Юный техник, 2000 № 05

Журнал «Юный техник»

Популярный детский и юношеский журнал.

 

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

МФИ — в воздухе!.

29 февраля 2000 г. на аэродроме Летного испытательного института имени Громова в подмосковном Жуковском журналистам СМИ был продемонстрирован в полете многофункциональный истребитель (МФИ), созданный сотрудниками фирмы «МиГ». Полету предшествовали довольно интересные события…

Так выглядит МиГ-142 . Бортовая импульсно-доплеровская РЛС пятого поколения с фазированной антенной решеткой и электронным сканированием диаграммы направленности позволяет эффективно вести дальний воздушный бой, не видя противника, и атаковать свыше 20 воздушных целей одновременно.

Специально для МФИ разработаны управляемые ракеты большой дальности класса «воздух — воздух» и «воздух — поверхность», реализующие принцип «пустил — забыл». Вместе с тем сохраняется встроенная 30-мм пушка. Кроме того, на внешних узлах подвески истребитель может нести любые виды ракетно-бомбового вооружения, используемого самолетами ВВС РФ.

Смена поколений истребителей происходит примерно один раз в 15–20 лет. Отечественные самолеты четвертого поколения — Су-27 и МиГ-29 — поднялись в воздух в 1977–1978 гг., тогда же вышел на летные испытания их французский конкурент «Мираж-2000». Несколькими годами раньше совершили свои первые полеты американские F-15 «Игл» и F-16 «Файтинг Фалкон». Все эти машины, обладающие сходными боевыми возможностями, сегодня составляют основу самолетного парка военно-воздушных сил развитых авиационных держав, а производящие их фирмы более десяти лет делят между собой основные авиационные рынки мира.

В сентябре 1997 г. в мире произошли события, по значимости соизмеримые разве что с постройкой в начале века линейного корабля принципиально нового типа «Дредноут», ознаменовавшей конец эпохи классических броненосцев. 7 сентября поднялся в воздух американский опытный боевой самолет пятого поколения Локхид-Мартин F-22A «Рэптор», а 25-го в хмурое подмосковное небо взлетел его российский соперник — сверхманевренный малозаметный истребитель ОКБ имени Сухого С-37 «Беркут» — изящная машина фантастических очертаний, выкрашенная в черный цвет, как будто вышедшая из виртуальных «звездных войн».

Конец зимы 2000 г. опять-таки ознаменовался двумя событиями, с интересом встреченными авиаторами всего мира. Во-первых, самолет с обратной стреловидностью С-37 совершил свой первый сверхзвуковой полет. Во-вторых, в воздух впервые поднялся сверхманевренный истребитель МФИ, созданный в ОКБ имени Микояна; он же для большей секретности обозначаемый еще и как «изделие 1.44» или МиГ-142.

Это означает, что наша авиационная промышленность преодолела кризис и вслед за США практически приступила к созданию истребителей пятого поколения.

Самолет МиГ-3 . Этот высотный истребитель-перехватчик осуществлял защиту нашего неба 55 лет назад — в грозные годы Великой Отечественной войны. В первые же дни после ее начала по предложению С.П.Супруна из летчиков-добровольцев, занимавшихся испытаниями новой техники, были сформированы два полка особого назначения. Укомплектовали их именно самолетами МиГ-3. Всего же за годы Великой Отечественной войны было выпущено 3300 машин.

Авиационные эксперты полагают, что самолету пятого поколения присущи такие принципиальные качества, как сверхманевренность, способность выполнять длительный сверхзвуковой крейсерский полет на бесфорсажном режиме работы двигателей, малозаметность в радиолокационном и инфракрасном диапазонах, возможность эксплуатации с коротких взлетно-посадочных полос и способность эффективного ведения воздушного боя вне визуального контакта с противником. Считается также, что в конструкции истребителя пятого поколения должна широко применяться технология «стелс», позволяющая машине оставаться невидимой для радаров противника и успешно преодолевать систему противовоздушной обороны.

— Полет, который мы все так долго ждали, прошел на удивление буднично, — делился с журналистами летчик-испытатель фирмы «МиГ», Герой России Владимир Горбунов. — Машина оказалась очень послушной, хотя очевидно, что по своим пилотажным качествам это принципиально новый самолет. Самолет обладает сверхманевренностью, что в немалой степени связано с использованием двигателей Чепкина с поворотным вектором тяги. Машина также интересна тем, что способна держать крейсерский сверхзвуковой режим на малой высоте. Малая отражающая поверхность самолета, его практическая невидность на экране радара достигается и конфигурацией планера, и применением специального покрытия…

А ведь, если помните, создание этой машины началось с громкого скандала. Ряд средств массовой информации выступили с обвинениями в адрес генерального директора авиационного научно-производственного комплекса (АН ПК) «МиГ» Михаила Коржуева, заявив, что самолет, показанный в Жуковском 12 января 1999 г., отнюдь не является настоящим истребителем пятого поколения, а всего лишь фанерный макет.

Теперь страсти поутихли — «московская фанера» на самом деле начала летать.

— МФИ представляет собой одноместную машину, выполненную по аэродинамической схеме «утка» с цельноповоротным передним горизонтальным оперением, среднерасположенным треугольным крылом и V-образным хвостовым оперением, — пояснил на пресс-конференции генеральный директор Коржуев. — В России такая аэродинамическая схема при проектировании реактивных машин реализована впервые.

Между тем оппоненты «МиГа» насчитали семь конструктивных особенностей МФИ, несовместимых, по их мнению, с технологией «стеле». Это и отсутствие прицельно-навигационного комплекса (ПРНК), комплекса радиоэлектронной борьбы (РЭБ) и бортовой радиолокационной станции (РАС)… А кроме того, традиционная форма воздухозаборников, отсутствие внутрифюзеляжного отсека для ракетного оружия, наличие пилонов внешней подвески, обычные обшивка и окраска, традиционные (круглые) сопла двигателей. И стало быть, данная машина не может считаться истребителем пятого поколения.

Самолет С-37 «Беркут» выполнен по схеме «неустойчивый горизонтальный триплан», оснащенной крылом обратной стреловидности. Впервые в отечественном самолетостроении и одним из первых в мире специалистам ОКБ удалось совместить в конструкции одной машины сверхманевренность, сверхзвуковую крейсерскую скорость и малую заметность в радиолокационном и инфракрасном диапазонах. В планере «Беркута» широко использованы новые конструкционные материалы и технологии. Например, крыло на 90 % изготовлено из углепластика.

По сообщениям печати, первый опытный самолет оснащен «временной» силовой установкой, состоящей из двух двигателей Д-30Ф6 (подобные ТРДЦФ тягой по 15 500 кгс применяются на серийных перехватчиках МиГ-31). Однако в дальнейшем истребитель должен получить штатные двигатели нового поколения, имеющие систему управления вектором тяги. Применение УВТ в сочетании с ультрасовременной аэродинамикой, а также рекордной тяговооруженностью должно обеспечить самолету уникальные маневренные характеристики как на дозвуковых, так и на сверхзвуковых скоростях.

Сразу же отметим, что предположение об отсутствии прицельно-навигационного комплекса вряд ли соответствует истине, ведь под обшивку носового отсека никто не заглядывал. А самим представителям фирмы дать детальные объяснения не представилось возможным, поскольку все данные по самолету за исключением внешнего вида пока засекречены. Было лишь заявлено, что МФИ способен вести дальний воздушный бой и атаковать свыше 20 воздушных целей одновременно.

Вполне очевидно, что на начальном этапе испытаний МФИ не нуждается в полном комплекте бортовой электроники. Главное — наличие средств связи, навигации и аппаратуры инструментального захода на посадку (такой подход реализован и у трех опытных F-22).

Летчик-испытатель С-37 И.Вотинцев .

Теперь что касается воздухозаборников. На F-22 — боковые подкрыльевые воздухозаборники ромбовидного сечения. У МФИ они прямоугольной формы и расположены под фюзеляжем. Однако по большому счету форма воздухозаборников мало на что влияет. Основное — это наличие S-образных каналов для экранирования компрессоров двигателей, что дает резкое снижение отражения радиосигнала в передней полусфере. У версии 1.44 такие каналы есть, хотя профиль их искривления выражен не столь явно, как у американского аналога. А вот внутрифюзеляжный отсек для ракет у представленной версии МФИ действительно отсутствует.

Возможно, он появится на следующем опытном изделии. Тогда же уберут пилоны внешней подвески ракетного вооружения.

Что касается обычных обшивки и окраски, то, по словам генерального директора АНПК «МиГ», даже без них эффективная поверхность рассеяния (ЭПР) самолета составляет 0,1 кв. метра. Так что покрытие поверхности планера специальными радиопоглощающими материалами может быть проведено и позже.

Традиционные же (круглые) сопла появились вот почему. Действительно, на F-22 сопла плоские, с регулированием поперечного сечения. Это снижает инфракрасную заметность этого самолета со стороны задней полусферы. Однако разработчики МФИ отказались от подобного решения, так как двигатель АЛ-41Ф с плоским соплом в 2,5 раза тяжелее традиционного с соплом круглой формы. К тому же это привело бы к снижению мощности силовой установки на 10–14 %. Для снижения инфракрасной заметности МФИ в задней полусфере использованы технические решения, реализованные в конструкции двигателя АЛ-41Ф. В частности, применяется система охлаждения, уменьшающая температуру истекающих газов.

Самолет « Рэптор » построен по нормальной аэродинамической схеме с высокорасположенным трапециевидным в плане крылом и хвостовым оперением, включающим широко разнесенные, наклоненные наружу кили с рулями направления и цельноповоротные стабилизаторы. Конструкция истребителя соответствует критериям технология «стелс». Малая радиолокационная заметность обеспечивается за счет малоотражающих форм планера, поверхности которого ориентированы в нескольких строго ограниченных направлениях, а также благодаря применению радиопоглощающих материалов и покрытия. Минимальная ЭПР в курсовой плоскости составляет, по оценкам, приблизительно 0,1 м 2 . В конструкции планера широко использованы полимерные композиционные материалы, включая термопластичные (12 %) и термореактивные (10 %) углепластики.

Следует отметить, что на МФИ применен ряд новейших технологических решений. В частности, устойчивость пилота к перегрузкам (при маневре на сверхзвуке) оптимизирована за счет использования специальных компенсационных костюмов. На первом экземпляре самолета спинка кресла адаптирована к перегрузкам и отклоняется таким образом, чтобы обеспечить максимальную работоспособность пилота.

Безусловно, заявляя о создании российского истребителя пятого поколения, генеральному директору АНПК «МиГ» Михаилу Коржуеву следовало бы оговориться, что публике пока что представлен экспериментальный самолет, который ляжет в основу последующих разработок по данной теме. Но разве можно упрекнуть руководителя одного из ведущих авиационных ОКБ в том, что он забежал вперед? Не имея денег на дальнейшую работу, ему было важно подчеркнуть то, что микояновское ОКБ живет и имеет перспективные наработки, достойные внимания как своего правительства, так и зарубежных инвесторов.

Для получения летного сертификата МФИ необходимо пройти программу летных испытаний продолжительностью 1000 часов. Одним из важнейших вопросов станет доведение двигателя АЛ-41Ф, по которому получены все заявленные параметры, кроме ресурса. По итогам предварительных испытаний он составил 50 часов, а не 300 часов, как хотелось бы. Поэтому для сокращения продолжительности летных испытаний они будут проводиться по комплексной программе.

Итак, невзирая на все неурядицы и безденежье, Россия вновь подтвердила статус авиационной сверхдержавы. В области военного самолетостроения у нас сегодня лишь один стоящий соперник — США. Все остальные лидеры мирового авиастроения — Объединенная Европа со своим «Еврофайтером», Франция, в гордом одиночестве создающая изящный «Рафаль», Швеция с готическим «Грипеном» — остались во втором эшелоне. Их самолеты, несмотря на передовые технические решения, современное вооружение, все-таки останутся техникой конца века.

Они могут конкурировать с модернизированными Су-27, МиГ-29, F-15 и F-16, в чем-то даже опережать их. Однако будущее принадлежит не им. Этот факт, безусловно, будет определять расклад военных сил в следующем десятилетии, а следовательно, безопасность и международный вес нашей страны.

В.ЧЕТВЕРГОВ , инженер

 

ИНФОРМАЦИЯ

ИСПОЛНИЛОСЬ ПОЛВЕКА Ковровскому механическому заводу, где выпускают всем известные мотоциклы, а также стрелковое оружие, ручные гранатометы и другое оружие. Здесь также разработаны вертолетные крупнокалиберные пулеметы, способные посылать 5000 пуль в минуту, противотанковые ракеты и многие другие современные средства боя. Одна из последних новинок — 5.45-миллиметровый автомат, который по всем статьям превосходит знаменитый АКМ. Сегодня его модернизируют под патрон НАТО с тем, чтобы это оружие можно было продавать не только на внутренних, но и на международных рынках. Эксперты уже окрестили его «автоматом XXI века». Вместе с тем, завод продолжает выпускать и товары народного потребления. В числе последних новинок — пистолет для монтажно-строительных работ и другие полезные инструменты.

ИНФОРМАЦИОННЫЙ КОМПЛЕКС БЕЗОПАСНОСТИ судов предложили народному хозяйству сотрудники НИИ им. Крылова из Санкт-Петербурга. Раньше подобный комплекс использовался лишь для оценки аварийного состояния подлодки, находящейся в плавании. Эта работа была проведена после всем известного печального случая с подлодкой «Комсомолец», когда экипаж оказался не в состоянии правильно оценить опасность, что в конце концов и привело к трагедии. Обычно подобные лабораторные исследования работоспособности тех или иных агрегатов производятся лишь на тихой воде.

Новая программа позволяет даже в бурном море проводить оценки крена, дифферента и других характеристик остойчивости корабля в реальных условиях. Система может работать с программой, которая одновременно оценивает и пожаробезопасность судна. А если пожар уже начался, подсказывает капитану, какие именно действия, в каком порядке должен произвести экипаж, чтобы справиться с огнем.

ПАКЕТ ЖИЗНИ — так назвал разработку Всероссийского центра медицины катастроф «Защита» его представитель Александр Александрович Трубин.

— Центр наш знаменит прежде всего своими передвижными госпиталями, которые развертываются в местах катастроф вместе с первым самолетом и начинают свою работу уже через несколько часов после его приземления, — пояснил он. — Однако, на мой взгляд, вот этот пакет, который весит всего 200 г и стоит порядка 10 рублей, может спасти отнюдь на меньше жизней, чем даже самый лучший госпиталь…

В полиэтиленовый пакет аккуратно упакованы пластиковая накидка, респиратор, бахилы и индивидуальный дозиметр. Словом, как раз то, что нужно человеку, чтобы он мог выбраться из района радиоактивного заражения с минимальными потерями для здоровья. Если бы такие пакеты в свое время были доставлены с первым же самолетом в Чернобыль, количество смертей и болезней среди людей, попавших в зону заражения, было бы как минимум на порядок меньше. А сама зона уменьшилась бы на многие сотни гектаров. Ведь люди, в срочном порядке эвакуируемые из района Чернобыля, разносили радиоактивную пыль на своей собственной одежде и обуви. Лишь немногие потом ее уничтожили, закопали поглубже. Большинство даже как следует почистить ее от радиоактивной пыли не догадались…

ЭКОЛОГИЧЕСКУЮ КАТАСТРОФУ у французского побережья вследствие разлития нефти из аварийного танкера «Эрика» помогли предотвратить российские специалисты. Они предложили использовать д ля сбора нефти разработанный ими биосорбент, который в отличие от зарубежных работает эффективнее при низких температурах и без присутствия кислорода (скажем, не морском дне), обеспечивая быстрое разложение нефти не безвредные компоненты. Для очистки 1 т нефти необходимо всего 100 кг сорбента, в то время как американского аналога на это же надо около 1000 кг.

ДАЖЕ ШКОЛЬНИКАМ ИЗВЕСТНО: чтобы химическая реакция шла быстрее, надо при прочих равных условиях повысить поверхность соприкосновения реагирующих веществ. Попросту говоря, измельчить вступающие в реакцию вещества. С такой справки начала свой рассказ генеральный директор научно-производственной компании «Нанобиохим» Елена Михайловна Егорова.

В последние годы в науке и медицине успешно применяются ультрамалые металлические частицы наноразмеров (напомним, что приставка «нано» означает одну миллиардную долю). Как оказалось, наночастицы служат весьма эффективными катализаторами в химических и фотографических процессах, в фильтрах для очистки питьевой воды, при создании металлополимерных материалов…

Однако измельчить металл до наноразмеров не такая уж простая задача: обычные мельницы для этого не годятся — «помол» получается чересчур грубым. Вот тогда химики и призвали на помощь биологически активные вещества — растительные пигменты из группы флаваноидов, образующие специфические соединения с ионами металлов. То есть, говоря проще, химики решили не измельчать далее металлический порошок, а, напротив, получать наночастицы путем выращивания их из растворимых солей различных металлов — серебра, цинка, меди, железа…

При этом, как выяснилось, достигается не только научная, но и практическая польза. Скажем, когда в обычную водоэмульсионную краску добавили малую толику наночастиц серебра, она, кроме всего прочего, приобрела повышенную бактерицидную активность. Если покрасить ею стены и потолок в операционной, то стерильность помещения сохраняется в течение нескольких месяцев, а то и лет.

РАЦИОНАЛЬНЫЕ ХОЛОДИЛЬНИКИ. «Всем известно, как покупают пельмени, — говорит заведующий лабораторией скороморозильных аппаратов Всероссийского НИИ холодильной промышленности, член — корреспондент РИА Илья Ильич Судзиловский. — Прежде всего надо взять коробку, потрясти. Если в ответ раздастся характерный дробный стук, значит, все в порядке — пельмени хорошо проморожены, не испортились при хранении. Но мало кто знает, что достичь оптимальной проморозки изготовленных пельменей не такая простая задача».

Чтобы не только пельмени, но и ягоды, грибы, резаные овощи и фрукты равномерно и быстро промораживались, сотрудники института додумались соединить вместе холодильник и… барабан. Конечно, не музыкальный инструмент, а просто цилиндрическую решетчатую емкость, в которую засыпают продукты. Равномерно вращаясь, барабан обеспечивает не только качественное промораживание, но и так называемую галтовку — уплотнение поверхностного слоя для лучшей сохранности продукта. Здесь также разработаны аппараты для «закалки» мороженого, которое после такой обработки лучше хранится и дольше сохраняет свои вкусовые качества.

 

РАЗБЕРЕМСЯ НЕ ТОРОПЯСЬ

Какой ток лучше?

Еще в древности, за 600 лет до нашей эры, было замечено: потертый о шерсть кусок янтаря притягивает пушинки и другие легкие предметы. От греческого слова «электрон», означающего «янтарь», и был впоследствии образован термин «электричество». Ио заметное продвижение в изучении электрических явлений началось только в XVIII веке.

В 1752 году М. Ломоносов вместе с Риманом начат исследования атмосферного электричества (Риман погиб при этих опытах) и обосновали идею «громоотвода». Развитие электротехники шло по нарастающей, и уже к концу века появились гальванические источники, а в XIX столетии началась эра электрических машин постоянного тока. Целесообразность применения последнего стала очевидной после работ Яблочкова ,  Доливо-Добровольского и Теслы по созданию трансформаторов и многофазных систем — до того полвека царствовал ток постоянный, любимое детище американца Эдисона . Между ним и сербом Теслой разгорелась ожесточенная дискуссия.

Художник Ю.Сарафанов

Эдисон, выступая в конгрессе с перечнем достоинств своего любимца, ссылался также и на его большую гуманность — менее мучительную смерть жертвы электрического стула. В качестве рекламы своей компании Эдисон подключил к специальной, высокостабильной аккумуляторной батарее одну, тщательно изготовленную лампу накаливания и выставил ее на всеобщее обозрение. Она непрерывно горела десятки лет и вышла из строя уже после смерти изобретателя в 1931 году. Конкуренты днем и ночью бдительно контролировали ее свечение — малейший перерыв в работе (подмена, ремонт) грозил эдисоновской фирме огромными убытками и потерей престижа.

И тем не менее «победить» переменный ток — основу радио, телевидения не удалось, и ныне оба вида электроэнергии мирно соседствуют, дополняя друг друга: большая ее часть вырабатывается на переменном, а потребляется (до 80 %), наоборот, на постоянном токе (транспорт, электролиз, привод).

Почему же возникло такое различие в подходах. Машины постоянного тока имеют великолепные рабочие характеристики: благоприятные зависимости момента, оборотов от нагрузки, простую и плавную регулировку скорости, удобный пуск.

Именно это требуется для транспорта и мощного электропривода. Однако любой агрегат постоянного тока имеет один крупный и принципиальный недостаток, имя ему — коллектор. Так называют механический переключатель тока из изолированных друг от друга медных пластин, вращающихся вместе с якорем. Создавать двигатель постоянного тока, лишенный коллектора со щетками, нельзя, хотя изобретатели, недостаточно осведомленные в электротехнике, вот уже сто лет не перестают этим заниматься, уподобляясь «творцам» вечных двигателей.

Поэтому электроэнергия на ТЭС, ГЭС, АЭС вырабатывается с помощью бесколлекторных, в сотни мегаватт, машин переменного тока, который потом уже у потребителя при необходимости выпрямляют.

Другим недостатком постоянного тока является невозможность простого и экономного изменения его напряжения с помощью трансформаторов, как это делается в сетях переменного тока. Общая мощность этих многочисленных простых аппаратов в десятки раз больше, чем у генераторов всех электростанций. К примеру, в вашей квартире вы пользуетесь напряжением 220 В, а к Москве от волжских ГЭС приходит 500 000 В. И много трансформаторных ступенек надо преодолеть току, чтобы попасть в вашу лампочку.

Тем не менее до открытий Доливо-Добровольского и Теслы для транспорта, воленс-ноленс, использовался постоянный ток. Первая такая ЛЭП была построена в 1874 году русским инженером Ф. Пироцким и имела длину всего один километр. В 1882 году француз М. Депре осуществил передачу от динамо-машины примерно двух киловатт при напряжении 1500–2000 В на расстояние 57 км. Однако после появления переменного тока и трансформаторов для передачи энергии стал, понятно, использоваться исключительно переменный ток.

На рисунке 1 изображена обычная блок-схема такой передачи.

Здесь генераторы 1 на электростанции, вращаемые паровыми или гидравлическими турбинами Т , выдают электроэнергию напряжением порядка 15–20 кВ, которое повышается трансформатором 2 до 100–500 кВ с соответствующим уменьшением тока, затем по линии 3 оно попадает на понижающий трансформатор 4 и распределяется потребителям 5. Но по мере роста протяженности воздушных и кабельных сетей, увеличения передаваемой мощности проявились и негативные стороны таких простых передач. Индуктивность проводов существенно увеличивала падение напряжения в воздушных линиях, их максимальная мощность стала определяться пределами устойчивости синхронной работы генератора и двигателей потребителя; огромные зарядные (паразитные) токи снижали эффективность кабельных линий, в их изоляции росли диэлектрические потери.

Всех этих негативных явлений принципиально не может быть при передаче энергии постоянным током. Поэтому с середины века вернулись к разработкам и сооружению передач постоянного тока (ППТ). Их принципиальная блок-схема представлена на рисунке 2.

Как видим, она отличается от рассмотренной выше тем, что повышенное трансформатором 2 напряжение выпрямляется преобразователем 3 и полученный постоянный ток, пройдя по линии 4, преобразуется в переменный в преобразователе (инверторе) 5 и после понижающего трансформатора 6 поступает в приемную энергосистему 7. При таком способе можно не считаться с индуктивностью проводов линии 4, а характерные для переменного тока пределы устойчивой работы передачи отсутствуют.

При использовании кабеля исчезают диэлектрические потери в его изоляции и паразитные зарядные токи — ведь полярность напряжения постоянна, а не меняется сто раз в секунду, как в ЛЭП переменного тока.

Однако эти великолепные достоинства, как и любые иные, даром не даются. Необходимы довольно дорогие и сложные преобразователи. Первая промышленная кабельная ППТ была сооружена между Швецией и о. Готланд (100 км, 100 кВ, 20 МВт) в 1954 году (рис. 3).

Кабель, проложенный по дну моря, соединял выпрямительную и инверторную подстанции, а обратным проводом служило море. Заземлитель на материке постоянно работал в режиме анода, т. е. ток стекал с него в море. Он был выполнен из магнетитовых стержней, заложенных в пористые глиняные трубы для защиты от механических повреждений и опущенных в специальный бассейн, отгороженный от открытого моря особой дамбой, обеспечивающей свободный водообмен. (Так, между прочим, защищается и рыба, которая обычно «притягивается» положительным электродом и глушится при номинальном токе в 200 А уже на расстоянии двух метров от электрода.)

Расход магнетита на 1000 ампер-часов составляет 40 г. Электроды на другом полюсе все время работают в режиме катода, и их материал не расходуется. Они выполнены из двух параллельных медных шин сечением по 120 мм2 каждая. Поле же катода на рыб не влияет.

В настоящее время в мире работает свыше 30 кабельных и воздушных ППТ общей мощностью более 20 000 МВт и длиной свыше 12 000 км. Многие из них реверсивные, т. е. могут менять направление транспортируемой энергии. Для России, где 85 % энергоресурсов расположено за Уралом, а 80 % населения проживает в европейской части, проблема транспорта электроэнергии очень актуальна. Одна из реверсивных ППТ построена между Волжской ГЭС и украинским поселком Михайловка, недалеко от города Кадиевка (720 МВт, 800 кВ, около 500 км). На рисунке 4 показана двухпроводная опора этой линии.

Рис. 4

В качестве преобразователей (рис. 2 и 3) в ней применены комплексы мощных тиристоров. Эти полупроводниковые управляемые выпрямители имеют вид «таблеток», торцы которых являются анодом и катодом, между которыми расположен управляющий электрод. Из таких «таблеток», соединенных последовательно между собой, собираются преобразовательные мосты, обеспечивающие выпрямление и инвертирование большого тока высокого напряжения.

Объяснять, как работает выпрямитель, не надо — это знают все. Другое дело — инвертор, реализующий обратную операцию. Вот грубая аналогия этого процесса.

Вообразим, что через длинный туннель (аналог линии) в загон (аналог трехфазного трансформатора) через три выхода (аналоги трех тиристорных блоков) непрерывно вливается стадо баранов (аналог постоянного тока), задние напирают и остановить этот поток невозможно. Сначала открывают первый вход — тиристорный блок фазы «А», и животные (ток) идут в него. Но вот рядом открывают второй вход — тиристорный блок фазы «В», а в первом входе появляется пес, лающий на баранов (аналог полуволны синусоиды, направленной против тока), и, естественно, весь поток переходит во вторую дверь — в тиристорный блок, соединенный с фазой «В», а первая дверь — тиристорный блок фазы «А» — закрывается.

Вскоре таким же образом ток переходит на фазу «С», и далее процесс повторяется. Таким образом, ток в линии не меняется, остается постоянным, а в фазах трансформатора возникает переменный, инвертированный. Весь этот сложный процесс (имеются в виду не бараны, а электроны) управляется и регулируется сложной электронной аппаратурой, выполняющей и функции защиты.

В электропередачах невозможно «складировать» электроэнергию, она должна потребляться в момент ее производства. При нарушении этого баланса возникают опасные для оборудования режимы, поэтому регулирование и защита ППТ должны действовать с большой быстротой.

На рисунках 5 и 6 представлены плечи преобразовательных мостов ППТ Волгоград — Донбасс собранные из тиристорных модулей. Каждый мост рассчитан на 100 кВ выходного напряжения. Те из них, которые находятся на повышенном потенциале относительно земли (рис. 6), изолированы дополнительными изоляторами. Охлаждаются тиристоры преобразователей деионизированной водой — на фото видны полиэтиленовые трубопроводы для ее подачи на высокий потенциал, а также желтые блочки управления тиристорными ячейками, находящимися внутри модуля, делители напряжения, вспомогательные реакторы и другое оборудование. Модульная конструкция тиристорных блоков позволяет существенно упростить их эксплуатацию и ремонт.

Эта ППТ должна была стать прообразом будущих сверхмощных передач Экибастуз — Центр, Ачинск — Урал и других, но перестройки и реформы нарушили эти грандиозные планы, надолго затормозив развитие прогрессивных технологий. После преодоления кризисных явлений в экономике нам придется догонять промышленные страны в области ППТ. Возможно, некоторые из нынешних читателей «ЮТ» заинтересуются в будущем решением этих проблем.

Рис. 5

Рис. 6

А теперь вопросы для внимательных читателей:

· Куда денется энергия падающей воды, поступающей в турбину, если на другом конце ЛЭП неожиданно вырубят нагрузку?

· Меняется ли направление тока и полярность проводов в передаче постоянного тока при ее реверсе?

Ждем ответов.

Георгий ЧЕРНИКОВ

 

УДИВИТЕЛЬНО, НО ФАКТ!

А какую гармонию видите вы?

Известный французский поэт Артур Рэмбо на рубеже XIX–XX веков написал любопытный сонет, где представил буквы в цветовом отражении. Судите сами.

Вот строки из его стихотворения «Гласные»:

А — бархатный корсет на месте насекомых, которые жужжат над смрадом нечистот.

Е — белизна холстов, палаток и тумана, блеск горных ледников и хрупких опахал.

И — пурпурная кровь, сочащаяся рана или алые уста средь гнева и похвал…»

Что это — игра слов или же отражение явления, которое ныне специалисты называют «цветным слухом» или синестезией.

В переводе с греческого этот термин звучит еще как «соощущение».

Интересно, что первый перевод сонета Рэмбо появился 1894 году вовсе не в поэтическом сборнике, а в русском издании книги французского психолога Альфреда Бине «К вопросу о цветном слухе».

Никто, правда, не знает, писал ли Рэмбо о собственных ощущениях или просто развил мысль Бодлера о перекличке и слиянии цвета, звука, запаха и формы, высказанную им, в свою очередь, в сонете «Соответствие».

Споры о происхождении сонета «Гласные» вызвали к жизни многие признания и ассоциации.

Так, скажем, Владимир Набоков в своей книге воспоминаний «Другие берега» сам признается, что был наделен цветным слухом.

«Не знаю, — впрочем, оговаривается он, — правильно ли тут говорить о слухе. Цветное ощущение создается, по-моему, осязательным, губным, чуть ли не вкусовым чутьем. Чтобы основательно определить окраску буквы, я должен ее просмаковать, дать ей набухнуть или излучиться во рту, пока воображаю ее зрительный узор. Чрезвычайно сложный вопрос, каким именно образом сливаются в восприятии буква и ее звук, окраска и ее форма».

• НОТЫ И… БОРЩ. Но, пожалуй, настоящим гением синестезии был московской репортер Леонид Шерешевский. В восприятии окружающего мира у него участвовали все чувства сразу. В этом убедился психолог Александр Лурия, написавший по сему поводу «Маленькую книжку о большой памяти». Однажды он пожаловался исследователю: шум мешает ему сосредоточиться. Он превращается в его сознании в клубы пара, заслоняющие таблицы, что предложил ему ученый. И это мешает рассмотреть их хорошенько, а стало быть, и запомнить.

А надо сказать, что в тишине Шерешевский мог затвердить практически неограниченное количество таблиц с чисто случайными рядами цифр и букв, да так крепко, что без ошибок воспроизводил их и много лет спустя.

«Какой у вас желтый и рассыпчатый голос», — заметил он как-то при знакомстве психологу Выгодскому. А когда при нем брали музыкальные ноты на пианино, он видел их то в виде серебряной полосы, то желтой, то коричневой… Иногда зрительное ощущение дополнялось и вкусовым — коричневая нота вызывала вкус кисло-сладкого борща. Один из музыкальных тонов навевал Шерешевскому образ молнии, раскалывающей небо пополам. А резкий звук произвел на него впечатление иглы, вонзившейся в спину. Гласные буквы были для него фигурами, согласные — брызгами, а цифры представлялись некими башнями.

«Я вспоминаю, — пишет Лурия, — как однажды мы с Шерешевским шли из института.

— Не забудьте дорогу, — Предупредил я его, запамятав, с кем имею дело.

— Нет, что вы, — ответил он. — Разве можно забыть? Ведь этот забор, он такой соленый на вкус и такой шершавый, и у него такой пронзительный звук…»

• НА ВКУС И ЦВЕТ ТОВАРИЩЕЙ НЕТ. Синестезия открыта давно. Но почти сразу к ней охладело внимание. Почему? Да просто не было соответствующего оборудования для исследования мозга. Ныне положение заметно изменилось, исследователи вооружились ядерно-магнитным резонансом, позитронной томографией и другими научными новинками.

С их помощью им удалось проследить связи между отделами мозга, которые отвечают за определенные чувства. Однако выяснилось, что синестики — люди, обладающие «цветным слухом», — ощущают образы каждый по-своему, поэтому невозможно выработать какие-то общие критерии или тесты.

Кое-что, впрочем, прояснить все же удалось. Недавние эксперименты, проведенные учеными Ганноверского университета (ФРГ), показали, что психологи прошлого не так уж и ошибались, полагая, что способности зрительного восприятия звуков могут иметь генетические корни и передаваться по наследству.

Пока, правда, не удалось установить, насколько распространено такое свойство. Саймон Койе, психолог из "Кембриджского университета (Великобритания), например, полагает, что синестезий отмечается примерно у одного человека из двух тысяч.

О причинах синестических отклонений все еще идет спор. Одни исследователи предлагают искать корни синестезии в сферах, подведомственных нейропсихологии, другие считают такие видения результатом ассоциаций, выработанных еще во младенчестве особо художественными натурами.

Идут споры даже и o том, считать ли подобные свойства людей отклонением от нормы, или просто продолжением, дальнейшим развитием у некоторых индивидуумов качеств, которые присущи всем, в малой степени.

• КАКОЙ ЦВЕТ ВИДЯТ НАРКОМАНЫ? Однако почему содержание и формы синестезии неодинаковы у разных людей? Этого никто не знает, не могут исследователи и объяснить, почему среди синестиков в шесть раз больше женщин, чем мужчин. Почему одна дама, например, могла не только различать цвета, слыша звуки, но и, наоборот, могла слышать звуки, разглядывая разные цвета.

«Ей это было неприятно, — отмечают психологи — и она пыталась с этим бороться всеми силами, не подозревав о своей уникальности…»

Но может, это просто качество особо одаренных натур — видеть мир столь необычно? «Нет, это не так», — полагают некоторые исследователи. Синестезия — это вовсе не склонность к аллегориям, метафорам и прочая игра художественного воображения. Это скорее всего чистая биохимия. Недаром же, как полагает американский исследователь Бэрен Жоэн, такие галлюциногены, как ЛСД вызывают синестезию.

Так что же, синестики — своего рода природные наркоманы? Исследователи пока затрудняются точно ответить, однако отмечают: у первых восприятие мира весьма устойчиво, может сохраняться годами, тогда как у наркоманов видения весьма кратковременны и всякий раз меняются.

Примерно то же самое говорит и Лаура Стин, одна из испытуемых Коэна, которая вспомнила, как лет 30 тому назад, будучи ребенком, сказала отцу, что цифра «пять» желтая. Тот на секунду задумался и поправил дочь: «Нет, она скорее цвета охры…»

• ИСКОПАЕМОЕ В МОЗГЕ. Исследователи недавно сравнили работу мозга у шести синестиков-женщин и у шести обычных людей, выступавших в качестве контрольной группы. Реакции мозга отслеживали с помощью позитронного сканера, появившегося всего несколько лет назад. Испытуемым завязали глаза и надели на них наушники, через которые транслировались ряды звуков. Выяснилось, что звуки вызывают у синестиков активизацию не только слуховых зон мозга, но также и зрительных, чего не наблюдалось у нормальной группы. У последних активизировалась лишь слуховая зона.

Получается, что синестики — люди, у которых есть некие нервные связи между слуховой и зрительной зонами. Так что для них понятие «цветной слух» — вовсе не преувеличение, а констатация факта.

Причем некоторые исследователи считают, что в данном случае мы имеем дело с неким «психическим ископаемым» — своеобразным атавизмом, наследием тех доисторических времен, когда у организма было единое чувства а не пять или шесть, как сегодня. Природа, вероятно, отказалась от такой целостности восприятия мира, посчитав его не очень удобным в практической жизни. Во всяком случае, в наши времена такой атавизм еще никому не принес счастья, начиная с того же Рэмбо и кончая Шерешевским. Современные синестики, как правило, стараются скрыть свои истинные чувства, оградить свое мироощущение от посторонних. А может, напрасно? Ведь благодаря их цветному слуху и другие люди смогут понять, что наш мир куда более гармоничен и красочен, чем полагают…

Олег СЛАВИН

 

У СОРОКИ НА ХВОСТЕ

НА ПЛЯЖАХ АВСТРАЛИИ — ПЕСОК АНТАРКТИДЫ. Бескрайние австралийские пляжи, ласкаемые теплыми волнами океана, своим появлением во многом обязаны ледяному континенту — Антарктиде. К такому выводу пришли исследователи из Австралийского национального университета в Канберре.

Примерно 100 млн. лет назад от общеземного материка Гондваны «откололась» Австралия, двинувшись к тому месту, где она сегодня располагается. Прессованные частицы антарктических скал сформировали на ней пласты песчаника, которые ветром и водой постепенно были превращены в лесок на австралийских пляжах. Сами того не ведая, австралийцы жарким летом босиком ступают по песку из тех мест, где ныне царствует вечная зима.

КИТАЙ В КОСМОСЕ. Всерьез занялись освоением космического пространства китайские специалисты. В мае прошлого года Китай успешно вывел на орбиту два искусственных спутника Земли гражданского назначения. Использовалась для запуска ракета-носитель «Чанчжэн-45». К началу будущего столетия КНР планирует осуществить запуски еще примерно 10 спутников. И наконец, на первую пятилетку следующего века запланирован выход в космос китайских космонавтов.

МАСТЕРСКАЯ КАМЕННОГО ВЕКА. Группа археологов обнаружила в Рифтовой долине на севере Кении мастерскую по изготовлению каменных орудий труда. По мнению ученых, первобытное предприятие, возраст которого оценивается в 234 млн. лет, доказывает, что предки современного человека обладали более развитыми, чем считалось до сих пор, техническими навыками. На месте раскопок обнаружено свыше 2 тыс. заостренных каменных пластин. Найдено множество костей рыб и млекопитающих, для разделки которых употреблялись орудия. Встречается и яичная скорлупа, что свидетельствует о весьма широких гастрономических пристрастиях.

Прежде чем взяться за работу, камень предварительно испытывали. Если кусок породы плохо подходил для обработки, его браковали. Отобранные камни заостряли. При этом древние мастера делали сколы таким образом, чтобы в будущем необработанную сторону также можно было заострить.

«Наши находки оказались более сложными и лучше обработанными для того времени, чем считалось ранее, — заявила английскому журналу «Нейчур» участник археологической группы Элен Роше. — Очевидно, что древние люди подходили к обработке орудий вполне разумно, а не просто использовали первый подвернувшийся камень».

БЕЛЫЙ ИНДЕЕЦ? Прошло почти три года с тех пор, как два студента колледжа случайно наткнулись на окаменевшие кости, возраст которых, как полагают, составляет 9300 лет. Находка заинтересовала антропологов. Они проверили возраст костей с помощью радиоуглеродного метода и перенесли их в Тихоокеанскую северо-западную национальную лабораторию в Ричленде (штат Вашингтон). Однако вскоре выяснилось, что действия ученых не совсем законны. Согласно «Акту о защите могил коренных американцев», индейцы, в резервации которых обнаружен скелет, могут в любое время забрать его, чтобы похоронить по традициям племени. Поэтому группа Фрэнсиса Мак-Манамона, сформированием из представителей университетов и музеев США, недавно форсировала изучение кенневикского человека. Ученые перевезли кости в Музей естественной истории штата Вашингтон и подвергли их различным тестам. Исследователи обратили внимание на то, что пропорции черепа «древнего индейца» во многом похожи на европейские. Если это подтвердится, ученым, вероятно, придется пересмотреть историю. Присутствие белого человека в Америке за 9000 лет до Колумба, по-видимому, означает, что европейцы перебрались через Берингов пролив, проникнув из Евразии в Северную Америку.

НАХОДКА В ПАКИСТАНЕ. Окаменелые останки крупнейшего в истории Земли ископаемого млекопитающего обнаружены сотрудниками парижского Музея естественной истории в горном районе пакистанской провинции Белуджистан в 500 км к северу от города Карачи. Как считают ученые, животное обитало на территории современного Пакистана примерно 30 млн. лет назад и напоминало носорога (только без характерного рога). Весил гигант 15–20 т, в холке достигал 5 и в длину 7 м. В настоящее время экспедиция намерена добиваться от правительства Пакистана разрешения на вывоз во Францию обнаруженных останков для их исследования н обработки. Затем предполагается вернуть их на родину и выставить в музее.

БАКТЕРИЯ-ГУЛЛИВЕР… обнаружена немецкими учеными в океане, неподалеку от берегов Намибии. Если обычные бактерии едва различимы под микроскопом, то эту нетрудно разглядеть невооруженным взглядом — ведь ее длина около 1 мм. Питается бактерия-гигант весьма токсичными веществами. И экологи задумались: «А нельзя ли приспособить находку для переработки промышленных и прочих стоков?»

 

СУМАСШЕДШИЕ МЫСЛИ

Если бы радары всей страны…

Часто думают, что лучевое оружие никому, кроме Архимеда (если, конечно, верить легенде), создать не удалось. Но это не совсем так. В середине 50-х годов неожиданно выяснилось, что импульсы мощных радиолокаторов способны взорвать ракету, боеголовка которой имеет бесконтактный взрыватель. Поясним, как это произойдет.

Взрыватели обычных снарядов и ракет срабатывают при ударе или, как выражаются специалисты, при контакте с целью. Но есть и другие, оснащенные электронными устройствами, которые способны по отраженному свету, радиоволнам, звуку, электромагнитным полям обнаружить цель за десятки метров до непосредственного контакта с нею и подорвать заряд. Их называют бесконтактными.

Как это ни удивительно, но взрыв на расстоянии порою гораздо эффективнее. Например, авиабомба весом 100 кг при непосредственном ударе полностью уничтожит лишь один дом, а при взрыве на высоте 25 метров разрушит целый квартал. Бесконтактными взрывателями оснащаются и ядерные бомбы.

Столкнувшись с подобным эффектом, вначале подумали, что от импульсов радиолокатора срабатывает электронная схема. Но при экспериментах выяснилось — боеголовки взрываются и тогда, когда электроника из них удалена… Причину нашли не сразу. Поначалу даже грешили на лучи Г.Меттьюза, но все оказалось проще. Подрыв заряда в бесконтактных взрывателях происходит в результате нагревания тонкой проволочки, заделанной во взрывчатку. Мощный поток радиоволн нагревал ее своей энергией без участия электронной схемы.

Вот и выходит, что еще в ту пору на короткий момент человечество обрело лучевое оружие — радиолокатор большой мощности. Но оно было способно поражать только цели, имеющие ахиллесову пяту — радиовзрыватель. А к началу 60-х годов он был настолько усовершенствован, что перестал реагировать даже на самые мощные импульсы.

Вообще-то мощности передатчика крупного радиолокатора достаточно, чтобы полностью вывести из строя любую ракету, правда, на небольшом расстоянии. Если бы радиоволны удалось собрать в узкий параллельный пучок, мы получили бы лучевое оружие, способное поражать ракеты за многие километры от цели…

Попробуем разобраться, почему это пока не удается. Начнем издалека. Антенной радиолокатора времен Второй мировой войны было металлическое вогнутое зеркало, отражающее радиоволны. В его фокусе установлен излучатель радиоволн. Размеры его очень малы. Если пользоваться законами геометрической оптики, то, казалось бы, радиоволны должны, отражаясь, собираться в почти параллельный пучок, который пригоден для поражения ракет на очень больших расстояниях. Однако мешает этому принцип Гюйгенса — Френеля. О нем во всех подробностях можно прочесть в учебниках. Мы же попытаемся объяснить его образно.

В некоторых экспериментах радиоволны ведут себя подобно потоку частиц. Нетрудно представить себе их в виде крохотных пылинок, излучаемых антенной… А еще лучше потоком светящихся частиц или, например, лампочек. Это позволит понять, почему от каждой точки радиоволны исходят вторичные волны, сложным образом взаимодействующие друг с другом. Это явление называется дифракцией, и в конечном итоге оно и приводит к рассеянию радиоволн. Бороться с ним (если длину волны оставить постоянной) можно, лишь увеличивая размеры антенны. Однако пригодная для наших целей, она имела бы диаметр около километра, что технически не осуществимо уже потому, что ее нужно наводить на цель.

Но есть способ, позволяющий антенну оставить неподвижной, а волны направлять в нужную точку.

Правда, это не обычная антенна, а целая система из множества антенн — антенная решетка. Каждая из них имеет свой генератор. Все они работают на одной частоте, и их волны, взаимодействуя между собою, интерферируют. Регулируя с помощью управляющего устройства фазу колебаний каждого генератора, можно перераспределять энергию радиоволн в пространстве, в частности, создавать качающийся, как бы ощупывающий пространство, остро направленный луч. Но степень направленности фазированных антенных решеток (ФАР) все же недостаточна для наших целей. Происходит это по той же причине — размеры устройств слишком малы.

А теперь давайте поразмышляем, что произойдет, если несколько ФАР, отделенных друг от друга расстояниями в десятки, а лучше сотни километров, одновременно обрушат свое излучение на цель. Тут возможны два варианта.

Первый — генераторы решеток работают на одной частоте, но по фазе не согласованно. В этом случае потоки радиоволн складываются арифметически и пересекаются в зоне с поперечником в сотню метров. Интенсивность радиоволн в ней будет достаточна лишь для того, чтобы слегка нагреть корпус ракеты.

Вариант второй — работа всех генераторов строго согласована.

Все волны приходят к цели в одной фазе. В этом случае произойдет интерференция (рис. 1).

Амплитуды волн сложатся алгебраически, векторно. Если генераторы работают в диапазоне сантиметровых волн, то мы сможем всю их энергию сконцентрировать в зоне с поперечником в несколько сантиметров. Поскольку мощность крупных современных радиолокационных станций достигает тысяч киловатт, то их совместное действие и приведет к желаемому результату. И достичь его можно двояко.

Самое надежное — ракету расплавить или сжечь. Это единственно приемлемый способ, если борьба идет в сильно разреженных слоях атмосферы. Но по затратам энергии он наиболее расточителен. В плотных слоях атмосферы мы могли бы действовать тоньше. В зоне концентрации энергии легко образуется плазмоид — огненный шар с температурой в десятки тысяч градусов. В момент его появления образуются взрывные волны. В сущности это равноценно взрыву, получившему энергию не от сгорания взрывчатки, а от радиоволн.

Можно рассчитывать, что некоторые типы ракет или самолетов удастся разрушить лишь взрывной волной. А если этого будет недостаточно, то согласованный взрыв нескольких плазмоидов (рис. 2) позволит сконцентрировать энергию взрывных волн в нужном месте и разрушить любую броню. Такой способ окажется еще более экономным.

Плазмоид, или огненный шар, — это лишь зона, где вещество (воздух) находится в определенном состоянии. Но центр массы ее не перемещается. В сущности это напоминает бегущий свет. Видно, что огонек движется, а лампочки-то стоят! Поэтому огонек бегущего света при желании можно заставить двигаться со сверхсветовой скоростью. Таким же резвым может быть и наш плазмоид. Законы природы при этом не нарушаются.

Но не будем лезть в эти философские дебри. Если на боку ракеты сконцентрировать энергию и всего лишь на тысячу градусов подогреть воздух, условия обтекания нарушатся и траектория полета изменится (рис. 3).

В принципе таким способом можно даже заставить ракету повернуть назад и… поразить цель на территории противника. Вот уж случай, когда пришедший с мечом, от меча и погибнет, притом — от своего!

Для осуществления такой обороны нужно, казалось бы, немногое. Научиться согласованно изменять частоту сотен сверхмощных генераторов СВЧ, разбросанных по территории страны, с точностью до десятого знака после запятой… А это непростая задача!

А. ИЛЬИН

Рисунки автора

 

ГРУКИ

ПИТА ХЕЙНА

Имя датчанина Пита Хейна хорошо знакомо нашим читателям. Это уже третья подборка его стихотворных притч на страницах «ЮТа». Как видим, занятие наукой, изобретательством вовсе не мешало ему быть и весьма остроумным наблюдателем окружающей жизни.

Перевел груки Генрих ВАРДЕНГА .

А рисунки — самого автора.

ДЛЯ ОТВОДА ГЛАЗ

Одно из решений житейских дилемм — быть чуть умней, чем, вы кажетесь всем.

Есть метод иной — преимуществ не счесть — казаться немного глупей, чем вы есть.

PAST PLUPERFECT

Прошедшее — в ту ночь как визит тети Дженни: мы счастливы ей угодить,

но надо ж кода-то, при всем уваженье, понять, что пора уходить.

МЫСЛИ И ВЕЩИ

Капнув чернилами в миску с водой, в лиловый узор я ушел с головой.

Мысли отличны от прочих вещей в них углубляться гораздо трудней.

КРУГОЗОР

Вот пастор по святым делам идет, потупив взор,

и нимбом вкруг его чела означен кругозор.

МЫ ДЕЛАЕМ ВСЁ ВОЗМОЖНОЕ

Но так ли это?

Говорят, человек изменился, и очень:

он теперь может делать то, что он хочет.

Но, увы, и поныне — мы видим все то же:

человек хочет делать то, что он может.

МОЯ ВЕРА В ДОКТОРОВ

Я верю докторам вполне, и лишь одно мешает мне:

их отработанный прием: быть компетентными во всем

ЛЕКАРСТВА ОТ ЛЕКАРСТВ

Есть пилюли от болезней; если примешь целый куль,

то узнаешь, что полезны и пилюли от пилюль.

О ТРУДНОСТЯХ

Сколько планов постигла судьба-небылиц,

сколько замков воздушных смешалось с песком

из-за нами же вычерченных границ,

о которые мы спотыкались потом.

 

С ПОЛКИ АРХИВАРИУСА

История трамвая

Быстрый рост населения крупных городов в XIX столетии потребовал общественного транспорта, годного для массовых перевозок пассажиров. Таким средством и в Старом и Новом Свете стали конно-железные городские дороги, на Руси называвшиеся «конками».

Конка представляла собой облегченный многоместный вагончик, влекомый по рельсовому пути резвой лошадкой. На крыше, а позднее на передней площадке восседал вагоновожатый с кнутом и вожжами в руках. Все увеличивающийся наплыв пассажиров заставил искать пути увеличения провозной способности конки.

В год, когда в России было отменено крепостное право, английские конно-железные дороги обзавелись двухэтажными вагончиками. Вскоре они появились и у нас. Проезд на открытой верхней площадке — империале — стоил дешево, чем привлеки малоимущих и детей.

Дальнейшее развитие конки упиралось в тихоходность четвероногих тружеников. Становилось ясным, что решить проблему способен лишь механический двигатель; к этому времени уже существовали хорошо отработанные паросиловые установки, успешно водившие речные и морские суда, железнодорожные составы.

Оставалось лишь «ужать» их паровые котлы и поршневые машины до габаритов конки. Однако попытка внедрить паровой трамвай на улицах города, как это сделали в Киеве, оказалась неудачной — сильный шум локомотива, искры и гарь, сыпавшиеся из дымовой трубы, никому не понравились. Несколько лучше дело пошло в Одессе и Москве, где трамвайную сцепку из четырех-пяти вагончиков использовали (1886 г.) для пригородного сообщения. Трамвайные паровые локомотивы были построены на Коломенском заводе. Изюминкой в них было устройство для конденсации и повторного использования отработанного пара, что позволило уменьшить запас возимой с собой воды.

Продолжались поиски и иных, пригодных для города систем трамвая. Одна из них была осуществлена в 1876 г. французским инженером Л. Мекарским. На построенной в Нанте линии курсировал трамвай, приводимый в действие поршневой расширительной машиной.

Запаса воздуха, хранившегося в нескольких баллонах под давлением 30 атм, хватало на пробег туда и обратно по шестикилометровой линии. Несмотря на экологическое благополучие, пневматический трамвай не нашел последователей — никто не желал загромождать жилые кварталы многочисленными компрессорными станциями и терять время на подзарядку баллонов воздухом.

Наконец ключ к решению задачи был найден: после удачных опытов с тележкой-тягачом, оснащенной «новомодным» электромотором, фирма «Сименс» построила электрический моторный вагон для трамвайной линии под Берлином, где регулярное движение началось в 1881 г. Однако успех у публики все же не мог скрыть крупных недостатков первенца. Поскольку подана электроэнергии к вагонам обеспечивалась третьим, контактным, рельсом (ходовые служили «обратным проводом»), в сырую погоду возникали большие утечки тока между токоведущими рельсами; нередко это приводило к коротким замыканиям и перерывам движения.

Независимо от погоды немалые потери энергии происходили в сопротивлениях контроллера, которым регулировалась скорость движения. Это просчеты были устранены в трамвае американца Ю. Спрэга. Здесь токосъемник, установленный на крыше, скользил по контактному проводу, подвешенному на опорах высоко над землей. Впервые была применена рекуперация энергии — разогнавшийся и идущий по инерции вагон раскручивал ротор двигателя, переводя его в режим электрогенератора, возвращавшего энергию в контактную сеть.

Самый, самым первый трамвай Сименса . Все бы хорошо, да рельсы были под напряжением и пассажиров часто «пощипывало».

Паровой трамвай стал даже героем одесской песни «Семь-сорок»: «В семь сорок к нам подъедет наш маленький одесский паровоз…»

Электрический трамвай системы Спрэга .

Электрический, но без проводов. Ток дают аккумуляторы.

Тоже электрический без проводов, нo ток вырабатывает бензоэлектростанция на борту самого трамвая.

Важным новшеством стало исполнение электромотора, понижающего редуктора и колесной пары в виде моноблока— тележки. Появившаяся в 1888 г трамвайная система Спрэга начала стремительно распространяться во всем мире, став прообразом современного трамвая.

Несмотря на неоспоримые достоинства найденного Спрэгом решения, продолжались поиски и иных вариантов трамвайных систем. Их подогревало стремление обойтись без электрической контактной сети, требующей немалых капиталовложений и загромождавшей улицы опорами и путаницей подвесов и растяжек.

Выход виделся в создании для трамвая автономных двигательных установок, более совершенных, нежели ранние паровые. Так в 1899 г. на линиях Петербурга и Москвы появились опытные вагоны, которые использовали электроэнергию, буквально возимую с собой. Ее запас хранился в двухстах аккумуляторных банках, емкостью по 16 А/ч каждая. Вес батареи был огромен — около пяти тонн. Но дело дальше экспериментов не пошло.

Больше повезло теплоэлектрическому трамваю. У него тяговый электродвигатель получал питание от электрогенератора, вращаемого небольшой дизельной установкой. Несколько трамвайных пар курсировало, к примеру, между Екатеринодаром и станцией Пашковская в течение двух лет, вплоть до Первой мировой войны. Другой разновидностью трамвая, обходящегося без контактной сети, явился бензомоторный вагон с силовой передачей к колесам, аналогичной автомобильной.

Как правило, они по всем показателям уступали обычному электрическому трамваю, и лишь в Таллине, в силу особенностей местных условий, широко применялись, начиная с 1921 г., в течение тридцати лет.

Г. ПРОКОПЦЕВ

 

СОЗДАЕТСЯ В РОССИИ

Примут ли трамвай в XXI век?

Какой же транспорт выбрать для городов будущего? Что нам дал автомобиль, способный сегодня развивать 150–200 км/ч — скорость небольшого самолета? Практически ничего.

Сегодня средняя скорость движения в Москве, Нью-Йорке и других столицах 12–18 км/ч… Такой же она была и в Древнем Риме! Добавим к тому, что из-за сношения автомобилей в часы пик она падает до 5 — 10 км/ч. Кроме того, автомобиль прожорлив. В его моторах сгорает треть добываемого на Земле топлива. Но этого мало. Автомобиль еще отравляет воздух. Его выхлоп насчитывает около двухсот токсических компонентов, не считая СО, а плюс к этому углекислоту и азот.

И вот что главное. Медицинские исследования показали, что, когда содержание в воздухе углекислоты достигает 14–15 %, наступает смерть от удушья. И уличный транспорт может довести концентрацию углекислоты в ближайшем к поверхности слoe воздуха до опасной величины за считанные часы. Нас постоянно спасает ветер. Но его может и не быть.

В 1952 году в Лондоне случилось безветрие. В результате 4000 человек погибли и 10 000 попали в больницу с симптомами острой легочной недостаточности. Для сравнения отметим, что даже самые страшные бомбардировки этого города уносили жизни лишь сотен людей.

Кислород поставляют в атмосферу только растения. Человек истребляет и кислород и растения. К концу столетия, если не взяться за ум, жизнь на Земле станет затруднительна.

Выход из положения — здраво оценить необходимость автомобиля. Он завоевал себе место под солнцем как средство, сделавшее человека свободным. Но сегодня в условиях большого города это свобода овцы в стаде. К тому же личный автомобиль надо купить, содержать и с риском для жизни сидеть за рулем. Очень многие в наше время готовы забыть про свой автомобиль и сесть на автобус или трамвай. Если бы только они ходили регулярно и часто! Поезда метро в этом отношении само совершенство. Приглядитесь внимательно к его пассажирам. Судя по одежде, там есть люди, плюнувшие на свои «мерседесы».

Какой же вид транспорта для города лучше? Известный изобретатель В.П.Хортов полагает, что трамвай. Правда, трамвай необычный. Но… обо всем по порядку.

Трение качения стального колеса трамвая по рельсовому пути в 18 раз меньше, чем у резиновой покрышки по асфальту. Рядовой человек может сдвинуть с места 60-тонный железнодорожный вагон, стоящий на рельсах, но не одолеет и полуторатонный автомобиль на асфальте. Поэтому трамвай потребляет значительно меньше энергии, чем троллейбус или сравнимый по величине автобус. Но автобусы и отчасти троллейбусы вытесняют трамвай.

Это связано с недостатками современного трамвая. Начнем с того, что трамваю нужны провод и рельсы. Это стоит больших денег. Примечательно, что в этих расходах чуть ли не 80 % приходится на электротехническую часть (понижающая подстанция, провод, изоляторы и их обслуживание).

По соображениям безопасности в условиях города можно прокладывать провода с напряжением не более 600–800 В. Но общая длина контактного провода сотни километров. При таком относительно низком напряжении потери на сопротивление проводов и несовершенство их изоляции, а также на понижающей подстанции могут превышать 80 %.

Расчеты же, проведенные в Московском государственном техническом университете (МАМИ), показали, что для движения трамвая массой 20 т со скоростью 60 км/ч требуется мощность всего… 5 кВт. Вот оно, преимущество движения по рельсам! Но современные трамвайные вагоны снабжаются двигателями общей мощностью 100–200 кВт. Такая мощность им нужна для разгона и преодоления подъема. В основном они работают на режиме частичной нагрузки. КПД их в этом случае значительно снижается. Исследования показывают, что с учетом потерь на понижающих подстанциях, в проводах и в электродвигателях КПД (вычисленный через отношение энергии, подведенной к колесу, к энергии, полученной от электросети) не превышает 6–7 %.

Создать трамвай без проводов, не нуждающийся в электроэнергии, пытались на протяжении всего столетия. В лаборатории перспективных разработок МАМИ предложен принципиально новый вид трамвая. В его основе комбинированная силовая установка. Она состоит из небольшого двигателя внутреннего сгорания (ДВС), приводящего в действие генератор, конденсаторной батареи и электродвигателя, приводящего в действие колеса трамвая. Здесь ДВС в отличие, например, от автомобильного работает всегда с постоянной мощностью в самом экономичном и малотоксичном режиме.

Если его мощность превышает мощность, необходимую для движения трамвая, то избыток энергии поступает на хранение в конденсаторную батарею. Но, если для движения трамвая понадобится мощность во много раз больше той, что развивает ДВС, тяговый электродвигатель получит добавочную энергию от батареи.

На этом роль ее не кончается.

Конденсаторная батарея поможет трамваю сберечь уйму энергии.

Около 25 % времени трамвай движется в режиме замедления. В этот момент электродвигатель начинает работать в режиме генератора и кинетическая энергия трамвая превращается в электрическую и посылается на хранение в конденсаторы. Отметим, что подобный режим работы, его называют рекуперативным торможением, используется и в обычных трамваях. При этом они отдают энергию торможения в контактную сеть. Но ввиду огромных потерь энергии в ней польза невелика.

В комбинированной силовой установке МАМИ удается сохранить до 80 % энергии, обычно теряемой при торможении.

И вот первый практический результат. Построена модель. Это вагонетка массой в одну тонну, оснащенная электродвигателем мощностью 5 кВт. Энергию вырабатывала серийная отечественная двигатель-генераторная установка АБ-1, развивавшая электрическую мощность один киловатт. В качестве накопителей энергии применялись конденсаторы К50-17 при работе на напряжении около 300 В или молекулярные накопители, работавшие при напряжении 60 В. Масса конденсаторов составляла 50 кг.

Несмотря на малую мощность генератора, вагонетка с шестью пассажирами набирала скорость 60 км/ч за 5 секунд. Расход топлива при движении вагонетки по городскому циклу составлял 1–1,2 кг на 100 км.

Сравнимый по массе и вместимости даже очень хороший автомобиль расходует топлива в 5–7 раз больше.

Предлагается на первых порах оснастить подобными силовыми установками все существующие трамваи. Это позволит отказаться от контактных сетей, расходы на обслуживание которых составляют 80 % стоимости эксплуатации трамвайного парка. Не следует забывать и про стоимость контактного провода, масса которого в Москве составляет 500 тонн.

Один из аргументов противников трамвая — грохот его колес. Но это связано с тем, что выполнены они целиком стальными, поскольку служат для передачи электричества через рельсы. В 30-е годы знаменитый испанский дизайнер Бугатти спроектировал для германского правительства поезд, имевший бесшумные колеса, состоявшие из стального обода с деревянной сердцевиной. Они выдерживали скорость до 200 км/ч. Нечто подобное можно было бы поставить и на новый трамвай.

В.ХОРТОВ

Рисунки А. ИЛЬИНА