Инженер Б.Левитин, Рис. художн. Б. Кыштымова

Пешехода сопротивление воздуха не заботит. Речь идет, конечно, о безветренной погоде. Но уже для спринтера — бегуна на короткие дистанции — оно вырастает в ощутимую помеху. Еще сильнее мешает встречный ветер, рождаемый движением, велогонщикам и мотоциклистам.

Больше же всего, разумеется, приходится сражаться с сопротивлением воздуха авиаконструкторам.

Сопротивление воздуха по мере увеличения скорости плавно растет. Однако когда скорость самолета приближается к скорости звука (примерно 1 200 км/час), сопротивление воздуха скачком резко увеличивается. Перед самолетом вырастает «стена» сжатого воздуха, который не успевает расступаться.

Штурм «звукового барьера» — одна из самых замечательнейших и героических глав в истории авиации. Объединенными усилиями исследователей, конструкторов и летчиков-испытателей «звуковой барьер» был преодолен. Этот барьер остался позади.

И хотя за «звуковым барьером» сопротивление воздуха, как и следовало из данных лабораторных опытов и теоретических расчетов, оказалось больше, чем при подходе к этому барьеру, условия полета там гораздо благоприятнее.

Начали расти рекорды скорости, ранее «упиравшиеся» в стенку. Официальный мировой рекорд скорости, установленный недавно на английском самолете Фэйри «Дельта-2», равен 1 822 км/час. Американский самолет «Белл Х-1» на короткое время достиг скорости около 2 500 км/час, правда он взлетел не сам, а был прицеплен к самолету-матке. Эти скорости были достигнуты при полетах на больших высотах (выше 12 км).

Казалось бы, что и дальше все пойдет гладко. Однако за «звуковой стенкой» возникло новое препятствие, к которому уже приблизились современные скоростные самолеты.

ТЕПЛОВАЯ ЧАЩА

Еще в старину было замечено, что артиллерийские ядра, упав на мокрую землю, окутывались паром Когда же нагрелось ядро? При выстреле? Но было ясно, что массивное ядро не успеет сильно нагреться за короткое время пребывания в стволе.

Ядро нагрелось в полете. Воздух тормозит летящее ядро, и при этом часть кинетической энергии переходит в тепло.

Можно было ожидать, что снаряды будут нагреваться еще сильнее, чем сравнительно более медленные ядра. Однако артиллеристов это не очень беспокоило. Толстая стальная оболочка снаряда обладает большой теплоемкостью, а время его полета невелико. Снаряд оказывается у цели раньше, чем успевает прогреться до опасных пределов.

Сверхдальнобойным снарядам, которые находятся в полете несколько минут, нагрев также не страшен: большая часть их пути пролегает в стратосфере — там, где воздуха мало.

В наши дни до «теплового барьера» добрались и самолеты.

Надо заметить, название «тепловой барьер» менее удачно, чем «звуковой барьер». Когда самолет развивает сверхзвуковую скорость, он в самом деле как бы преодолевает некий барьер и попадает в более устойчивую область полета, чем зона скоростей, близких к скорости звука, простирающаяся от 0,9 М до 1,1 М. За 1 М — один Мах — ученые условились обозначать скорость полета, равную скорости звука.

«Тепловой же барьер» не имеет резко выраженной границы. Точнее было бы назвать его «тепловым возвышением», которое становится все круче и круче, или «тепловой чащей», сгущающейся по мере роста скорости.

Через «тепловой барьер» нельзя «пробиться», как сквозь «звуковой», но зато через него можно «перепрыгнуть» — летать высоко, в разреженном воздухе.

Нагрев в полете, который был не страшен артиллеристам, принес много хлопот творцам самолетов. Ведь время полета самолета измеряется не минутами, а часами. К тому же самолет состоит из тонких металлических оболочек, быстро принимающих температуру ударяющегося о него воздуха.

Те части самолета, которые встречают поток «в лоб», — нос фюзеляжа, передние кромки крыльев и оперения, — нагреваются всего сильнее, до так называемой «температуры торможения». Температура остальных поверхностей, по которым воздушный поток лишь «скользит», ниже — равна приблизительно 85 % от температуры торможения.

Чем выше скорость, тем больше температура (смотри график на цветной вкладке).

1. Размягчается плексиглас.

2. Человек нуждается в защите от нагрева.

3. Закипает бензин.

4. Нарушается нормальная работа электрон гидромеханизмов.

5. Капрон и найлон теряют прочность.

6. Предел прочности резины.

7. Алюминий теряет 20 % своей прочности.

8. Разлагаются авиационные смазки.

9. Закипает керосин.

10. Плавится пайка.

11. Титан теряет 40 % прочности.

12. Размягчается стекло .

13.  Предел стойкости обычной стали.

В III системе циркулирует охлаждающая жидкость (8), прокачиваемая насосом (11). Омывая лед (10) с начальной температурой —70°, она охлаждается. Когда лед растает, переключается кран (9) и система работает подобно II системе.

Рис. художн. С. Пивоварова

ТЕМПЕРАТУРА И САМОЛЕТ

Кому не известна пословица: «Куй железо, пока горячо»!

Очень мудрая пословица! Она свидетельствует, что людям давно известно свойство веществ изменять свои качества при нагреве. Изучением этого явления пришлось заняться и авиаконструкторам. Оказалось, что алюминиевые сплавы теряют свою прочность при температуре выше 140–200°. До такой температуры нагревается поверхность самолета при скорости 2 200— 2 400 км/час. Титановые сплавы более стойкие. Они могут выдержать скорость до 3 500 км/час, при этом поверхность самолета нагреется до 450 °C, а в точках торможения — до 540 °C.

Еще хуже переносят нагрев неметаллические материалы. Так, плексиглас оказался непригодным для остекления кабины пилота уже на околозвуковых скоростях. Теперь для остекления используется специальное термостойкое авиационное стекло. Немало пришлось поработать химикам, пока они нашли и высокопрочную пластмассу для обтекателей радиолокационных антенн, находящихся в носу фюзеляжа.

Нагрев самолета может привести к тому, что закипит горючее в баках, потеряет изоляционные свойства резина, исказятся показания приборов, нарушится работа радиоаппаратуры. Неравномерный нагрев самолета, изготовленного из разных металлов, которые расширяются при повышении температуры каждый по-своему, неизбежно вызовет в нем опасные напряжения. Поэтому сверхскоростной самолет надо проектировать так, чтобы нагревающимся частям «было куда податься».

И, наконец, самая главная задача — как уберечь от жары экипаж и пассажиров самолета. Ведь уже при скорости полета 1 200 км/час температура в неизолированной кабине поднимается до +50 °C. Кабина превращается поистине в баню.

Вывод один: чтобы летать со сверхзвуковыми скоростями, нужны специальные меры для борьбы с нагревом. Но какие?

ЛЕТАЮЩИЙ ХОЛОДИЛЬНИК

Как защитить себя от холода, знает каждый. Надо натопить лечь, если холодно дома, а выходя на улицу, надеть шубу. Избавиться от жары можно сходным способом: или «делая холод», или спрятаться от нее, надев специальную «шубу».

Дома мы «делаем холод» в холодильнике. Может быть, поставить на самолет подобный холодильник? Холодильник, правда, займет всю площадь самолета. Ведь холода потребуется много.

А самое главное, что холодильник не будет работать. Ему некуда будет отводить тепло. Вы спросите, какое тепло? Попробуйте рукой заднюю стенку холодильника, и вы убедитесь, что она горячая. Это холодильный агрегат отдает воздуху комнаты калории, «вынутые» из холодильной камеры нашего агрегата. А ведь самолет, летящий со сверхзвуковой скоростью, окружен горячим воздухом, который «не примет» тепла, откачиваемого из самолета.

Есть другой способ «делать холод».

У кочевников-арабов есть «волшебные» кувшины, в которых вода в самую сильную жару остается холодной. Вода свободно проникает в поры глиняной стенки, и кувшин все время «потеет». Кувшины эти не облицованы глазурью. Капельки влаги, испаряясь со стенок кувшина, уносят с собой тепло. Именно таким способом некоторые ученые решили охлаждать самолет, продавливая охлаждающую жидкость через множество микроскопических пор в обшивке самолета.

Но сложное устройство обшивки и отсутствие сегодня вполне приемлемых здесь пористых материалов не позволяют применять метод «выпотевания». Гораздо проще циркуляционное охлаждение. Однако и эта система не совершенна. Кончилась охлаждающая жидкость, система перестает работать.

Конструкторы задумались. А что, если увеличить запас холода, заливать систему перед взлетом водой, охлажденной до +1 °C, или водо-спиртовой смесью при температуре —20 °C?

Можно поместить в бак циркуляционной системы лед, замороженный до —70 °C. Летчик включил систему охлаждения.

Веда потекла под обшивкой, нагрелась, попала в бак со льдом, отдала ему часть тепла и вновь побежала под обшивку. И так продолжается, пока не растает весь лед. После этого система размыкается и работает, выбрасывая воду наружу. Чем детальнее изучали исследователи различные системы охлаждения, тем яснее становилось, что все эти системы решают проблему «теплового барьера» только частично. Время работы их — считанные минуты. Весит же система охлаждения, например сверхзвукового истребителя, 1–2 т! И это в авиации, где конструкторы на протяжении всей ее истории стремились сделать самолет предельно легким!

МОЖЕТ БЫТЬ, «ШУБА» ЛУЧШЕ?

Инoe дело тепловая изоляция. Никаких механизмов, перегоняющих воду, почти нормальный вес и время работы измеряется уже десятками минут. «Шуба» самолета должна иметь два слоя. Снаружи прочная и жаростойкая обшивка, а за ней теплоизоляция — стеклянное, асбестовое волокно или пенопласт.

Наружная обшивка отдается на «растерзание» высоким температурам. Однако «растерзать» ее не так-то просто. Хотя нагрев тела, летящего, например, со скоростью 5 400 км/час, достигает 950 °C, особые сорта стали могут выдержать температуру до 1 000—1 200 °C, металлокерамика — до 1 400—1 600 °C, а карбиды бора и титана — даже до 2 000 °C.

Защитить внутренние части самолета от раскаленной обшивки может стеклянное, асбестовое или кремниевое волокно. При скорости 1 600 км/час самолет прогреется до +80 °C всего за 3 мин., а с теплоизоляцией только за час. Нос сверхскоростного самолета, очевидно, будет представлять собой длинный, тонкий шпиль. Далеко выброшенный вперед, он будет принимать на себя основной термический удар.

Для сверхвысоких скоростей большие перспективы открывает сочетание теплоизоляции с охлаждением особо нагревающихся частей — передних кромок крыльев, оперения и носа. Однако самый верный способ избежать нагрева — летать на больших высотах, в разреженном воздухе. При полете со скоростью 5 000 км/час на высоте 6 000 м самолет нагревается до 700 °C за 1,5 мин., а летя с такой же скоростью на высоте 37 000 м — лишь до 300 °C и только за 30 мин.

И все же хотя трассы сверхскоростных самолетов будущего пройдут через верхние слои стратосферы, без тепловой защиты не обойтись: в начале и конце полета придется пронизывать плотные слои воздуха. Ученые исследовали пока только опушку термической чащи. А впереди встает уже новое препятствие. Возможность плавного повышения сверхзвуковой скорости не безгранична, утверждают ученые. При скоростях выше 6 000 км/час из-за резких скачков давления начнется местное сжижение (!!) воздуха.

Видные ученые расходятся в оценке нового барьера и его границ. Но несомненно одно: упорные и кропотливые исследования позволят разгадать тайны и этого барьера и преодолеть его.

* * *

Два "РПД" все-же похищены…

(См. стр. 38)

* * *

СТЕКЛЯННЫЙ АВТОМОБИЛЬ

Иной раз стеклянный стакан только нечаянно локтем опрокинешь на блюдце, и он разбивается. Кажется, даже мысли нельзя допустить, чтобы сделать из стекла кузов автомобиля. На на Московском автозаводе имени Лихачева построили именно такой автомобиль. Блестящий обтекаемый кузов нового автомобиля сделали из мягкого в прочного, как тонкий шелк, стеклянного волокна. Деревянную модель кузова покрыли толстым слоем этого волокна и пропитали его искусственной смолой. Вначале получился некрасивый и липкий войлок. Но затем его поместили в печь, где при постепенном нагреве в вакууме стеклянный войлок уплотнился, и смола, склеившая его волокна, затвердела. Получился очень прочный и легкий материал — «стеклопластик». Поверхность его выровняли, покрыли светлой автомобильной краской. И по внешнему виду его стало невозможно отличить от стального. Но он легче, прочнее и никогда не проржавеет даже в самом сыром гараже.

СОГЛАСЕН ЛИ ТЫ С ТЕМ, ЧТО…

…поршень паровоза движется относительно рельсов только в ту сторону, куда движется сам паровоз?

…вариометром называется деталь паровой турбины?

…тяжелоатлет, выжимающий штангу в Тбилиси, затрачивает больше энергии, чем мурманский спортсмен, поднимающий такую же штангу на ту же высоту?

…влажный воздух плотнее, чем сухой, и, следовательно, при приближении дождя атмосферное давление увеличивается?

…в глубокой шахте любой груз вследствие того, что он находится на меньшем расстоянии от центра Земли, весит больше, чем на поверхности?

…ракета движется, отталкиваясь от воздуха выбрасываемой ею струей газа?