Жителей этого города уже не удивляет, что раз в году, в дни школьных каникул, на центральной площади располагаются десятки ракет, установки для запусков, а в ящиках, уложенных в сквере прямо на земле, ракетное топливо и ручные пиротехнические средства. Ничего странного постоянный обитатель этих мест в приготовлениях не находит.

Ракеты, несмотря на свой внушительный вид, всего лишь копии настоящих. Их корпуса сделаны из фольги, пластика, картона, а то и вовсе из бумаги. Однако выбор материала не сказывается на их полетных характеристиках. На сотни метров ракеты поднимаются ввысь, а потом на тормозных лентах или парашютах медленно опускаются вниз.

Подобное зрелище теперь традиционно предшествует открытию Всероссийского конкурса «Космос». В этом году он проводился уже в 28-й раз. На его финал были приглашены более 200 увлекающихся космонавтикой подростков из 37 городов России, а также из Международной космической школы Байконура (Республика Казахстан), украинского аэрокосмического общества «Сузирья».

Для ребят были организованы незабываемые встречи с участником последней экспедиции на орбитальную станцию «Мир», космонавтом С. Авдеевым, и водителем лунохода В. Довганем. А вечерами вместе с космонавтами А Лавейкиным и Ю. Романенко разучивали «космические» песни, играли в мини-футбол, ездили в Центр подготовки космонавтов, в Музей ракетно-космического комплекса «Энергия»…

Но главным событием, конечно же, была защита авторских проектов по ракетно-космической технике, итогам исследований по космической биологии и медицине, астрономии, вычислительной технике, истории развития авиации и космонавтики.

Многие из них, на наш взгляд, достойны внимания читателей нашего журнала, однако ограничим свой выбор самыми интересными.

Вариант противоспутниковой обороны, предложенный Андреем Нетелевым из Воткинска.

Огромным интересом не только среди ребят, но и взрослых пользовались приборы для тестирования и аутотренинга.

Каждый мог проверить координацию движений на простейших электронных приборах.

Вот таким видят марсоход ребята из Курска.

ПОДНЯТЬ ПАРУСА!

Всем знакома эта команда. На Земле ее отдавали капитаны при выходе парусного корабля в море. А какой же смысл имеет она в космосе? Оказывается, самое непосредственное. Школьник Виктор Дорошенко, член ставропольской Малой академии наук, считает, что скоро подобная команда в космосе обретет «второе дыхание».

На море ветер надувает паруса, и они тянут корабль вперед. В космосе, кто не знает, движение воздушных масс отсутствует. Но паруса космического аппарата наполнит… солнечный свет. Невелика его движущая сила — всего 9 граммов на сотню квадратных метров, — но и этого давления оказывается вполне достаточно, чтобы без затрат дорогостоящего ракетного топлива переместить многотонный корабль или станцию на другую орбиту, подкорректировать их траекторию. А если смотреть дальше, то в будущем на космических парусниках станут возможными челночные рейсы по маршрутам орбитальных поселений, разбросанных между Землей, Луной, Марсом, Венерой…

«А ведь идея не нова», — отметят знатоки. Они правы.

Множество конструкций в этой области придумали изобретатели и инженеры. Условно их можно распределить по двум классам. К первым относятся паруса, где силовые нагрузки принимает на себя жесткий каркас. В другом варианте обходятся без жестких элементов. И этот путь считается наиболее перспективным. Здесь используются паруса-баллоны, оболочка которых из полимерных пленок наполняется газом. Его давление и обеспечивает жесткость. А паруса-гелиороторы выполнены в виде пленочных дисков. Они вращаются относительно центра подобно пропеллеру самолета, и центробежная сила придает конструкции необходимую прочность.

Но и в том, и в другом случае камнем преткновения служит пленка, срок жизни которой в космосе всегда ограничен. Вакуум, ультрафиолетовые лучи, космическая пыль и частицы уже через несколько месяцев повредят ее настолько, что останутся лишь одни лохмотья. Вот Дорошенко и предлагает: отказаться от пленки в привычном для всех понимании, заменяя ее материалом, сотканным из мельчайших металлических частиц. Причем соединенных между собой без клея, химических связей или сварки.

Включим свое воображение и представим: выйдя на траекторию, космический корабль заглушает двигатель и выбрасывает частички железа — ни много ни мало около 1023, каждая размером не более 10-5 мм (рис. 1).

Их облако, подчиняясь магнитным полям, сформированным специальной установкой, мгновенно перестраивается, образуя прочное гигантское полотнище толщиной всего в одну частицу. Нечто похожее можно наблюдать на «магнитной бороде», если коснуться железных опилок постоянным магнитом. На космическом корабле поле задают сильные электромагниты. Их задача не только удержать тончайший парус в развернутом состоянии, но и менять его размеры, углы наклона по отношению к солнечному свету. Управляя этими параметрами, капитан сможет разгонять корабль, тормозить его, менять курс…

В ДИРИЖАБЛЕ НАД ВЕНЕРОЙ

О родной сестре нашей планеты — Венере очень мало что известно. А ведь с 1961 года в ее сторону запущено 16 российских автоматических станций, 10 из которых совершили посадку и выполнили ряд экспериментов и в атмосфере, и на поверхности. Столь низкие научные результаты объясняются тем, что венерианская атмосфера на 96,5 % состоит из углекислого газа, а остальное — азот. У ее поверхности давление превышает земное в сто раз, а температура достигает 475 °C. В таких условиях, конечно же, человек находиться не может, а срок жизни научной аппаратуры измеряется несколькими десятками секунд. Так как бы узнать об этой планете побольше?

Пока, считает Ангелина Богаченко, член Кабардино-Балкарского республиканского центра научно-технического творчества учащихся (г. Нальчик), о высадке космонавтов-исследователей на Венеру говорить рано. Но это не означает, что научную работу нельзя вести вовсе. Уже в ближайшие годы можно будет организовать постоянно действующие пилотируемые станции, и даже не на орбите, а прямо в… атмосфере Венеры.

Если посмотреть на графики зависимости давления, температуры и плотности атмосферы от высоты над поверхностью, легко обнаружить и здесь условия, близкие к земным. Оказывается, они лежат в интервале 50…56 км (рис. 2).

Рис. 2. Строение атмосферы Венеры.

Конечно, они не совсем похожи на земные. На таких высотах постоянно дуют ветры со скоростью 100…140 км/ч. Более того, как раз в этом интервале высот разряжаются сильнейшие молнии и располагается протяженный слой тумана, состоящий из капелек серной кислоты. Но это не смутило юную исследовательницу. От кислоты ведь можно защититься оболочкой сверхчистого железа, от молний особыми молниеотводами, а ветер способен стать движущей силой — достаточно лишь поставить рули-паруса.

А теперь давайте посмотрим сам венерианский аппарат, а точнее дирижабль, конструкции Ангелины Богаченко (рис. 3).

Рис. 3. Дирижабль Ангелины Богаченко .

Поскольку доставить сверхтяжелые грузы с Земли на орбиту вокруг Венеры сегодня невероятно трудная задача, то масса дирижабля по ее расчетам не должна превышать 100 т. Исходя из данного веса, она и определила главные параметры. При длине аппарата 100 м и ширине 25 м объем дирижабля составит 50 000 куб. м.

Пилотская кабина, лабораторные, жилые, грузовые и прочие помещения займут десятую часть внутреннего объема. Располагаться они будут в носовой и хвостовой части, соединенные между собой галереей. Оболочки корпуса, рабочих помещений и галерей выполнены с двойными стенками и напоминают бытовой термос. Весь внутренний объем разделен на герметичные отсеки, в которых компрессорами создается нужное давление — оно и задает высоту зависания дирижабля над поверхностью. Оптимально она равна 25 км. Ниже опускаться не стоит — там слишком жарко.

Однако и работать при заданных давлениях и температурах длительно дирижабль также не сможет. Значит, периодически он должен будет подниматься до 70 км, чтобы «охладиться». Для осуществления такого подъема Ангелина придумала устройство, которое чем-то напоминает мехи баяна и аккордеона. Отдельные секции этих мехов в нужный момент заполняются газообразным водородом (в атмосфере Венеры он не образует взрывоопасных смесей). Плотность дирижабля уменьшается, и он поднимается. А когда нужно совершить кратковременный «нырок» вниз, все операции производятся в обратном порядке — газ закачивается в баллоны, а мехи складываются.

Двигаться в атмосфере аппарат будет не только по воле ветра. Термоэлектрические генераторы и солнечные батареи преобразуют тепло и солнечный свет в электрический ток, и его вполне хватит не только для управления рулями-парусами и винтами, но и для питания научных приборов, освещения, питания плит для приготовления пищи. А для связи с находящимся на орбите космическим кораблем в кормовой части дирижабля предусмотрен стыковочный узел, к которому смогут причаливать аэрокосмические самолеты или корабли челночного типа.

МАРСИАНСКИЙ ДОМ

Традиционно каждый год в 87-й нижегородской гимназии проводится техническая игра под названием «Научно-исследовательский институт». Тема последней посвящалась освоению планет Солнечной системы. Актуальность решения этой проблемы сегодня понятна всем — ухудшается экологическая обстановка на Земле, планете угрожает энергетический кризис и перенаселение… Словом, человечеству придется искать новое место для обитания.

Михаил Музычук считает, что Марс, наш ближайший сосед, наиболее подходящий плацдарм для будущих переселенцев. Марсианские условия близки к земным. И начинать освоение планеты надо с создания на ней жилых и рабочих модулей, на первом этапе доставляемых с Земли.

Соединяя их друг с другом, постепенно будут наращивать полезную площадь. А когда на Марсе будет создано хорошо налаженное производство конструкционных материалов, можно будет перейти к изготовлению мест обитания из «местного» сырья.

Напрашивается главный вопрос: какой же формы должен быть сам модуль или составляющие его части?

Конечно, компактным — для удобства размещения на транспортном корабле — и в то же время с максимальным внутренним объемом. Решение тут одно — жилой модуль должен иметь складную конструкцию, позволяющую уменьшать его размеры при транспортировке и быстро разворачивать после доставки на место.

Так что же представляет собой проект Михаила Музычука? В его представлении жилой модуль имеет жесткую конструкцию (рис. 4, 5, 6).

Рис. 4. Расположение модуля при полете к Марсу:

а) посадочная капсула с экипажем; б) жилой модуль в сложенном состоянии.

Рис. 5. Жилой модуль в сложенной состоянии;

а) цилиндрические блоки модуля; б) люки в стенах отсеков.

Рис. 6. Жилой модуль в развернутом состоянии:

а) цилиндр наименьшего диаметра с двумя люками — шлюзовая камера; б) покрытие из быстротвердеющей пены; в) узел герметизации.

Она легко трансформируется по телескопическому принципу и в сложенном виде состоит из шести жестких цилиндров, вложенных друг в друга, подобно «матрешкам». Длина наружного цилиндра около 8, а диаметр 6 м. Диаметр последнего — 3 м. При таких размерах толщина двойных стенок каждого цилиндра составит 500 мм.

Во время транспортировки подобный модуль в сложенном состоянии будет частью космического корабля. Приблизившись же к Марсу, космический корабль выйдет на околопланетную орбиту и разделится на несколько частей. Это могут быть искусственные спутники планеты и исследовательские модули. Вместе с ними от корабля отделится и посадочная капсула с экипажем, а отдельно — жилой модуль. Последний оборудован устройствами, обеспечивающими мягкую посадку. Это могут быть тормозные ракетные двигатели, парашюты, подушки, наполненные газом.

Развертывание модуля происходит в автоматическом режиме. Отстреливаются посадочные приспособления, цилиндры раздвигаются по направляющим и фиксируются. Это обеспечит конструкции необходимую прочность.

Все стыки автоматически герметизируются лабиринтным уплотнением в виде шланга, надуваемого сжатым воздухом. Внутренний объем капсул заполняется воздухом до атмосферного давления.

Одна из серьезнейших проблем обитания на такой планете — защита людей от вредного воздействия космических и солнечных лучей. И тут у Михаила есть оригинальные соображения. С внешней стороны все блоки после развертывания покрываются защитным экраном. Из специальных форсунок в стенках на поверхность выбрасывается пенящееся вещество, которое быстро твердеет. Так весь модуль покрывается толстой пористой «шубой».

По завершении операции в него уже могут переселяться космонавты. А все необходимое оборудование, системы жизнеобеспечения, мебель, аппаратура уже предварительно заложены в толстые стенки.

Весь комплекс делится на отсеки. Наименьший цилиндр имеет две герметичные стенки и образует шлюзовую камеру с входным люком. В противоположном конце модуля имеется еще один люк, предназначенный для стыкования с другим модулем, доставляемым следующей экспедицией.

В других отсеках располагаются исследовательские лаборатории, комплексы связи и управления, жизнеобеспечения и даже оранжереи для снабжения обитателей растительной пищей и кислородом.

Очень важно, по мнению Михаила Музычука, что подобный проект можно осуществить уже сейчас, ведь никаких новых материалов и технологий он не потребует. А опробовать его можно прямо на Земле — в пустыне, на Антарктиде.

Короткая информация

ВСЕ ДЕЛО В… ПРОТОЧКЕ

Из всех материалов, привлекательных для конструкторов, наибольшим успехом пользуются различного рода пластики, для прочности армированные стеклянными, борными, углеродистыми и другими высокомолекулярными волокнами. Из них гораздо легче, чем из металлических листов, изготавливать криволинейные поверхности различных отсеков, стабилизаторов, обтекателей… Но возникает проблема соединения этих деталей между собой. Наиболее технологичный способ сегодня — клепка. Но она требует предварительного сверления отверстий. А это часто приводит к разрушению материала. Чего только не перепробовали технологи: увеличивали скорость движения пуансона, изготавливали их режущие кромки из твердых сплавов, даже с напылением алмазной крошки — ничего не помогало. Отверстия получались с «лохматыми» краями, а окружающая их поверхность покрывалась трещинами и сколами. О какой прочности соединения тогда говорить?

Нет, от клепки — этого высокотехнологического соединения материалов, считает Наталья Яковлева, ученица самарской школы № 120, отказываться пока рано. А причина всех неудач — пуансон (см. рис. 7). Его режущий ободок не только рубит материал, но еще и вытягивает, сминает его. И всего-то нужно чуть выше ободка проточить на токарном станке канавку. Ее режущая кромка вторично, пройдя через отверстие, ликвидирует все огрехи режущей кромки головки.

Рис. 7:

1 — матрица; 2 — направляющая; 3 — пуансон; 4 — листовая заготовка;  5 — прижимная втулка.

ОЗОНОВАЯ ДЫРА В ПЛОШКЕ С ВОДОЙ

В 1987 году озоновая дыра накрыла южную часть Австралии. И медики впервые отметили у жителей этих районов рост заболеваний кожи и сетчатки глаз. Причину удалось установить довольно быстро. Оказалось, что во всем виновато Солнце. Из-за сниженного содержания озона в верхних слоях атмосферы губительные ультрафиолетовые лучи свободно проходят сквозь нее. И вредно влияют на организм.

Была установлена также и причина исчезновения озона — техногенное загрязнение атмосферы фреонами, оксидами азота и хлором. Но до сих пор оставалось загадкой: почему в зимний период дыра уменьшается в размерах и приобретает круглую форму, а летом, наоборот, расширяется, расползаясь в сторону экватора.

А ничего непонятного тут нет, все можно объяснить буквально на пальцах — считают Сергей Рахманов, Вадим Пешков и Максим Сапунов, школьники из Самары. И видавшие виды ученые члены Экспертного совета конкурса удивились простоте их эксперимента. Кстати, и вы сможете провести его на своей кухне.

Возьмите белый плоский сосуд (рис. 8) диметром 400 мм и высотой 150 мм с вертикальными стенками. В его центре установите другой цилиндрический сосуд без дна высотой 80…100 мм и диаметром 120 мм — это будет перегородка.

Рис. 8. Установка для наблюдения за развитием озоновой дыры.

Приготовьте чистую воду и воду, подкрашенную чернилами или гуашью. Установите большой сосуд на вращающемся диске. Одновременно в кольцевое пространство залейте чистую воду, а в центральную часть — воду подкрашенную. Приведите сосуды во вращение и быстро уберите внутреннюю перегородку.

Удивительно, но ничего не произойдет. Темное пятно так и останется круглым в течение длительного времени. Но стоит только коснуться поверхности чистой воды палочкой, как очертания круга начнут размываться. Сначала образуются несколько маленьких вихрей. Затем они начнут укрупняться, наконец, схлопнутся, образуя два мощных вихря (рис. 9).

Рис. 9. Фазы развития озоновой дыры.

Точно так же происходит и в атмосфере. Зимой, когда температура у поверхности материка и на высотах 15…45 км почти одинаковая, атмосферный воздух и вместе с ним озон вращаются относительно полюса по окружности. Но стоит только пригреть солнышку, как разница в температурах становится ощутимой и появляются атмосферные вихри — точь-в-точь такие, что продемонстрировали самарские школьники.

ПАРОВОДЯНАЯ РАКЕТА

Создание больших орбитальных станций, поселений, осуществление полетов на ближайшие планеты уже в ближайшие десятилетия потребуют вывода в околоземное пространство огромного количества тяжелых и громоздких грузов. Расчеты показывают, что применение стартовых ускорителей, работающих на твердом топливе, нанесет атмосфере Земли непредсказуемые последствия. Прежде всего речь идет о выхлопных газах, а также техногенных выбросах, которые связаны с производством топлива и выплавкой тугоплавких материалов для двигателей. Проблема может зайти в тупик, если…

Впрочем, на этот счет у Азамата Тилова есть свое мнение. Уже в ближайшем будущем, считает член Кабардино-Балкарского республиканского центра научно-технического творчества учащихся, — от твердотопливных ускорителей можно отказаться полностью. И заменитель есть — экологически безвредный, легкодоступный, дешевый. Это — обыкновенная вода (рис. 10).

Рис. 10. Так представляет запуск пароводяной ракеты Азамат Тилов .

Но разве это топливо? Оказывается, да, если внимательно познакомиться с проектом Азамата. Мы лучше поймем его, если внимательно разберемся в сути работы… паровой турбины.

Как известна nap для нее вырабатывает отдельный блок — парогенератор. Нагретый до 540 °C пар направляется на лопатки и заставляет турбину вращаться. Но турбина — это уже другой агрегат. Отметин для себя главное: в одном узле вода перегревается, в другом — совершает работу.

А теперь такая вот выкладка. Турбина К-1200 на Костромской ГРЭС расходует 1600 кг пара в секунду, нагретого до 540 °C, и развивает кинетическую энергию, превышающую 1200 МВт. Сравним, развиваемая энергия каждого из шести двигателей ракеты-носителя космического аппарата «Восток» в два раза больше. Выходит, если увеличить секундный расход пара до 18 т, можно получить пароводяной двигатель, ни в чем не уступающий двигателю «Востока».

О чем еще говорят эти цифры?

Прежде всего о том, что температура пара во много раз ниже температуры сгорания твердого топлива. Значит, снижаются требования к жаростойкости материалов. Упрощается и сама конструкция двигателя и «топливного» бака. Ведь на старте тепловая энергия берется из наземного источника. Она поднимает температуру в баке до критической, а чтобы жидкость не перешла в парообразное состояние, давление в баке поднимается до 200 атм. В момент старта внешний источник отключается и остается на космодроме. Ракета включает свои двигатели и, выпуская мощнейшие струи пара — ведь вода при сбрасывании давления мгновенно переходит в пар, устремляется в космос.

КОСМИЧЕСКИЙ МУСОР

Мусор, как мы знаем, бывает бытовой, промышленный… А теперь вот еще появился и космический. Сегодня в околоземном пространстве скопилось свыше 8000 крупных обломков космической техники размером более 100 мм, частиц размером от 10 до 100 мм насчитывается более 70 000, но еще более — 3,5 млн! — мелких частиц размером менее 10 мм. По подсчетам ученых, примерно через 200 лет в космосе начнется цепная реакция саморазмножения. Это понятно, ведь сталкивающиеся на больших скоростях частицы начнут разрушаться. При этом количество мелких фрагментов начнет резко возрастать.

И через 100–200 лет наступит опасное их насыщение. И тогда в облаках частиц будет мутнеть оптика, быстро стареть солнечные батареи, покрываться эрозией поверхности космических аппаратов и станций.

Есть ли выход?

Александр Капралов, член Международной космической школы Байконура, видит два пути решения проблемы. Первый из них — создание космических мусорщиков, специальных аппаратов, которые бы уже в ближайшие годы мощными лазерными лучами разрушали бы крупные фрагменты на мелкие, сжигали их в атмосфере или затапливали в Мировом океане (рис. 11). Работы таким мусорщикам хватит не на один год, так что производство их будет вполне рентабельным. Второе решение, по мнению Александра, видится в подписании особого документа всеми космическими странами. Суть его в более ответственном отношении к космическим запускам. Ведь, как говорится, болезнь легче предупредить, чем лечить.

Рис. 11. Уничтожение космического мусора при помощи мощного лазера.

ОБРАЩЕНИЕ К КОСМИЧЕСКИМ СТРАНАМ

Одним из вредных последствий освоения космоса стало засорение околоземного пространства фрагментами искусственного происхождения, которые представляют реальную опасность для действующих и вновь выводимых космических аппаратов. Освоение космоса продолжается, растет также и его загрязненность. В дальнейшем это может привести к серьезному ухудшению условий функционирования космических станций. Реальная угроза повреждения аппаратов вынудит выводить их на другие орбиты, что связано со значительными энергозатратами. Возрастет стоимость создания космических станций, поскольку возникнет необходимость оснащать их дополнительными средствами защиты. Произойдет усиление помех при астрономических наблюдениях и астронавигации. Возникнет необходимость проведения крайне дорогостоящих мероприятий по очистке космоса.

Только принятие ряда профилактических мер может воспрепятствовать росту количества мусора в космосе.

Предлагаем следующий комплекс мер:

1. Принять международное соглашение о недопустимости преднамеренных действий, способных привести к росту орбитальной группировки космического мусора.

2. Обязать страны-участницы договора не оставлять свои отработавшие спутники на орбите, а сжигать их в плотных слоях атмосферы либо выводить на обозначенные международными договорами орбиты «засорения».

3. Создать международный фонд для приема платежей за загрязнение космического пространства, а также организации, способные взыскивать ущерб с государств, виновных в засорении космоса.

Полагаем, что эти меры будут стимулировать государства, использующие космическое пространство, к совершенствованию своих ракетных систем и повышению их надежности.

Ни одна из мер, принятая в отдельности, не позволит полностью решить проблему космического мусора. Однако при грамотном подходе можно добиться хороших результатов В новом тясячелетии мы должны отучиться рассматривать космос лишь как полигон для испытания оружия и ракет, как препятствие на пути к далеким мирам.

Космос — это неразрывная часть нашей Вселенной, как и наша Земля. Он принадлежит всем, и все мы должны нести ответственность за его будущее!

Экспертный совет ПВ удостоил Авторского свидетельства идеи Виктора Дорошенко из Ставрополя, Ангелины Богаченко из Нальчика, Михаила Музычука из Нижнего Новгорода, отметил Почетными дипломами работы Натальи Яковлевой, Сергея Рахманова, Вадима Пешкова и Максима Сапунова из Самары, Азамата Тилова из Нальчика и Александра Капралова из Байконура.

В.ЗАВОРОТОВ , наш спец. корр.