Недавно в печати промелькнуло сообщение: авиамодель перелетела через Атлантический океан. И никаких подробностей, кроме того, что размах ее крыльев два метра, нам найти не удалось.
Перелет через океан — это минимум 7–8 тысяч км. Неужели на это способна двухметровая игрушка? Впрочем, почему бы и нет? Живая природа показывает нам, что дальность полета от размеров зависит мало. Обычные мухи в эксперименте за шесть суток (!) беспрерывного полета преодолевают 330 км. Известны 800-километровые перелеты крохотных колибри над Мексиканским заливом, тысячекилометровые перелеты птиц.
Дальность всех летунов — и живых, и рукотворных — подчиняется выведенной еще в начале нашего столетия формуле Бреге. Был такой знаменитый французский авиаконструктор, создававший преимущественно бомбардировщики.
Так вот, Бреге разъяснял, что дальность полета пропорциональна аэродинамическому качеству (К). Эта величина показывает, какое расстояние объект может пролететь с отключенным мотором, потеряв при этом лишь один метр высоты.
У птиц К равно 10–12, а у шерстокрылов и летучих мышей 7 — 15. Из творений рук человеческих в этом отношении хуже всех вертолет — 3–4. Поэтому ни один из них не одолел океан. Самолет АНТ-25 имел качество 20, и это позволило в свое время перелететь через Северный полюс в Америку. Во время одного из таких полетов самолет заблудился и едва не попал в Мексику. Пришлось вернуться обратно в заранее договоренную точку посадки на территории США… А теперь отметим, что лучшие авиамодели имеют качество 15–20.
Формула Бреге утверждает также и еще одну очевидную вещь — дальность полета прямо пропорциональна мощности двигателя (N) и обратно пропорциональна расходу топлива (т).
Когда на АНТ-25 в 1937 году поставили дизель Чаромского с расходом топлива 145 г на лошадиную силу в час (что было в два раза меньше, чем у прежнего бензинового мотора), стало ясно: самолет может облететь земной шар по параллели Москвы. Старт назначили на 20 июля 1941 года.
И… началась война.
Межконтинентальная модель с паровым двигателем:
1 — парогенератор; 2 — конденсатор; 3 — паровая машина.
Интуитивно кажется, что если самолет возьмет топлива в два раза больше, то вдвое больше и пролетит. Вот тут формула Бреге нас подправит. Самолет пролетит только на половину больше. Поднимать таким способом дальность полета конструктивно очень трудно.
Для создания межконтинентальной авиамодели формула Бреге важна тем, что она молчит о размерах летательного аппарата. Это означает, что моделям, даже самым маленьким, перелетать океаны не возбраняется. Поскольку аэродинамическое качество моделей достаточно высоко, остается решить вопрос с двигателем.
Авиамодельный двигатель внутреннего сгорания появился в 1908 году и развивался только в направлении снижения веса на единицу мощности. Сегодня мотор в одну лошадиную силу может весить 300 г, но имеет ресурс непрерывной работы не более четырех часов, а расход топлива 1500–2500 граммов в час. С такими данными нечего и думать о межконтинентальных перелетах.
Формула Бреге показывает, что пролететь с ним можно не более 3000 км. Но если учесть, что даже на это понадобится не менее 30 часов, мотор за это время попросту сотрется в порошок!
Значит, надо искать иной двигатель. КПД его где-то в пределах 2–4 %, как во времена Уатта… В то же время степень сжатия авиамодельного двигателя 7—12 (как у обычных моторов) и, казалось бы (согласно теории), позволяет получать КПД в десять раз большие. Загадка?
Попробуем раскрыть ее.
Зная рабочий объем и число оборотов в минуту, можно рассчитать, какое количество воздуха проходит через карбюратор двигателя за час. Далее немного химии, и делается ясно, что его хватает лишь на 10–20 % топлива. Остальное вылетает в выхлопную трубу. Но делается это не зря. Во-первых, оно испаряется и охлаждает стенки цилиндра изнутри. Видимо, охладить стенки двигателя, совершающего от 18 до 30 тысяч оборотов в минуту, обычным способом при помощи ребер или водяной рубашки не удается.
Во вторых, содержимое его цилиндра — это на 80–90 % перегретый пар топлива! Избыток его попросту заливается через карбюратор. Работа на его сжатие не требуется. В итоге работа парогазовой смеси на единицу объема цилиндра получается очень большой. Двигатель становится легче и меньше Но в сущности, он не двигатель внутреннего сгорания, а своеобразная… паровая машина!
Каковы перспективы создания очень легкого, достаточно экономичного двигателя внутреннего сгорания для сверхдальней авиамодели — об этом попросим высказаться специалистов. Мы же позволим себе обсудить с вами совсем уж сумасшедшую идею.
Представим себе модель самолета, у которой 50 % от стартового веса составляет вес топлива и К равно 14. Если поставить на нее паровую машину образца 1935 года с расходом топлива 380 г на л.с.∙час (КПД=13 %), то, как утверждает Бреге, она сможет пролететь 6900 км! По степени износа, долговечности ее хватило бы на многократный облет земного шара.
У всех тепловых двигателей по мере уменьшения мощности КПД резко падает. Паровая машина — исключение. Известен советский паровой двигатель с ядерным источником тепла, который при мощности всего 5 ватт имел КПД равный 12 %. Так что в этом отношении нам ничего не грозит. Что касается веса на единицу мощности, то миниатюрная паровая машина Джона Стрингфеллоу, построенная в 1867 году, при мощности более одной л.с. весила с котлом только 6 кг.
Есть основание полагать, что сегодня паровая машина образца 1935 года с параметрами пара 450 градусов Цельсия и давлением 150 атм получится гораздо более легкой.
Современная паровая машина, имеющая экономичность дизеля.
Впрочем, стоит ли гнаться за малым весом? За 70 часов полета на единицу мощности придется сжечь 70 x 0,38 кг = 26,6 кг топлива. По этой цифре можно представить себе стартовый вес и кое-какие размеры предполагаемой модели. Итак, вес 54 кг. Площадь крыла, исходя из нагрузки на единицу площади по нормам ФАИ 120 кг на м2, равна 0,45 м2. При размахе крыльев два метра получается крыло с хордой (шириной) 225 мм.
Все пропорции и форма модели должны соответствовать аэродинамическим расчетам, чем мы займемся позднее.
Сегодня же изобразим ее, пользуясь только законами красоты. Основное внимание здесь уделено паросиловой установке. Однако сделаем маленький перерыв. Заглянем в историю.
Над применением парового двигателя в авиации задумывались давно. До войны в нашей стране разрабатывался паровой двигатель для самолета У-2. Его полетные испытания прервала война. Но, по словам очевидцев, получился самолет с укороченным взлетом и посадкой, к тому же абсолютно бесшумный в полете. Представьте себе, какой эффект произвели бы на таком самолете наши «ночные ведьмы» из женского авиационного полка.
Над абсолютно бесшумными высотными паровыми бомбардировщиками работали в те годы и немцы. Практически эта работа перешла в разработку дальнего бомбардировщика с паровыми турбинами мощностью 6000 л.с., который мог доставить к Нью-Йорку на недоступной для истребителей скорости и высоте 7 — 15 тонн бомб. Опытный экземпляр паросиловой установки для него был уничтожен при бомбардировке аэродрома.
И, наконец, полюбуйтесь — американский вариант. Взлетный вес его около 1000 т. На борту экипаж в 100 человек и сотни крылатых ракет. Длительность полета более месяца. Ее обеспечивает ядерная паросиловая установка.
Таким образом, идея применения на самолете парового двигателя не нова и всегда воспринималась достаточно серьезно. Не грех ее обсудить и нам с вами.
Для нашей модели нужен тихоходный винт большого диаметра с высоким КПД. Поршневая паровая машина легко разовьет нужную нам скорость вращения. (Турбина такой мощности вращалась бы в сотни раз быстрее, чем нужно, и мы больше половины ее мощности потеряли бы в редукторе.)
Парогенератор выполнен по прямоточной схеме в виде трубчатого змеевика в непроницаемом для тепла керамическом кожухе. Вода в него непрерывно подается с помощью насоса порциями, достаточными только для одного такта двигателя. Общее количество воды в змеевике ничтожно, и взрыв его невозможен. В крайнем случае, если он где-нибудь прогорит, то пар спокойно выйдет через отверстие…
Установка работает по замкнутому циклу.
Отработанный пар охлаждается в конденсаторе и, превратившись в жидкость, направляется в парогенератор. Конденсатор для большого самолета должен иметь значительную поверхность, а следовательно, может создавать большое сопротивление. Поэтому всегда старались монтировать его в крыле, используя его поверхность для охлаждения.
Так поступим и мы. Конденсатор, расположенный в области передней кромки крыла, не должен увеличить общее сопротивление модели. (При некоторых условиях за счет нагревания пограничного слоя оно может даже уменьшиться.)
Теперь обратим ваше внимание еще на одну тонкость. Формула Бреге не учитывает изменения веса самолета в процессе выгорания топлива. А ведь чем меньше его вес, тем меньше нужна и мощность. Поэтому она просчитывает лишь минимальное расстояние, которое может пролететь самолет с данным двигателем. В действительности оно может оказаться значительно больше. Главное — правильно выбрать скорость, угол атаки крыла и заставить двигатель работать с минимально необходимой мощностью.
К концу полета она может оказаться в несколько раз меньше, чем в начале.
Для двигателя внутреннего сгорания это плохо. При нагрузке удельный расход топлива у него растет, а у паровой машины может даже уменьшаться.
И еще. С 1935 года прошло 65 лет. Сегодня известны паровые машины, КПД которых в три раза выше. Летающая модель с таким двигателем могла бы облететь земной шар.
Стоит попробовать!
А. ИЛЬИН
Рисунки автора