Лабораторные работы, связанные с электричеством, — крайне хлопотливое дело. Начнем с основного: нужны источники тока.

Казалось бы, что за проблема? Достаточно одной батарейки карманного фонаря на двоих — и хватит на целый год. В былые времена на минимальную зарплату их удавалось купить более трехсот. Правда, управление финансами этого не позволяло. Не было статьи, по которой можно было бы провести покупку. А вот проложить под полом провода от щита к каждому столу, что в тысячу раз дороже, — всегда пожалуйста!..

Однако и это не решало проблему.

Неправильная сборка схемы учащимся — вещь обычная. За всеми не углядишь. Результат — короткое замыкание, электрощиты выходят из строя. В последние годы пытались их снабжать электронными системами защиты. Это еще более удорожало оснащение кабинета.

Вообще-то проблемы тут никакой нет. За рубежом с незапамятных пор в школах применяют щелочные аккумуляторы. Их высокое внутреннее сопротивление для большинства технических применений стало недостатком, но в условиях школы оборачивалось достоинством. Ток короткого замыкания получался совсем небольшим, безопасным как для аккумулятора, так и для ученика.

Школьный аккумулятор имел нарядно оформленный герметичный корпус, не пропускавший наружу ни капли щелочи. Прибор служил много лет, да и стоил недорого (рис. 1).

Щелочные аккумуляторы выпускаются в нашей стране давным-давно. Однако модели, пригодной для школ, за 80 лет сделать не удосужились. Так, может быть, и не надо…

При выполнении фронтальных лабораторных работ токи не превышают трех ампер, а напряжения трех вольт. Выбор таких параметров сделан еще около ста лет назад и был для своего времени весьма разумен. Он позволял пользоваться предельно простыми и дешевыми измерительными приборами, не вызывал проблем с источниками тока, позволял обойтись без сложных вычислений.

Сегодня оборудование физических кабинетов изношено до пределов. Поэтому было бы разумно не возвращаться к моделям столетней давности, а перевооружить школу заново.

Промышленность выпускает немало достаточно дешевых универсальных измерительных приборов с цифровой индикацией (мультиметров), в сотни тысяч раз более чувствительных, чем те, с которыми работают и сегодня школьники. Их универсальность применительно к школе излишне велика. Но на основе применяемых в них микросхем можно выпустить специально для школ амперметры и вольтметры на 3–4 предела с простейшим переключением (рис. 2) и защитой от перегрузок.

Исходя из существующих рыночных цен на электронные компоненты, такие приборы при массовом производстве могли бы стоить 10–20 рублей. Они привели бы к качественным изменениям и значительному расширению тематики лабораторных работ. Станут доступными для экспериментов термопары, фотоэлементы, униполярная индукция — все те источники токов, ЭДС которых слишком мала и недоступна для наблюдений приборами, выполненными по образцам столетней давности.

Как бы сам по себе снимется и вопрос об источниках тока для питания большинства таких лабораторных работ. Любая гальваническая пара в абсолютно безвредном растворе (поваренная соль, сода, мыло, уксус или… лимонад) при наличии высокочувствительных приборов справится с этой задачей.

Нелишне отметить, что здесь вообще отпадают вопросы, связанные с техникой безопасности. За исключением, пожалуй, классического случая, когда кто-то захочет узнать, сколько ампер в сети. Некоторый опыт проведения лабораторных работ с применением высокочувствительных измерительных приборов показывает, что учащиеся выполняют их с большим интересом.

А.ВАРГИН