Юный техник, 2000 № 03

Журнал «Юный техник»

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

 

 

Как секунда стала вечностью…

Согласитесь, сегодня трудно представить телетрансляцию футбольного матча без замедленных повторов наиболее острых моментов. Теперь такая возможность открылась и перед химиками. Они тоже подобно болельщикам страстно желают проследить за движением — только не мяча, а частиц во время реакции.

В демонстрации замедленного движения атомов и молекул в химических реакциях преуспел лауреат Нобелевской премии 1999 года по химии Ахмед Зевайл из Калифорнийского технологического института (США). Он стал первым человеком на Земле, который увидел, что же происходит на самом деле, когда разрываются отдельные химические связи и образуются новые.

Коллега и друг лауреата, профессор Цюрихского университета Уве Хубер, полагает, что в данном случае речь идет о гонке, которая продолжается уже несколько столетий. Ученые соревнуются с химическими реакциями — кто быстрее.

И в данном случае Зевайл вышел победителем. Своими исследованиями лауреат заложил основы новой отрасли знаний — фемтохимии.

Фемто… (от латинского femten — пятнадцать) не что иное, как приставка к наименованию единицы физической величины. В числовом выражении это 10-15. Чтобы хоть как-то представить себе ничтожно малый отрезок времени, равный фемтосекунде, скажем, что она настолько же меньше секунды, насколько та, в свою очередь, меньше 32 млн. лет! Даже лазерный луч, движущийся, как известно, со скоростью света, за 100 фемтосекунд успевает продвинуться всего лишь на… 0,03 мм!

Зевайлу удалось как бы «заморозить» весьма быстротекущие процессы в некоторых реакциях, пронаблюдать и зарегистрировать их.

Понятно, что для этого ему пришлось разработать специальную методику и сконструировать аппаратуру, которую эксперты назвали «самой быстрой кинокамерой в мире».

Сам Зевайл, поясняя суть дела, вспомнил о знаменитой серии снимков скачущей галопом лошади, снятой в свое время фотографом Эдвардом Майбриджем. Для съемки Майбридж использовал несколько камер, затворы которых срабатывали от нитей, протянутых через беговую дорожку. По мере того, как лошадь бежала, она обрывала то одну, то другую нить, и фотозатворы срабатывали, фиксируя ту или иную фазу бега.

Схема временных масштабов, иллюстрирующая продолжительность различных процессов.

Так выглядит ячейка фемтоспектроскопа, в которой проводились опыты.

Зевайл пошел тем же путем, но только в другой стезе — он решил «наблюдать молекулы в полете».

Созданный им так называемый фемтоспектроскоп — лазерное устройство, способное посылать очень короткие световые импульсы. Вспышка одного лазера запускает реакцию, второй лазер регистрирует изменения с интервалами в 10 фемтосекунд. В результате спектограф фиксирует возникновение и распад химических связей в каждый последующий момент…

Такой прием позволил ученому сразу на много порядков увеличить разрешающую способность современной аппаратуры и наблюдать за движением атомов в молекулах во время химических реакций.

Вид скоротечной химической реакции в свете лазерной вспышки.

Фемтоспектроскопия с ее стробоскопическим освещением химических процессов и стала основой фемтохимии — науки, открывающей возможность целенаправленного управления даже самыми быстротекущими реакциями, подобными взрыву…

Как известно, скорости химических реакций разнятся значительно: сравните, например, время, за которое гвоздь покрывается ржавчиной, и время, за которое взрывается динамит. Но у всех есть нечто общее — скорость их, как правило, возрастает с повышением температуры (по мере того, как движение молекул становится все более интенсивным).

При обычном столкновении двух молекул чаще всего ничего не происходит — они просто отскакивают друг от друга. Но когда температура повышается настолько, что столкновения становятся достаточно сильными, молекулы вступают в реакцию друг с другом, поскольку существовавшие прежде химические связи рвутся и образуются новые.

Специалисты долгое время полагали, что претендующая на участие в реакции молекула прежде всего должна быть активирована. Иными словами, она должна быть переведена в некоторое возбужденное состояние, чтобы преодолеть потенциальный барьер. Величина его определяется силами, которые удерживают атомы в составе молекулы. Потенциальный барьер химической реакции — по существу аналогичен силе гравитации, которую должна преодолеть запущенная с Земли ракета, прежде чем она будет захвачена полем тяготения Луны.

Профиль распределения энергии на внутриатомных расстояниях в соединении NaI при распадении его на составные атомы. Выявить особенности процесса удалось лишь при рассмотрении фемтомолекулярных интервалов времени.

График распределения потенциальной энергии при объединении молекул в синтезе циклобутана.

Однако до недавнего времени о движении молекул непосредственно «над» барьером не было известно почти ничего. Равно и о том, что представляет собой молекула в процессе такого перехода.

Правда, известный норвежский исследователь Сванте Аррениус (лауреат Нобелевской премии по химии 1903 года), в свою очередь вдохновленный идеями голландца Вант-Гоффа, удостоенного первой в истории Нобелевской премии по химии в 1901 году, предложил простую формулу, где выражена зависимость скорости химической реакции от температуры. Формула была справедлива для макроскопических систем из множества молекул и длительных промежутков времени.

На смену этим феноменологическим представлениям в 1930-е годы пришла первая микроскопическая теория химических реакций.

Американцы Г.Эйринг и М.Полани сформулировали ее для отдельных молекул.

Исследователи в ту пору не могли и мечтать о том, чтобы провести эксперименты за столь ничтожные промежутки времени. И вот спустя полвека Зевайл все-таки провел их. В конце 1980-х годов ему удалось с помощью сверхбыстрой съемочной камеры получить снимки молекул в процессе химических реакций и зарегистрировать их изображения непосредственно в переходных состояниях.

Виктор ЧЕТВЕРГОВ

 

Бог или природа придумали свой конструктор «Лего»

Многие миллионы долларов вложены в расшифровку человеческого генома. Закончив ее, полагают исследователи, мы будем знать о природе человека практически все. Однако проблема оказалась не такой уж простой, как предполагалось поначалу. Работы ведутся уже добрый десяток лет, а сделана едва ли треть.

Но из теории военного искусства известно: если атака в лоб не удается, надо идти в обход. Вот и многие молекулярные биологи ныне считают, что для скорейшего достижения генеральной цели следует сначала изучать более простые организмы — такие, как бактерии, черви, плодовые мушки — дрозофилы. И первые успехи уже сделаны: международному коллективу молекулярных биологов удалось расшифровать ген фруктовой мушки.

Исследователи обнаружили, что природа предусмотрела существование нескольких поразительных механизмов, которые практически идентичны во всем живом царстве, начиная с червей и кончая человеком.

Группа исследователей во главе с доктором Леоном Эвери (Юго-Западный медицинский центр, г. Даллас, США), занимаясь изучением генетических мутаций крохотного прозрачного червячка нематоды, обнаружила, что перестройка гена ехр-2 вызывает у него нарушения работы так называемых калиевых каналов, через которые внутрь клетки поступают те или иные необходимые вещества. Это, в свою очередь, приводит к расслаблению мышц, и настолько, что червячок в конце концов перестает питаться как следует.

Казалось бы, какое нам дело до обеденных проблем какой-то нематоды? Однако дальнейшие исследования показали, что сам механизм расслабления и сокращения мышц глотки червяка имеет точно такую же схему, что и… у сердечных мышц человека! Стало быть, разобравшись с проблемами червяка, исследователи смогут решить и некоторые проблемы сердечной недостаточности.

Еще одним из механизмов, которые действуют аналогично у разных живых существ — жизненно важная система сигнализации, благодаря которой биологические клетки отвечают на сигналы, управляющие ими. Система передачи информации, как оказалось, работает одинаковым образом, определяя и вырабатывая основные биологические функции как в организмах червей, так и у людей.

При этом выяснилось, что молекулы, отвечающие за прием сигналов, могут при сбое выдавать команду на неуправляемый рост клеток, иными словами, способствовать развитию онкологических заболеваний.

— Удивительно, до чего же на самом деле просты те «элементарные кирпичики», из которых строится живой организм, — говорит доктор Джералд Рубин, молекулярный генетик из Университета штата Калифорния в Беркли. — Хоть и очевидно, что человеческое существо значительно сложнее червя или мушки-дрозофилы, но основа везде та же самая.

Это похоже на детский конструктор «Лего» — чем больше у вас элементарных фрагментов, тем более сложную конструкцию вы сможете построить…

Биологам сегодня удалось воссоздать из ряда отдельных и разрозненных фрагментов цельную картину клеточной взаимосвязи.

Главным объектом сигнальной системы, которая, по существу, одинакова для всех изученных организмов, является белок-рецептор, замурованный в стенку клеточной мембраны. Одним концом он выходит наружу, другой находится внутри клетки. Когда внешний сегмент белка получает соответствующий химический сигнал, это служит началом каскада процессов, кульминацией которых становится переключение клетки на тот или иной путь развития.

Доктор Рубин также отметил, что сигнализирующие системы приоткрыли некоторые секреты эволюции.

«Основные элементарные кирпичики всех живых организмов уже были на Земле 500 миллионов лет назад, когда пути развития мушек, червей и будущих гомо сапиенс разошлись. Но типы переключателей и типы «проводки» остались те же самые», — заключил он.

Исследователи были немало удивлены тем фактом, что сигнальные системы сохранились практически неизменными в ходе эволюции. Генетический код оставался прежним все время, сохранялись и фундаментальные биохимические процессы вроде синтеза белка. Однако большинство из нас считало, что по мере перехода к более сложным процессам различия между биологическими видами должны возрастать.

Теперь становится ясным, что наблюдения, оказавшиеся верными для червей и плодовых мушек-дрозофил, по-видимому, дадут верные результаты и для изучения человека. А черви и дрозофилы идеально подходят для экспериментов, поскольку позволяют достаточно легко идентифицировать те или иные гены, специфические способы их функционирования.

Наши соотечественники, ученые Института химической физики Российской академии наук, экспериментируя с мушками-дрозофилами, недавно обнаружили еще одно новое явление в биологии — аритмическую пульсацию количественных признаков жизнеспособности. И теперь мы можем лучше представлять себе механизм старения любых живых организмов, включая человека, знать, как именно влияют на него такие воздействия, как, например, ионизирующая радиация.

Генетик Алексей Акифьев, геронтолог Людмила Обухова и биофизик Дмитрий Измайлов заинтересовались плодовыми мушками — дрозофилами прежде всего потому, что жизнь их коротка: не более трех месяцев. И два года опытов дают возможность проследить за целой исторической эпохой в жизни мушиного «царства».

Для сравнения: аналогичная работа с мышами заняла бы не меньше 10–12 лет, а наблюдения за людьми потребовали бы от двух до трех столетий!

В природной обстановке невозможно исключить множество случайных факторов, каждый из которых по-своему влияет на скорость старения: гены чувствительны к повреждающим их воздействиям.

Однако принято было считать, что средняя для популяции продолжительность жизни практически постоянна и определяется лишь генетической программой.

Так вот ученые установили и доказали: колебания и средней продолжительности жизни, и плодовитости подчиняются какому-то ритму. Пока его природа совершенно не ясна, возможно, он имеет космическое происхождение…

Одно понятно: от поколения к поколению изменяется не генетическая программа старения, а скорость ее осуществления. Вымирание обусловлено ускорением старения, более быстрым бегом жизни.

Проявления загадочного фактора колебания своего рода жизненности сопоставили с воздействием на дрозофил ионизирующей радиации. Оказалось, чтобы в два-три раза уменьшить среднюю продолжительность их жизни, нужна огромная доза облучения — 50 — 100 килорад. Эта доза поражает все компоненты клеток.

Облучение малой дозой (порядка 2 тысяч рад) не отразилось на жизненности взрослых особей, хотя оказалось губительным для большинства эмбрионов. Выжила из них примерно четверть. По общепринятым представлениям последствия облучения должны были бы проявиться в дальнейшем через мутации в первых поколениях. Потом постепенно все должно было бы вернуться к норме. Однако результаты опытов оказались совершенно неожиданными.

Средняя продолжительность жизни первых четырех поколений облученных дрозофил практически не отличалась от продолжительности жизни контрольных насекомых. Но у пятого поколения показатель внезапно упал на 25–40 процентов. Произошла «популяционная катастрофа», неизбежно ведущая к вымиранию.

Таким оказался запоздалый эффект радиационного поражения, испытанного далекими предками вроде бы вполне благополучных дрозофил. И не обязательно в пятом поколении, в любом другом может отозваться «эхо» облучения, записанного в памяти ДНК.

Так что Чернобыль может еще не раз «аукнуться». Потомкам придется расплачиваться за ошибки их далеких предков. И цена расплаты, возможно, будет весьма жестокой, люди станут стареть где-то лет в 25–30.

Ныне врачи изредка встречаются с такой болезнью, называемой синдромом Вернера. Но до сих пор никто не знал, в чем ее причина. Теперь, похоже, механизм ускоренного старения постепенно начинает проясняться. И лечить эту необычную болезнь опять-таки придется на генетическом уровне, исправляя дефекты пораженных генов, заменяя бракованные «кирпичики» другими, качественными.

Исследователи пока учатся сверхтонкому искусству манипулирования отдельными генами и молекулами. И червячки, дрозофилы еще послужат благодарным генетикам в качестве отважных испытателей.

Максим ЯБЛОКОВ