Рис. 1. Инфузория туфелька (Paramaccium aurelia): с- ротовое отверстие (цитостом), су - аналог глотки (цитофарипкс) п - частички пищи, а - выводное отверстие. v~ пульсирующая вакуоль с выводными каналами, небольшое ядро -f макронуклеус), mi ядро(макрорнуклеус; t- трихoцисты (органы защиты и нападения).

В то далекое время, когда в науке впервые было установлено понятие о живой клетке, взоры всех ученых, естественно, устремились на те живые существа, которые носят название одноклеточных или простейших.

На них смотрели, как на зачатки первичной живой материи, в них искали начала жизни органической природы и базу всего живущего. Такое мнение о значении, простейших, в ряду живых организмов, естественно, заставило ученых обратить внимание на их организацию.

Около ста лет тому назад немецкий ученый X. Эрнберг высказал предположение, что одноклеточные организмы, в главнейших чертах своего строения, являются как бы каплей сложной организации многоклеточных и обладают целым рядом органов, свойственных высшим животным, являясь тем самым такими же совершенными организмами, как и другие. Но с началом господства клеточной теории взгляд на простейших изменился. Так, француз Дюжарден указал на чрезвычайно простую организацию корненожек, состоящих из комочка протоплазмы с ядром внутри. Окончательное же поражение взглядам Эрнберга было нанесено теорией клеточного стооения организмов, выдвинутой Шлейденом и Шванном. Они показали, что организм высших животных состоит из множества клеточек, снабженных протоплазмой и ядром. Таким образом, оказалось, что простейших одноклеточных никак нельзя сравнивать с целым многоклеточным организмом, а только с отдельной частью такового- клеткой. Такое толкование породило, в свою очередь, теорию происхождения многоклеточных организмов от одноклеточных с так называемыми "переходными" формами. Однако, с усовершенствованием методов исследования, этот взгляд на одноклеточные организмы, как, на простейшие по своей организации, также потерпел некоторое поражение, с тех пор, как выяснилось, что одноклеточные организмы вовсе уже не так примитивно построены, а подчас достигают большой сложности и разнообразия появляются, во всяком случае, вполне самостоятельными "организмами", хотя и состоящими из одной, но особым образом организованней клетки. Этот взгляд, высказанный английским ученым Добеллем в 1931 году, конечно, должен был изменить старые воззрения на простейших и поставил на первое место изучение их, прежде всего организма, а потом уже как клетки.

Изучая простейших, как самостоятельные организмы, мы, естественно, должны искать у них и функции, присущие живым организмам, и обусловливающие эти функции органы и их значение. Действительно, исследования последнего времени показали, что многие одноклеточные организмы обладают целым рядом особых приспособлений, и в строении их клетки можно найти целый ряд "органов", заведующих тем или иным жизненным отправлением целого организма, при чем строение и функции этих органов во многом напоминают нам таковые у многоклеточных высших организмов.

Мы не будем останавливаться здесь на описании строения тела и органов всех простейших организмов, т. к. это заняло бы слишком много места, а скажем только несколько слов об инфузориях, как наиболее хорошо изученных в этом отношении организмах. Не останавливаясь на подробностях, скажем только, что новейшие исследования показали, что тело инфузорий в деталях своего строения достигает поразительной сложности имногие из органов этого тела, несомненно, могут быть сравнены, по строению и значению, со сложнейшими органами некоторых многоклеточных ине только беспозвоночных, но и высших позвоночных.

Особенно интересны этом отношении исследования, произведенные за последнее время профессором Ленинградского Госуд. Университета В. А. Догелем над строением некоторых инфузорий, живущих в кишечнике жвачных животных. Исследования эти открывают выразительнейшую картину поистине сложнейшего строения тела и внутренних органов инфузорий, на основании точнейших методов научного исследования.

Уже давно при изучении простейших было обращено внимание на то, что эти организмы далеко не безразлично относятся к окружающей их среде. Высыхает ли капелька воды, в которой они живут, меняется ли температура и освещение- все это отражается так или иначе на поведении простейших. Так, например, некоторые амебы и инфузории избегают яркого света, другие, наоборот, стремятся к более освещенным местам. Если через воду, в которой сидят инфузории пропускать слабый электрический ток, то инфузории устремятся к одному из полюсов тока, избегая другого. Если в воде с инфузориями образуется пузырек воздуха, то инфузории устремятся к нему и облепят его со всех сторон, как бы стараясь высосать заключающийся в нем воздух. Все эти явления заставляют предполагать, что простейшие обладают какими-то приспособлениями, позволяющими разбираться в окружающей среде. После того, что было сказано, в этом для нас нет ничего удивительного, раз мы знаем, что в теле инфузорий есть разнообразные органы, подобные органам высших животных.

Является невольный вопрос: если строение органов простейших можно сравнить с органами многоклеточных высших животных, и если они способны реагировать соответствующим образом на окружающую среду, то нельзя ли найти что-либо общее в функциях этих органов, что позволило бы и с этой стороны сопоставить их с многоклеточными и тем более закрепить за ними право называться совершенными самостоятельными организмами? Такой вопрос, естественно, заинтересовал ученых после того, как они ближе ознакомились со строением простейших. Эта трудная по своему разрешению проблема еще не дала окончательных результатов, но некоторые работы в этом направлении и особенно выводы заслуживают безусловного интереса.

В последнее время разрешением одного из вопросов этой проблемы у нас в СССР занялся профессор В. А. Догель. Интересные результаты его работы были недавно доложены им на 3 Всесоюзном съезде анатомов зоологов и гистологов в Ленинграде.

Первой задачей проф. В. А. Догеля было изучение пищеварительного процесса инфузорий под влиянием различных солей и сравнение пищеварительного процесса у простейших с процессами пищеварения у высших многоклеточных животных. Объектом для своих исследований он выбрал всем хорошо известную инфузорию туфельку, которая легко и во множестве разводится в лабораторных условиях (рис. I). Нормальный ход пищеварения у инфузории туфельки уже давно хорошо изучен. Обычно он представляется в таком виде: плавая в воде, инфузория своим ротовым отверстием с (см, рис.), при помощи околоротовых ресничек, заглатывает кусочки пищи, которые затем проникают в так называемую "глотку" (су). Далее, поступая в тело инфузории, они окружаются так называемой пищеварительной вакуолью (п) и, в виде пузырьков, набитых пищей, начинают путешествовать внутри тела инфузории до тех пор, пока не достигнут выводного отверстия (а), через которое, уже в переваренном виде, выбрасываются наружу. Еще ранее было известно, что такое путешествие вакуолей с пищей, внутри тела инфузории, не представляется беспорядочным. Ниренштейн в 1905 году установил так называемый большой и малый круг пищеварения, подчиняясь которому пища внутри тела инфузории следует по строго установленным путям, перетерпиевая за это время процесс переваривания. Что процесс переваривания действительно имеет место в теле инфузорий, было доказано тем же Ниренштейном. Если к воде, где плавают туфельки, прибавить немного понарошку особой краски конго-рот (kongo-rot), обычно коричневато-красного цвета, то, при заглатывании инфузорией частичек краски, вакуоли в начале процесса имеют сине-фиолетовый цвет и к концу процесса переходят в коричнево-красный, что несомненно доказывает, что здесь мы имеем реакцию, химическое воздействие на частичку краски, вызванные пищеварительным процессом. Аналогичное химическое воздействие на частицы пищи происходит и в кишечнике высших позвоночных животных, где, как известно, пища, попадая в желудок, подвергается действию особого вещества - фермента пепсина, входящего в состав желудочного сока, и приобретет здесь кислую реакцию, а затем переходит в двенадцатиперстную кишку, где, под влиянием другого вещества - трипсина, вырабатываемого поджелудочной железой, нейтрализуется, приобретая щелочную реакцию, и химически перерабатывается окончательно и полностью.

Рис 2. Инфузория Туфелька в растворе хлористого магния, су-глотка, в - тушевая "кишка", (по Догелю).

Рис 3. Инфузория Туфелька, при помещении в слабые раствор сернокислого железа претерпевает процесс обратного выведения пищи - процесс, аналогичный рвоте (по Догелю).

Рис. 4. Туфелька в слабом растворе хлористого литии: су-глотка, пищевые вокуоли V-сократительная вокуоль, е- экскременты.

Чрезвычайно интересные результаты процессов в теле инфузорий дали опыты проф. Догеля при прибавлении к воде, в которой плавают инфузории, некоторых солей. Так, к воде с инфузориями прибавлялись, например, в очень слабом растворе соли хлористого магния MgCl и MgSO

или т. наз. горькая соль; чтобы при этом яснее видеть ход всего процесса в теле инфузории, к воде прибавляется немного мелко растертой туши. Тотчас по прибавлении в воду туши и соли, мы замечаем, что заглатываемая пища (в данном случае тушь) устремляется в глотку инфузории непрерывным потоком и уже через 2-5 минут внутри тела инфузории получается длинная непрерывная изогнутая тушевая лента, которая, все увеличиваясь, вскоре образует несколько спирально извитых петель (рис. 2). Правда по истечении некоторого времени эта лента распадается на мелкие отдельности, и образуются нормальные маленькие вакуоли, но все же в течение нескольких минут (10-15) в теле инфузории образуется как бы сплошной тушевой "кишечный канал", который "до чрезвычайности напоминает кишечник некоторых Metazoa (многоклеточных животных), например улитки или червя Sipunculus (Догель).

Если внимательно проследить за образованием такой тушевой кишки, то можно заметить, что поток туши в теле инфузории следует по так называемому "малому кругу пищеварения", установленному Ниреиштейном. "В результате наших опытов с солями Mg, говорит проф. Догель, обрисовывается с одной стороны строгая определенность пути следования вакуолей, с другой стороны возможность искусственно превратить прерывистый пищевой путь в непрерывный пищеварительный тракт, имитируя таким образом сплошную кишку Meraazoa" (многоклеточных).

Если взять вместо соли магния соли железа, например, раствор сернокислого железа FeSO, то при этом получается несколько иная картина процесса. Вначале при заглатывании туши образуется такая же "тушевая кишка", только менее извитая, чем при магнии. Однако, спустя некоторое время, в солях железа такая кишка уже не распадается в теле инфузории на отдельные вакуоли, а постепенно высовывается из ротового отверстия наружу и вскоре, в виде гибкой, совершенно черной нити, выбрасывается целиком из глотки наружу (рис 3). "Нельзя не признать", говорит Догель, "что описанный процесс всем своим ходом весьма напоминает явление рвоты у многоклеточных организмов", Здесь мы наталкиваемся на случай вредноговоздействия пиши, когда организм инфузории, подобно высшим животным, не принимает несвойственной ему пищи, освобождаясь от нее путем процесса "рвоты".

Говоря об освобождении тела инфузории от пищи, мы, естественно, должны коснуться вопроса т. наз. "дефекации" или опоражнивания пищевых вакуолей инфузорий - процесса, соответствующего испражнению высших животных. Оказывается, что на ходе того процесса у инфузорий также влияет состав окружающей пищи. Введение в тело некоторых солей различным образом отражается па ходе этого процесса.

Нормально процесс дефекации происходит так: пищеварительные вакуоли, пройдя в теле инфузорий большой и малый круги пищеварения, с неперевариваемыми остатками пищи подходят по одному к задней трети тела, где расположено выводное отверстие и через него выталкиваются наружу. Однако, в обычных условиях процесс дефекации пронаблюдать очень трудно во-первых потому, что выбрасываемые наружу фекальные массы - вакуоли с отбросами обычно жидки и прозрачны; во-вторых, процесс дефекации происходит через каждые 8 -12 минут, а на прохождение кругов пищеварения каждая вакуоль затрачивает 50-60 минут, так что срок наблюдения должен быть очень продолжителен. Поэтому, чтобы изучить этот процесс, необходимо, во первых, к культуре с инфузориями прибавить раствора туши, а во-вторых, начать наблюдение не ранее, как через час после кормления тушью.

По наблюдениям профессора Догеля, оказалось, что процесс дефекации можно, по желанию, искусственно или ускорить, или замедлить. Это достигается прибавлением к культуре инфузорий слабых растворов солей металлов I и II группы (например, MgQ2, CaCl2, CaSO4, и соли Na, К, Li, Ва, Со, Ni и т. д.). Соли кальция и марганца задерживают процесс, соли натрия, лития, бария и др. ускоряют.

При наблюдении в слабом растворе хлористого лития процесс дефекации рисуется в таком виде: подошедшие к выводному отверстию пищеварительные вакуоли скопляются здесь по нескольку штук (9-10) в один ряд, и затем все это скопление медленно, но за один прием выдавливается наружу (рис. 4). Этот процесс весьма напоминает скопление фекальных масс в задней кишке высших животных перед испражнением.

Далее, замечено было, что если в нормальных условиях промежуток времени между процессами дефекации определяется в 6-12 минут, то в растворе солей бария или магния (ВаС12, MgQ-) он сокращается до 2 или 1 минуты. Наоборот, в солях кальция (СаО) промежуток времени между дефекациями удлиняется до 30 или 40 минут.

Если мы вспомним, что в медицине, в качестве слабительных средств, (которые не только меняют консистенцию фекальных масс, но и учащают процесс дефекации) употребляются препараты солей магния и бария, а в качестве закрепляющих (задерживающих)- соли кальция, то мы увидим, что и в этом случае наблюдается сходство между процессами в теле одноклеточных и высших животных. "Этот факт интересен тем", говорит проф. Догель "что он обнруживает глубокий физический параллелизм между процессами пищеварения у одноклеточных и многоклеточных организмов.

Все вышеизложенные факты указывают нам на то, что круг изучения простейших организмов здесь как бы замыкается: высказанная сто лет назад Эрнбергом теоретическая мысль о простейших, как совершенных организмах, подтверждается целым рядом современных т чных наблюдений, достигнутых точнейшими методами современного научного исследования. Мысль о единстве строения природы и управляющих ею законов вновь и вновь подтверждается неоднократными наблюдениями, и в то же время выясняется глубокая сложность и разнообразие в строении живых существ, и углубленное изучение жизни, открывая нам новые горизонты, в то же время все больше и больше ставит перед нами сложных и глубоко интересных задач, к разрешению которых неуклонно стремится человеческая мысль и знание.