, что позволяло устанавливать количественные соотношения между ними. Этот способ не требовал применения такого понятия как число.

В дальнейшем появились естественные эталоны счёта, например, пальцы рук. С появлением таких эталонов и связывают возникновение понятия числа. При этом число предметов сравнивали то с Луной в небе, то с количеством глаз, рук и т. п. Позднее многочисленные эталоны заменялись на один наиболее удобный, обычно им становились пальцы рук и/или ног. По поводу нашей десятеричной системы счисления, унаследованной от праиндоевропейских предков, французский математик Анри Леон Лебег заметил: «Возможно, что если бы люди имели одиннадцать пальцев, была бы принята одиннадцатиричная система счисления».

Но это было потом. Вначале первобытные люди для записи результатов счёта использовали зарубки на дереве или костях, узелки на верёвках и т. п. Одним из таких образцов является лучевая кость молодого волка с 55 зарубками на ней, которая была найдена в 1937 году около деревни Дольни-Вестонице (Чехия). Возраст находки составляет около 5 тысяч лет, долгое время она была старейшей известной записью числа в Европе.

В разных странах в разные времена арифметика шла разными путями, но в целом всё более совершенствуясь и приближаясь к современному виду.

Египет

Основные сведения по египетской математике базируются на папирусе Ахмеса, который является конспектом египетского писца Ахмеса (XVIII–XVII века до н. э.). Папирус Ахмеса включает условия и решения 84 задач и является наиболее полным египетским задачником, дошедшим до наших дней. Он был составлен для учебных целей и содержит задачи с решениями, вспомогательные таблицы и правила действий над целыми числами и дробями.

Из папируса мы узнаем, что египтяне пользовались десятичной системой счисления и использовали такие арифметические операции, как сложение, удвоение и дополнение дроби до единицы. Любое умножение на целое число и любое деление без остатка проводились с помощью многократного повторения операции удвоения, что приводило к громоздким вычислениям, в которых участвовали определённые члены последовательности 1, 2, 4, 8, 16…

В Египте нашли применение только аликвотные дроби (числитель равный единице, и знаменатель любое натуральное число), а все остальные дроби разлагались на сумму аликвотных. В папирусе Ахмеса представлены таблицы таких разложений для дробей.

При определении площади квадрата, объёма куба или нахождении стороны квадрата по его площади египтяне сталкивались с возведением в степень и извлечением корня, хотя названий этих операций ещё не было.

Зарубки на кости, возможно, отображающие счёт, найдены около озера Эдуард (Центральная Африка) имеют возраст более 30 тысяч лет.

Часть папируса египетского писца Ахмеса (XVIII–XVII века до н. э.)

Вавилон

Вавилонские клинописные математические тексты использовали шестидесятеричную систему счисления, характерную ещё для шумер, и представляли собой учебные пособия, которые включали таблицы умножения для чисел от 1 до 59, а также таблицы обратных чисел, таблицы квадратов и кубов чисел натурального ряда, таблицы вычисления процентов, дроби с основанием 60. Известно более трёхсот табличек с текстами математических задач и числовыми таблицами. Для Вавилона вообще характерно широкое применение таблиц.

Здесь впервые появляется последовательная позиционная нумерация. Первые пятьдесят девять чисел записывались с повторением знаков единиц и десятков нужное число раз. Аналогичным образом записывались числа, кратные шестидесяти.

Кроме того, вавилоняне ввели знак, обозначающий ноль при записи числа.

Сложение и вычитание в Вавилоне были аналогичны данным действиям в десятичной позиционной системе с тем отличием, что переход в следующий разряд был необходим как для основания системы, так и для единиц и десятков.

Из-за большого основания вавилоняне пользовались не единой таблицей умножения до 59, которая бы содержала большое число элементов, а множеством таблиц произведений чисел от 1 до 59.

Операции деления у вавилонян не было, поэтому большое внимание было уделено составлению таблицы обратных величин, то есть чисел, образующихся при делении 60 на 2,3,4…

В случае деления, дающего бесконечную дробь, сначала писалось, что обратного числа нет, а позднее стало даваться приближённое значение.

Вавилонская табличка с вычислением.

Вавилонские цифры.

Древняя Греция

Пожалуй, ни один из народов не дал больше для развития арифметики, чем греки. Первоначально эллины пользовались аттической нумерацией, которая использовала знаки для чисел 1, 5, 10, 50, 100, 500, 1000. Эту систему описал грамматик и историк Геродиан во II веке н. э. С её помощью результаты вычислений выписывались на счётной доске — абаке.

Со временем аттическую нумерацию заменила компактная буквенная, или ионическая. Она использовала 24 буквы греческого алфавита и три вышедшие из обращения буквы для обозначения единиц от 1 до 9, десятков от 10 до 90 и сотен от 100 до 900. Чтобы отличать числа от букв над ними ставили черту. Для записи числа 1000 использовали тот же символ, что и для единицы, но со штрихом слева снизу.

Развитие древнегреческой арифметики связано с пифагорейской школой. Пифагорейцы полагали поначалу, что отношение любых двух отрезков можно выразить через отношение целых чисел, то есть геометрия представляла собой арифметику рациональных чисел.

Использование аналогичных отношений в гармонии и музыке привело пифагорейцев к выводу, что все закономерности мира можно выразить с помощью чисел, а арифметика нужна для того, чтобы сформулировать отношения и построить модель мира.

В частности, пифагореец Архит писал: «Арифметика, по [моему] мнению, среди прочих наук весьма выделяется совершенством знания; да и геометрии [она совершеннее, так как] она яснее, чем геометрия, рассматривает любой [предмет]».

Пифагорейцы рассматривали только целые положительные числа и полагали число собранием единиц. Единицы были неделимы и располагались в виде правильных геометрических тел. Пифагорейцам характерно определение «фигурных чисел» («треугольных», «квадратных» и других). Изучая свойства чисел, греки разбили их на чётные и нечётные (как признак делимости на два), простые и составные.

Известно, что у пифагорейцев существовало учение о рациональных числах, или отношениях отрезков, но само оно не сохранилось. Вместе с тем им принадлежит доказательство несоизмеримости диагонали и стороны единичного квадрата. Данное открытие означало, что отношений целых чисел недостаточно для выражения отношений любых отрезков и что на этом основании невозможно строить метрическую геометрию.

Аттическая система счисления — непозиционная система счисления, применявшаяся в древней Греции до III века до н. э.

Ионийская — непозиционная система счисления. Алфавитная запись чисел, пришедшая на смену аттической, в которой в качестве символов для счёта, употребляют буквы классического греческого алфавита.

Рафаэль Санти . Афинская школа.

В Греции также умели оперировать дробями вида m/n, складывать и вычитать их, приводя к общему знаменателю, умножать и делить, а также сокращать. В теоретических построениях греки исходили из неделимости единицы и говорили не о долях единицы, а об отношении целых чисел. Для этих отношений было определено понятие пропорциональности, которое разбивало все отношения на непересекающиеся классы.

После завоеваний Александра Македонского центр греческой науки сместился в Александрию. Основополагающим трудом того времени являются «Начала» Евклида, состоящие из тринадцати книг. Книга V посвящена теории отношений Евдокса, книга VI — связи отношений с операцией умножения отрезков, или построению параллелограммов, книги VII–IX — теории целых и рациональных чисел, также рассматриваемых как отрезки, книга X — классификации иррациональностей по Теэтету.

В работе Архимеда «Псаммит» был разработан метод для выражения сколь угодно больших чисел. Он показал, что число песчинок в сфере, диаметр которой менее чем в 10000 раз превосходит диаметр Земли, не превышает 1063, иными словами является конечным.

В дальнейшем древнегреческая арифметика. как и математика в целом, пришла в упадок. Новые знания появляются только в I–II веках н. э. В III веке Диофант начал построение алгебры с опорой не на геометрию, а на арифметику. Диофант также расширил числовую область на отрицательные числа.

Китай

Наиболее древними из дошедших до нас математических сочинений Китая являются «Трактат об измерительном шесте» (по астрономии) и «Математика в девяти книгах» (книга для землемеров, инженеров, чиновников и торговцев) — II век н. э.

В основе китайской нумерации лежит мультипликативный принцип: разряды записываются сверху вниз или слева направо, при этом за числом тысяч идёт знак тысячи, далее за числом сотен — знак сотни, за числом десятков — знак десятка — и в конце число единиц.

Арифметические операции сложения и вычитания, производимые на счётной доске, не требовали дополнительных таблиц, для умножения же существовала таблица от 1x1 до 9x9. Действия умножения и деления производились начиная со старших разрядов, при этом промежуточные результаты удалялись с доски, что делало проверку невозможной.

Поначалу умножение и деление были независимыми операциями, но затем Сунь-Цзы отметил их взаимную обратность. Практически одновременно с целыми числами появились и дроби, причём уже ко II веку до н. э. операции с дробями были хорошо разработаны. Для сложения и вычитания использовалось произведение знаменателей, умножение определялось геометрически как площадь прямоугольника, деление же было связано с задачей о дележе, при этом число участников дележа могло быть дробным.

В V веке н. э. Чжан Цю-цзянь заменил деление на дробь умножением на перевёрнутую. В III веке н. э. в Китае появляются десятичные дроби, с помощью которых давалось приближённое значение иррациональных величин.

Китайцам того времени были известны и отрицательные числа. Их они на доске выделяли палочками другого цвета, а на письме другими чернилами или косой чертой. Кроме того, отрицательные числа имели особое название. Для них были сформулированы правила выполнения операций вычитания и сложения, причём вычитание было определено в первую очередь.

Поначалу отрицательные числа использовались только в процессе счёта и к концу вычислений удалялись с доски, затем китайские учёные стали толковать их как долг или недостачу.

Китайские (вверху) и японские счёты.

Индия

Считается, что позиционная система счисления (десять цифр, включая ноль) была введена в Индии, хотя её зачатки прослеживаются и ранее. Она позволила разработать сравнительно простые правила выполнения арифметических операций.

Учёные полагают, что в Индии позиционная система впервые появилась не позже начала нашей эры. Однако в связи с тем, что индийцы использовали хрупкие материалы для письма, документальных памятников этого периода не сохранилось.

Для целых чисел в Индии использовалась десятичная система. Сначала это были цифры в письме кхароштхи, которые писались справа налево, а затем в письме брахми, которые писались слева направо.

Оба варианта использовали аддитивный принцип для чисел до 100 и мультипликативный — далее. Однако в брахми использовались специальные знаки для чисел от 1 до 9. На основе этой системы были разработаны современные цифры письма деванагари (или «божественного письма»), которые стали применяться в десятичной позиционной системе.

К 595 году относится первая запись числа, в которой применяются девять цифр, нуля ещё не было. Для удобства вычислений Ариабхата предложил записывать цифры знаками санскритского письма. В 662 году христианский епископ Сирии Север Себохт писал: «Я не стану касаться науки индийцев…их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счёт производится с помощью девяти знаков».

Основными арифметическими действиями в Индии считались сложение, вычитание, умножение, деление, возведение в квадрат и куб, извлечение квадратных и кубических корней, для которых были разработаны правила. Вычисления проводились на счётной доске с песком или пылью или просто на земле и записывались палочкой. Промежуточные выкладки стирались, что приводило к невозможности проверки с помощью обратной операции, вместо чего использовалась проверка с помощью девятки.

Индийцы знали дроби и умели совершать операции над ними, пропорции, прогрессии. Уже с VII века н. э. они пользовались отрицательными числами, интерпретируя их как долг, а также иррациональными числами. Они занимались суммированием числовых рядов, в частности, примеры арифметических и геометрических прогрессий имеются в «Ведах», а в XVI веке Нараяна Пандит произвёл более общие суммирования Индийские математики Ариабхата, Брахмагупта и Бхаскара решали простые и даже квадратные уравнения, что было наивысшим достижением индийских математиков в области теории чисел.

Изображение цифр из индийской Вакхшалийской рукописи (XII век). Индийцы называли знак, обозначающий отсутствие какого-либо разряда в числе, словом «сунья», что значит пустой. Арабы перевели это слово по смыслу и получили слово «сифр».

Страны ислама

Сейчас нам может показаться странным, что страны ислама могли нести свет просвещения, но на самом деле именно так и было. Математические центры исламских стран сыграли большую роль в распространении знаний в Европу.

В IX–X веках научным исламским центром был Багдад, в котором работали ал-Хорезми, Хаббаш аль-Хасиб, ал-Фаргани, Сабит Ибн Курра, Ибрахим ибн Синан, ал-Баттани. Позднее возникли новые научные центры в Бухаре, Хорезме и Каире, в которых работали Ибн Сина, аль-Бируни и Абу Камил ал-Мисри, а затем в Исфахане и Мераге, где работали Омар Хайям и Насир ад-Дин ат-Туси. В XV веке новый научный центр был образован в Самарканде, в нём работал Гияс ад-Дин ал-Каши.

В начале IX века Мухаммед ибн-Муса ал-Хорезми написал книгу «Об индийском счёте». В XII веке Аделардом (Англия) и Иоанном Севельским (Испания) были сделаны два перевода книги на латинский язык.

Её оригинал не сохранился, но в 1857 году под названием «Алхорезми об индийском числе» был издан найденный латинский перевод. В трактате описывается выполнение с помощью индийских цифр на счётной доске таких арифметических действий, как сложение, вычитание, удвоение, умножение, раздвоение, деление и извлечение квадратного корня.

В 952–953 годах Абу-л-Хасан Ахмад ал-Уклидиси в своей «Книге разделов об индийской арифметике» использовал десятичные дроби при делении нечётных чисел пополам и некоторых других вычислениях. однако эта книга не оказала влияния на дальнейшее развитие. В начале XV века ал-Каши намеревался построить систему дробей, в которой все операции проводятся как с целыми числами и которая доступна тем, кто не знает «исчисления астрономов». В 1427 году ал-Каши описал систему десятичных дробей, которая получила распространение в Европе после сочинений Стевина в 1585 году. Таким образом, ал-Каши сформулировал основные правила действий с десятичными дробями, формулы перевода их в шестидесятеричные и обратно В своих работах ал-Хорезми производил простейшие операции с радикалами, которые представлялись более простыми, чем несоизмеримые отрезки, используемые в Древней Греции. Теория пропорций подверглась критическому анализу. В частности, выдающийся персидский математик, более известный нам как поэт Омар Хайям, в 1077 году в трактате «Комментарии к трудностям во введениях книги Евклида» говорил, что древнегреческое определение не отражает истинной сути пропорций. Хайям дал новое определение пропорции, ввёл отношения «больше» и «меньше», обобщил понятие положительного действительного числа.

Страница из книги аль-Хорезми .

Америка

В Центральной Америке в основном использовалась двадцатиричная система счисления. Жрецы майя использовали её для календарных расчётов. В ней второй разряд был неполным и доходил только до 19. В качестве дополнительного основания использовалось число 5. Календарь майя представлял собой позиционную систему, где на каждой позиции располагалось божество с определённым количеством знаков. При письме божества не изображали, а для обозначения пустого разряда использовали символ в виде открытой раковины или глаза. В Южной Америке для записи чисел использовалась узловая нумерация, или кипу.

Арифметические расчёты проводились с помощью юпаны, которая представляет собой аналог абака, однако в связи с особенностями системы счисления арифметика, не связанная с астрономическими расчётами, получила слабое развитие.

Западная Европа

В эпоху раннего феодализма в Западной Европе потребности в науке не выходили за пределы вопросов практической арифметики и геометрии. Книги содержали начальные сведения о семи свободных искусствах, включая арифметику. Наиболее популярными были сочинения Боэция, датируемые VI веком, который в числе прочего перевёл на латинский язык «Арифметику» Никомаха с собственными числовыми примерами и часть «Начал» Евклида без строгих доказательств.

Через Испанию и Сицилию в X веке начали завязываться научные связи с арабским миром В это время Каталонию посетил учёный монах Герберт, ставший позднее папой Сильвестром II. Ему приписываются такие сочинения, как «Книжка о делении чисел» и «Правила счёта на абаке».

В XII–XIII веках в Европе появились латинские переводы арабских книг по арифметике.

Основные переводы были сделаны на территории Пиренейского полуострова в Толедо под покровительством архиепископа Раймонда I, а также в Барселоне и Сеговии Приверженцы представленной в книгах десятичной позиционной нумерации стали называться «апгористами» по имени математика ал-Хорезми в латинской форме. Постепенно новая система взяла верх. Основным её преимуществом явилось упрощение арифметических операций. Вместе с тем в Германии, Франции и Англии новые цифры не употреблялись до конца XV века.

Далее переводов пошёл итальянец Леонардо Пизанский (Фибоначчи), живший в XIII веке. В своём основном труде «Книга абака», написанном в 1202 году, он тоже выступил сторонником индийской системы нумерации. Пять глав книги посвящены арифметике целых чисел.

Фибоначчи использовал нуль как настоящее число, проводил проверку с помощью девятки, знал признаки делимости на 2, 3, 5, 9, приводил дроби к общему знаменателю с помощью наименьшего общего кратного знаменателей, излагал тройное правило, правила пяти, семи, девяти величин и другие правила пропорций, решал задачи на смешение, оперировал суммированием рядов, включая один из возвратных рядов, или ряд Фибоначчи, разъяснял способы приближённого вычисления квадратных и кубических корней. В «Книге абака» приводятся вместе с доказательствами разнообразные методы и задачи, которые широко использовались в сочинениях поздних математиков.

Преподавателю Оксфордского университета магистру Томасу Брадвардину (начало XIV века), ставшему впоследствии архиепископом Кентерберийским, принадлежит книга «Теоретическая арифметика», которая является сокращённым вариантом «Арифметики» Боэция. Кроме того, этот мыслитель в своих работах по механике использовал «половинное» отношение, на основе которого французский математик Николай Орем развил учение о дробных показателях степеней в своём трактате «Алгоризм отношений», а также подошёл к понятию иррационального показателя, которое можно заключать между достаточно близкими целыми и дробными, и осуществил обобщение возведения в степень на положительные дробные показатели.

Работы Орема были напечатаны только в XIX веке.

Именно в Европе математика обрела ту форму, которая нам известна со школьной скамьи. Цифры, система их написания и манипуляций ими, прошли длинный путь от зарубок на кости до высшей математики, которая понятна не многим. Подсчет количества выпасаемых гусей и вычисление траектории полёта космического зонда имеют одни и те же корни. Удивительно как далеко могла шагнуть наука за столь небольшой по историческим меркам промежуток времени.

Игорь Остин

Реконструкция римского абака.

Арифметические фокусы

Миллионы людей во всех частях света увлекаются математическими фокусами, которые являются очень своеобразной формой демонстрации математических закономерностей. И это не удивительно. “Гимнастика ума” полезна в любом возрасте, она тренирует память, обостряет сообразительность, вырабатывает настойчивость, способность логически мыслить, анализировать и сопоставлять.

Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, не чужды им были ребусы и загадки. Таких игр во все времена не чуждались ученые, мыслители, педагоги. Они и создавали их.

Латинский перевод «Начал» Евклида (XIV век).

Предсказание числа

Возможно, самый старинный из фокусов с предсказанием числа состоит в том, что кого-нибудь просят задумать число, проделать над ним ряд операций и затем объявить результат; после этого оказывается, что названное число совпадает с записанным в предсказании. На тривиальном примере фокус выглядит так: зрителя просят задумать число, затем удвоить его, прибавить к произведению 8, разделить полученное число пополам и, наконец, вычесть задуманное число. В ответе всегда будет половина того числа, которое вы велели прибавить В нашем случае прибавлялось 8, поэтому в ответе будет 4. Если бы зрителю предложили прибавить 10, в ответе оказалось бы 5.

Важное событие

Более интересный фокус этого типа начинают с того, что зрителя просят записать год своего рождения и прибавить к нему год какого-нибудь выдающегося события в его жизни. К полученной сумме он должен будет добавить еще свой возраст и, наконец, число лет, прошедших с года знаменательного события. Только немногие сообразят, что сумма этих четырех чисел всегда будет равняться удвоенному числу, обозначающему текущий год. Таким образом, вы, конечно, можете предсказать эту сумму наперед.

Число Шахерезады

Напишите на бумажке (не показывая) трехзначное число, а затем припишите еще раз то же самое число. Полученное шестизначное число разделите сами (или предложите любому другому) разделить, не показывая, без остатка на 7. Результат деления еще раз разделите сами (или передав другому) без остатка на 11, а затем на 13. После троекратного деления должно получиться загаданное число.

«Число из любимой цифры»

Скажите, у кого какая любимая цифра (например, 5). Выполните умножение числа 15873 на 35 (любимая цифра, умноженная на 7) или числа 12345679 на 45 (любимая цифра, умноженная на 9). Получится произведение, записанное только любимой цифрой.

Угадывание чисел на игральных костях

Зрителю предоставляется возможность бросить три игральных кости на стол, и запомнить каждое выпавшее на грани число. Для большей уверенности, их можно записать на листке.

Первое число, которое выпало на игральной кости. зрителю необходимо увеличить в два раза, а к полученному результату прибавить цифру 5.

Получившееся число далее нужно умножить на 5. и прибавить к числу, которое выпало на второй игральной кости. Результат умножается на 10.

К результату необходимо прибавить число третьей игральной кости. После этого, зритель называет конечное, и фокусник сразу же, так же, не смотря на листик, называет правильный ответ, т. е., все три числа, выпавшие на костях.

Секрет этого математического фокуса крайне прост. В конце, когда зритель называет конечное число, фокуснику нужно просто отнять от него 250. Получившийся трехзначный результат — это и есть те самые три искомые цифры, выпавшие на игральных костях.

Угадывание дня рождения

Фокусник предлагает выполнить следующие действия: "Умножьте номер месяца, в котором вы родились, на 100, затем прибавьте день рождения, результат умножьте на 2, к полученному числу прибавьте 2, результат умножьте на 5, к полученному числу прибавьте 1, к результату припишите 0, к полученному числу прибавьте еще 1 и, наконец, прибавьте число ваших лет. После этого сообщите, какое число у вас получилось". Теперь "фокуснику" осталось от названного числа отнять 111, а потом остаток разбить на три грани справа налево по две цифры. Средние две цифры обозначают день рождения, первые две или одна — номер месяца, а последние две цифры — число лет, зная число лет, фокусник определяет год рождения.

Угадать возраст

Фокусник предлагает кому-нибудь умножить число своих лет на 10, затем любое однозначное число умножить на 9, из первого произведения вычесть второе и сообщить полученную разность. В этом числе "фокусник" должен цифру единиц сложить с цифрой десятков — получится число лет.