Открытия и гипотезы, 2015 №05

Журнал «Открытия и гипотезы»

НЕИЗВЕСТНАЯ ПРИРОДА

 

 

Шимпанзе вооружились копьями

Как известно, шимпанзе умеют изготавливать орудия труда и даже поддерживают различные традиции этого ремесла. Однако недавно биологи установили, что некоторые популяции шимпанзе в Африке ведут себя точно так же, как древние люди. Они изготовляют копья и выходят с ними на окоту.

Авторы исследования выяснили, что шимпанзе являются единственными живыми существами, помимо человека, кто использует собственноручно изготовленные орудия для охоты на крупных существ.

Исследователи в течение нескольких лет наблюдали за популяцией саванных шимпанзе в местечке Фонголи на юго-востоке Сенегала. Они заметили, что эти обезьяны часто отламывают крупные ветви от деревьев, очищают их от мелких веточек и зубами заостряют конец. В результате в распоряжении шимпанзе оказываются копья длиной до 75 сантиметров.

С этими орудиями шимпанзе охотятся на галаго, небольших примитивных приматов. Копья позволяют наносить удары галаго, когда они прячутся в дуплах. Обычно такие удары не приводят к умерщвлению галаго, но дают возможность шимпанзе вытащить их и добить руками и зубами. Всего было задокументировано 308 эпизодов охоты с копьями В 61 % случаев в ней принимали участие самцы — самкам обычно мешают дети, которых они носят с собой.

Тем не менее, по словам ученых, матерые шимпанзе-охотники обычно делятся мясом со своими партнершами и более молодыми самцами. Вероятно, на первых этапах эволюции охота наших предков выглядела примерно также.

 

Странные повадки орангутангов

Голландские и британские биологи под руководством Мадлен Хардус из Фонда орангутангов (Нидерланды) задались вопросом: зачем представители подвида орангутангов, живущего на Борнео (Pongo pygmaeus wurmbii), периодически издают странные звуки. Они складывают ладонь так, как будто собираются зачерпнуть в нее воды, и подносят руку ко рту. В результате джунгли оглашает чмоканье, по звуку напоминающее поцелуи.

Сначала биологи предположили, что этими звуками орангутанги шлют дружеские приветствия своим партнерам. Однако дальнейшие исследования показали, что это не так. Авторы статьи записали чмоканье орангутангов и создали на компьютере акустическую модель, показывающую, каким был бы звук, если бы обезьяны не прикладывали ладонь к губам.

Выяснилось, что руки обезьян выступают как звукоусилитель, позволяя сигналам распространяться на более длинные дистанции. Кроме того, прикладывание рук делает звук более низким, и в чмоканье появляются нотки, свойственные крупным животным. Следовательно, чмоканье создает преувеличенные представления о габаритах обезьян.

Из этого биологи сделали вывод, что «воздушные поцелуи» выполняют защитную функцию — заслышав их, леопарды боятся подходить к источнику звука.

Как отмечают авторы статьи, среди животных неизвестны случаи, когда бы конечности произвольно использовались для звукоусиления. Скорее всего, у орангутангов это поведение не является врожденным, так что молодые особи учатся «чмокать» у старших.

 

Тюленей обвинили в охоте на акул

Больше десяти лет назад Крис Фаллоуз, капитан моторного судна из Кейптауна, заметил, как молодой капский морской котик гнался за синей акулой, толкал ее и через некоторое время загрыз, съев внутренние органы животного (наиболее богатые питательными веществами).

В 2012 году Фаллоуз смог заснять как к стае синих акул подплыл капский морской котик, загрыз пять акул и также съел их внутренности.

В своей научной статье Фаллоуз пишет, что в норме эти животные, примерно равные по размерам, охотятся на мелких рыб и кальмаров. Некоторые виды тюленей нападают на мелких акул, а синие акулы иногда гоняются за дельфинами. Однако впервые ученые стали свидетелями атаки морских котиков на настолько крупных акул, и они затрудняются объяснить, зачем морским млекопитающим преследовать такую опасную добычу.

Соавтор статьи Уг Бенуа подозревает, что случаи нападения тюленей на акул происходят довольно часто, просто случается это в открытом море, вдали от ученых с видеокамерами. Поскольку котики съедают у крупных рыб только внутренние органы, масштабы этого феномена нельзя оценить по содержимому их желудка (то есть по наличию акульих хрящей).

В заключение биологи отмечают, что агрессивное поведение тюленей может сдерживать рост популяций акул и, таким образом, помогать другим рыбам — в том числе видам, имеющим важное значение для рыболовецкой отрасли.

 

Эволюция "вертолетиков"

Ученые из Калифорнийского университета в Беркли оценили аэродинамические качества семян различной формы, принадлежавших древнему хвойному растению.

Как известно, семена елки или сосны, когда они выпадают из шишки, начинают вращаться, подобно миниатюрному вертолету. Это позволяет семенам провести больше времени в воздухе, что, в свою очередь. увеличивает их шансы упасть на свободный участок леса и успешно прорасти.

В наши дни все семена-«вертолетики» устроены одинаково и имеют одну лопасть.

Однако на первых этапах эволюции хвойных встречались семена разной конструкции. Например, в пермских отложениях на территории штата Техас найдено множество семян хвойного Mamfera talaris сразу трех типов строения.

80 % семян этого растения, произраставшего около 270 млн. лет назад, несли вторую маленькую лопасть, 13 % обладали двумя симметричными лопастями, а еще 7 % были снабжены лишь одной лопастью, подобно хвойным в наши дни.

Авторы исследования изготовили модели всех этих семян из пластика и бумаги и выяснили, что семена с одной лопастью крутились в воздухе примерно в 2 раза дольше, чем семена иной конструкции.

Ученые показали, что с увеличением массы семени конструкция с одной лопастью приобретает еще больше преимуществ. Поэтому неудивительно, что хвойные в ходе длительной эволюции сделали выбор в пользу именно таких семян.

Подготовил К. Кириенко

 

Электрическое чувство

Живые существа дали нам понятие об электричестве задолго до того, как была сконструирована первая батарея. Древних греков познакомил с электричеством черный скат Torpedo nobiliana . Он производит разряды с напряжением порядка 50 вольт — при высокой проводимости морской воды — это достаточно много.

«Химия и жизнь»

«Ты очень похож и видом, и всем на плоского морского ската: он ведь всякого, кто к нему приблизится и прикоснется, приводит в оцепенение, а ты сейчас, мне кажется, сделал со мной то же самое — я оцепенел», — такой комплимент в трактате Платона «Менон» делают Сократу за его ошеломляющие логические построения. Знакомый древним грекам черный электрический скат Torpedo nobiliana производит разряды с напряжением порядка 50 вольт — это штука посильнее философии. (Авторы некоторых книг пишут и про 200 вольт, но другие специалисты считают это значение завышенным.) Менее знамениты донные электрические рыбы семейства звездочетовых, названные так за высоко посаженные глаза, будто бы взирающие на небо сквозь воду (на самом деле такими глазами удобно высматривать добычу, закопавшись в песок).

Электрические рыбы бывают и пресноводными. В Африке египтяне и абиссинцы удивлялись электрическим сомам семейства Malapteruridae (300–400 вольт; они вынуждены давать более высокое напряжение, чем скаты, так как пресная вода хуже проводит электричество). В реках Южной Америки живет электрический угорь Electrophorus electricus — у крупных рыб этого вида напряжение достигает 600 вольт. Это о нем говорится в фантастической трилогии «Алюмен» Генри Лайона Олди, действие которой происходит в первой половине XIX века.

«Над водой… возникла узкая, приплюснутая голова на длинной шее. Голая кожа — бурая, в темных пятнах; нижняя челюсть и горло — ярко-оранжевые, как листья рябин в начале осени. Рыба? змей?!» Электрических угрей, согласно сюжету романа, привозит в Европу знаменитый датский физик Ганс Христиан Эрстед.

Натуралисты далеко не сразу поверили, что эти рыбы наносят удар именно электричеством. Предполагали, например, что они каким-то загадочным способом «замораживают» человеческую руку или стремительно бьют по ней. Уже было известно, что и живые существа, и вода проводят ток, поэтому утверждение, что проводник, плавающий в проводнике, генерирует электричество, не могло быть принято без веских доказательств. В июне 1772 года член Королевского общества сэр Джон Уолш специально привозил французским рыбакам лейденскую банку, чтобы они сравнили эффект от ее разряда с ударом ската. Добровольцы уверенно ответили ученому англичанину, что ощущения такие же.

«Те, что предсказывали и показали связь электричества со страшными атмосферными молниями, со вниманием узнают о том, что в глубине океана электричество существует в виде кроткой молнии, молчаливой и невидимой. Те, что анализировали заряженные банки, с удовольствием увидят, что их законы справедливы и для живых банок. Те, кто стал электриком благодаря разуму, с уважением отнесутся к электрику по инстинкту, которого природа с самого рождения одарила чудесным аппаратом и способностью пользоваться им», — так писал Уолш, обращаясь к Бенджамину Франклину. По просьбе Уолша Генри Кавендиш создал модель электрического ската, которую «запитали» от батареи лейденских банок и погрузили в подсоленную воду.

Опыты с моделью убедили естествоиспытателей в электрической природе разрядов живых рыб. (Кстати говоря, сам Кавендиш, сильно опережая свое время, был в этом убежден. Именно он впервые получил при разряде угря искру — «чистое электричество».)

В следующее десятилетие начал свои эксперименты Луиджи Гальвани, доказывая, что электрические явления лежат в основе нервно-мышечного взаимодействия и что они, следовательно, распространены в живой природе повсеместно.

В то время таинственная общность между небесной молнией, наэлектризованными телами, металлическими пластинами в солевых растворах, нервами и мышцами животных привлекала внимание всех образованных людей. Она вызывала к жизни гипотезы не менее фантастические, чем у Генри Лайона Олди, и она же вдохновила ученых на исследования, которые, в конечном счете, дали нам понимание природы нервного импульса и устройства нервной системы. Это отдельная и очень интересная тема, но сейчас вернемся к электрическим рыбам.

Алессандро Вольта называл свое устройство для получения электричества «искусственным электрическим органом», подчеркивая его сходство с органами рыб.

Вольтов столб (1799) состоял из одинаковых контактных пар металлов, собранных в столбик, одинаково ориентированных и разделенных влажными тканевыми дисками. Напряжение между крайними металлами было пропорциональным количеству пар.

Естественный электрический орган рыб состоит из специальных клеток — электроцитов, также соединенных последовательно (рис. 1).

Рис. 1. Нервные окончания, соединенные с мышечными клетками ( а ) и с электроцитами ( б ). Принцип один и тот же, но отличается пространственная организация: электроциты, собранные в столбик, подобно контактным парам вольтова столба, создают заряд с одной и той же стороны. Справа ( в ) — структура нервно-мышечного синапса.

Каждая клетка представляет собой пластинку, к которой подходит нерв. Клетки электроцитов возбуждаются одновременно (что для обычных мышечных клеток не характерно) и создают заряд с одной и той же стороны, как батарейки в «гнезде».

Вольта выстроил свой столб, чтобы усилить эффект, слишком слабый всего в одной паре контактирующих металлов.

Электрическому угрю, чтобы получить напряжение 600 вольт, нужно включить последовательно не менее 4000 клеток. А чтобы получить еще и достаточно сильный ток, столбиков клеток должно быть много. В итоге электрические батареи занимают значительную часть тела рыбы, изрядно потеснив все остальные органы, которые к тому же приходится защищать от собственных разрядов.

Тем не менее, игра стоит свеч. Электрическое оружие не только позволяет скату, угрю и сому успешно охотиться, оглушая или даже убивая более мелких рыб и беспозвоночных, но и защищает от врагов. Если хищнику случалось иметь дело с электрической рыбой, то, увидев ее вновь, он сразу поймет, что не настолько голоден.

Электрическая «головоломка Дарвина»

Эта проблема встает перед теорией эволюции всякий раз, когда необходимо объяснить происхождение высокоспециализированного органа. Ясно, что крыло, позволяющее летать по воздуху, дает преимущества своему владельцу. Но как быть с промежуточными формами? Какой прок в передней конечности, которая еще не пригодна для полета и уже не пригодна для бега? Животное с такой мутацией скорее будет менее приспособленным, чем его «нормальные» сородичи! А значит, говорят антидарвинисты, естественный отбор не должен поддерживать начальные стадии образования специализированного органа. Кстати, для многих таких органов промежуточных форм и не найдено, они возникают как будто сразу в готовом виде. И начинается: Дарвин, возможно, был не прав, теория эволюции, возможно, ошибочна…

Тем, кто «Происхождения видов» не читали, но осуждают, будет интересно узнать, что первым обратил внимание на эту проблему сам Дарвин. А в качестве одного из примеров «исключительных трудностей теории» он выбрал электрических рыб.

Электрические органы, писал Дарвин, встречаются в различных группах рыб, о которых немыслимо предположить, что они имеют общего предка. (Загляните в начало статьи: совершенно несходные между собой семейства, разные части света…)

Однако и сами электрические органы, например, ската и угря не сходны между собой, поэтому искать общего предка нет резона — логичнее предположить, что эти органы возникли независимо. «Так. отпадает трудность, связанная с появлением, по-видимому, одного и того же органа у видов, находящихся в очень отдаленном родстве; остается только меньшая, но все же достаточно большая трудность, именно: какими шагами шло развитие этого органа в каждой отдельной группе рыб». Если полезное приспособление возникало неоднократно, то и переходных форм, по идее, должно быть много. И где же они?

Недостающие звенья ищут в палеонтологической летописи либо среди родственных видов, у которых специализация не зашла так далеко. Но если про недостающее звено между лапой и крылом, по крайней мере, заранее известно, что это должна быть передняя конечность необычного вида, то предсказать, на что будет похож прототип электрического органа, гораздо сложнее. Или этот орган есть у животного, или его нет, причем первый случай — большая редкость (так казалось в XIX веке). И как в той же главе отмечает Дарвин, «геология не дает никаких оснований предполагать, что большинство рыб обладало некогда электрическими органами, утраченными их модифицированными потомками».

С крылом эволюционисты разобрались — и промежуточные формы обнаружили, и объяснили, каким образом «незаконченные» органы могли повышать приспособленность. (Например, «протокрыло» предков рукокрылых, непригодное для беганья, хорошо отводилось в сторону, а значит, с такой конечностью было удобно лазить по толстым стволам деревьев.) Повидимому, каждое приспособление, возникшее в ходе эволюции, на ранних стадиях формирования уже приносило своему обладателю пользу. Хотя и не всегда в той же области, что «последняя версия».

Что касается электрических органов, возможное направление исследований наметил Дарвин в той же главе «Происхождения видов». “Общепризнано близкое сходство этих органов с обыкновенными мышцами как по внутреннему строению и распределению нервов, так и по воздействию на них различных реактивов. <…>

Далее этого наше объяснение в настоящее время не простирается, но <…> было бы крайне смело утверждать, что не существовало никаких подходящих переходов, которыми могло идти развитие этих органов».

Открытие «шестого чувства»

Прорыв в исследовании электрических рыб осуществил в середине XX века Ганс Вернер Лиссманн, родившийся в городе Николаеве (1909 г.) и с 1934 года работавший в Кембридже (рис. 2).

Рис. 2. Ганс Вернер Лиссманн (1909–1995), первооткрыватель электрорецепции, остался легендарным героем-одиночкой для узкого круга специалистов.

В 1951 году он опубликовал сообщение в «Nature» о том, что зарегистрировал электрические разряды от пресноводной рыбы гимнарха Gymnarchus niloticus. А в 1958 году, после семи лет плодотворных экспериментов и полевых исследований, в «Journal of experimental biology» вышла его главная статья — «О функции и эволюции электрических органов рыб». Лиссманн убедительно доказывал, что электрические органы рыбам нужны для ориентирования и общения.

Все началось с того, что Лиссманна, изучавшего динамику движений животных, заинтересовала способность гимнарха плавать хвостом вперед и при этом уверенно обходить препятствия. Предполагаемый электрический орган у гимнарха находился как раз в хвосте, и Лиссманну удалось установить, что этот хвост испускает импульсы стабильной частоты (порядка 300 Гц) и амплитуды (около 30 мВ в метре от рыбы). Кроме того, гимнарх явно реагировал на объекты из проводящих материалов. например на опущенную в аквариум медную проволоку. Лиссманн предположил, что гимнарх ориентируется с помощью электролокации — ощущает искажения силовых линий собственного поля.

Этот способ мировосприятия, по-видимому. не имеет аналогий не только с человеческими органами чувств, но и с человеческой техникой. Когда же стало понятно, что и как искать, слабоэлектрических рыб оказалось не так уж мало.

Совместно с Кеном Мэйчином, отвечавшим за инженерное обеспечение, Ганс Лиссманн провел серию интересных экспериментов. Например, гимнарху предъявляли два закрытых сосуда, непрозрачных в оптическом диапазоне, но «прозрачных» для тока. У рыбы вырабатывали рефлекс: выбирать червяка рядом с тем из двух сосудов. электропроводность содержимого которого была больше, чем у воды (рис. 3).

Рис. 3. Эксперименты Лиссманна с гимнархами показали, что эти рыбы могут различать сосуды по электропроводности содержимого.

При этом регистрировали и разряды, исходящие от гимнарха, и нюансы его поведения. Аналогичные опыты позволили установить диапазон электрочувствительности гимнарха и сравнить ее с чувствительностью других рыб. Например, представители отряда карповых реагируют на электрические токи в диапазоне от 8 до 110 мкА/см2. Пороговая плотность тока, которую распознает гимнарх, составила, по оценкам Мэйчина, 10-5 мкА/см2 — оцените разницу в порядке величин!

Высокую чувствительность обеспечивают совершенные устройства приема. В подводном царстве широко распространены ампулярные рецепторы, в виде ямки «ампулы». Подобные структуры найдены и на коже некоторых палеонтологических образцов, например латимерий. Ампулярные рецепторы — низкочастотные, они лучше всего воспринимают единицы или доли герц и встречаются у многих типов рыб, в том числе неэлектрических: осетров, акул, сомов.

У мормирид, помимо ампулярных, есть электрорецепторы особого рода — бугорковые. Они воспринимают специализированные разряды электрических органов, собственных и чужих. Сигналы от них поступают в мозг рыбы, в так называемые электросенсорные доли. Рыба «видит» всей кожей электрические поля, и это позволяет ей ориентироваться даже в темноте или в замутненной воде, а также общаться с сородичами. Ни один скептик не скажет, что это приспособление — не полезное!

Зачем рецепторы неэлектрическим рыбам? Ганс Лиссманн предположил, что в ходе эволюции первичной была не электрогенерация, а электрорецепция — возможность наблюдать изменения электрических полей стала предпосылкой для умения генерировать такие поля. Логично: животные, лишенные слуха, не подают звуковых сигналов, не различающие цветов — не демонстрируют друг другу ярко окрашенные крылья или хвосты. А вот молчаливые существа, наделенные слухом, известны. Тем же акулам электрочувствительность помогает находить добычу.

Вспомним, что мышца — тоже электрический орган, потенциалы мышечных волокон компенсируются не полностью. Для нас, неразвитых наземных млекопитающих, камбала, зарывшаяся в песок, абсолютно незаметна, но ее выдает пульсация жаберных мышц. Акула «видит» вспышки мышечной активности — по частоте они как раз попадают в оптимум ампулярных рецепторов — и атакует. Точно так же она атакует и искусственный генератор разрядов.

Если же спрятать камбалу за непрозрачный для тока экран, то акула ее проигнорирует.

Эти опыты проделал в начале 70-х годов американский ихтиолог голландского происхождения Адрианус Кальмейн. Есть еще и потенциалы дыхания — вода, которую рыба выбрасывает из жабр, отличается по ионному составу, а значит, любое существо, дышащее под водой, можно засечь с помощью электрорецепции. Полезнейшее «шестое чувство»! Недаром палеоихтиологи полагают, что в палеозое. 300–600 млн. лет назад, оно было у всех предков рыб (и не только рыб), а к настоящему времени некоторые группы его утратили.

Удар по электрическому глазу

Сейчас принято считать, что существует шесть групп электрических рыб. Помимо мормирид и гимнотид, это электрические скаты, ромботелые скаты Raja (те самые, которых упомянул Дарвин), звездочеты и сомы. Кстати, слабоэлектрической оказалась морская корова, единственный вид звездочетов, обитающий в Черном море.

Перечень слабоэлектрических сомов открыли сомы перистоусые, у которых обнаружили короткие разряды Мэри Хейчдорн (США) с соавторами В 1993 году удалось показать, что к слабоэлектрическим рыбам относятся клариевые сомы. То, что эти сомы способны воспринимать электрические поля, известно еще с XIX века. В 60-е годы XX века Лиссманн и Мейчин исследовали пороги их электрочувствительности, но они полагали, что сомы не могут сами генерировать разряды. Однако Лиссманн высказывал предположение, что слабоэлектрические виды могут быть обнаружены среди сомообразных, поскольку у сильноэлектрического сома, как и у ската с угрем, должны быть найдены слабоэлектрические родичи.

Зарегистрировать разряд от африканского клариевого сома удалось почти случайно. В отличие от слабоэлектрических скатов и звездочетов, сомы упорно отказывались производить разряды в ответ на тычки палкой. Оставалось надеяться: вдруг они сделают это по каким-то своим внутренним резонам, если подождать подольше? Чтобы увеличить вероятность счастливого события, в аквариум с электродами поместили сразу двух сомов, но оба «молчали*». Опыт решили прекратить, однако аппаратуру не выключили. И вдруг электроды начали регистрировать разряды — сомы пришли в себя после поимки и принялись выяснять отношения (рис. 4).

Рис. 4. Иллюстрация из статьи Барона , Орлова и Голубцова (1994): африканский клариевый сом C.gariepinus тоже производит разряды, но только при «общении» с себе подобными — например, при агрессии.

Что ж, если бы инопланетяне похитили человека и посадили в одиночную камеру, едва ли они в скором времени узнали бы, что разумные с планеты Земля генерируют акустические колебания частотой от десятков до тысяч герц. А вот если бы отловили сразу двоих, эта тайна раскрылась бы мгновенно.

Когда стало ясно, что тестировать рыб на электрогенерацию надо не по одной, а парами, это еще расширило их список: благодаря этой методике в него попали полиптерусы и силуриевые сомы. По представителям отряда Polypteriformes, или многоперообразных, есть пока всего одна публикация, но что существенно — это новая, седьмая группа электрических рыб.

Среди силуриевых, или настоящих сомов стоит упомянуть амурского сома, который водится на Дальнем Востоке России, в Китае, в Японии.

В целом можно сказать, что проблема «недостающего звена» в головоломке Дарвина снята. Но что с поведенческой значимостью? Для чего сомам электрический орган?

Как уже было сказано, в одиночестве клариевые сомы «молчат». Это говорит о том, что электрорецепция у них менее специализирована. Клариевые сомы генерируют разряды преимущественно при агрессивно-оборонительных отношениях.

Выяснилось, что сомы атакуют друг друга разрядами на близких дистанциях — агрессор подплывает почти вплотную. Амплитуда напряжений на теле жертвы — 2–5 мВ (максимум 12 мВ) при расстоянии между электродами 5 см. При этом чувствительность сомов к электрическим полям — почти 1 мкВ/см. «Электрический разряд, сопровождающий атаку, может выполнять функцию «удара по электрическому глазу», ослепляющему атакуемую рыбу и «подсвечивающую» ее для электрического восприятия атакующей». Все мы видели в кино, как один крутой парень направляет свет фонаря другому в лицо. Можно предположить, что для сома, воспринимающего электрический удар всем телом, такой поступок врага еще неприятнее, и неприятность тем больше, чем сильнее разряд. Видимо, это и определило ход эволюции электрических органов, направленный на повышение напряжения.

Обними меня покрепче

Помимо борьбы с конкурентами, перед каждой рыбой стоит еще одна важная задача — выбор партнера и размножение. Естественно было проверить, не посылают ли самцы и самки друг другу электрические сигналы во время нереста.

Для исследований очень удобно, что нересту клариевых сомов можно вызвать инъекциями гормона гонадотропина. За время одного нереста в лабораторных условиях у сомов бывает более ста спариваний, что тоже хорошо для набора статистики. Кроме того, ритуал спаривания всегда соблюдается с величайшей точностью, в нем четко повторяются мельчайшие детали, вплоть до положения усов партнеров (рис. 5).

Рис. 5. Ритуал спаривания азиатских клариевых сомов (прорисовка по видеосъемкам; самец подкрашен серым) и разряды, которые генерирует самка.

Самец плотно охватывает своим телом голову самки, после чего рыбы несколько секунд сохраняют неподвижность. Затем самка резко изгибает переднюю часть тела, не вырываясь при этом из объятий, и выметывает икру.

Происходит это всегда в одной и той же фазе ритуала, когда скула самца плотно прижата к боку самки в том месте, где находится яичник. Самка выбрасывает икру через несколько десятых секунды после начала пачки разрядов.

О том, какую роль могут играть электрические сигналы в размножении мормирид и гимнотид, вся жизнь которых сопровождается генерацией электрических разрядов, было высказано множество гипотез.

Возможно, например, что самка оценивает зрелость и «качество» самца, регистрируя его разряды. Есть экспериментальные данные, показывающие, что у мормирид самка выбрасывает икру в ответ на имитацию разрядов самца своего вида, но не других видов. Наконец, высказывалось предположение, что мормириды с помощью разрядов синхронизируют выброс половых продуктов.

Рис. 6. Электрический скат Torpedo nobiliana . Именно в его честь названы боевые корабельные торпеды.

Рис. 7. Электрический угорь Electrophorus electricus чемпион среди живых генераторов.

Рис. 8. Электрический сом

Очевидно, что про электрогенерацию и электрочувствительность мы знаем еще далеко не все — как про современные «конструкторские решения», так и про их «разработку» в ходе эволюции. (Тем, кому показалось мало любопытных фактов, вот еще один: помимо рыб, электрочувствительностью обладают утконос и ехидна, примитивные млекопитающие). Смешно пытаться составить представление о том, каким видит мир животное с тысячью рецепторов, получая сигналы от нескольких пар электродов. Чтобы изучать работу «шестого органа чувств», необходимо сложное оборудование, способное скомпенсировать человеку отсутствие собственных электрорецепторов.

Елена Клещенко