Почти каждый месяц в журнал приходит новая вариация на тему «двигатель, работающий на воде». Вот типичная схема его работы.

Электрогенератор дает ток и разлагает воду на водород и кислород. Эти газы используются в тепловом двигателе, который вращает электрогенератор.

Избыток его мощности идет на колеса автомобиля или иные полезные нужды (рис. 1).

Рис. 1

Появление таких проектов не удивительно (мы к нему еще вернемся). Тепловым двигателям школьный курс физики отводит столь скромное место, что человек не в состоянии здраво судить о моторе автомобиля. Изучение же азов термодинамики и вовсе проходит бесследно.

Например, положение о том, что переход теплоты в работу происходит лишь при наличии разности температур, в рамках школьного курса не может быть строго доказано.

Однако доверие к нему можно значительно укрепить при помощи демонстрационных экспериментов.

Описание некоторых из них можно найти в сборнике «Лекционные демонстрации по физике», авторы Грабовский М.А., Млодзеевский А.В., Телеснин Р.В., Шаскольский М П., Яковлев И.А., под редакцией В.И.Иверневой (Москва, 1972 г.).

Прост и красив опыт В.К.Аркадьева.

На дне обычной прозрачной кюветы с водой установлена нагреваемая током спираль (рис. 2).

На дно кюветы бросают крупинки марганцовки и включают ток. Возникает конвекция, становятся видны ее восходящие токи.

Струйки окрашенной воды поднимаются вверх и, охлаждаясь, опускаются ко дну. Легко пояснить, что это круговое движение жидкости в принципе может совершать практически полезную механическую работу.

Плавно регулируя ток спирали, можно показать увеличение интенсивности конвекции. При помощи миниатюрной термопары или термистора, соединенных с демонстрационным гальванометром, можно измерить температуру и показать, что в верхней части кюветы она меньше, чем в нижней. Измерение позволяет уловить связь между интенсивностью нашего импровизированного теплового двигателя и разностью температур.

Для большей убедительности в заключение показа можно выключить ток и, дождавшись заметного замедления конвекционных токов, вновь усилить их, бросив в кювету кусочек льда. Тем самым удастся доказать, что процесс нуждается именно в разности температур, а каким образом она у нас получается, роли не играет.

Опыт показывают в проекции. Он хорошо получается при использовании диапроекторов «Свет» (см. «ЮТ» № 12, 1999 г.).

Спираль делается из куска нихромовой проволоки диаметром 0,4–0,5 мм и длиною 300 мм. Сила тока около 1 А.

Чтобы при падении в воду кристаллики марганцовки не окрасили ее, в кювету вертикально опускают стеклянную трубку, в которую заранее бросают марганцовку. Трубку вынимают, зажав верхний ее конец пальцем, вместе с находящейся в ней окрашенной водой.

Интересный опыт описан в книге В.Заворотова «От идеи до модели» (Москва, 1988 г.).

Прикрепите к резиновой ленте гирю такого веса, чтобы лента растянулась примерно вдвое. После этого направьте на нее струю теплого воздуха, например, от фена.

Вопреки ожиданию резина не удлинится, а сожмется. Тепло совершит работу по поднятию гири.

Происходит это за счет разности температур между первоначально холодной резиной и теплой струей воздуха. После того как резина уже нагрелась, новая механическая работа не совершается, сколько бы мы ни продолжали ее греть. Однако стоит охладить резину, как она вновь готова совершить работу. На этом принципе возможно создание разнообразных двигателей, использующих разность температур любого происхождения. Они могут работать от разности температур между речной водой и теплым летним воздухом или от тепла солнца и прохлады в тени.

Нетрудно понять, что эти двигатели перестают работать, как только разность температур пропадет.

Очень впечатляют действующие модели тепловых двигателей. Много лет назад «Главучтехпром» выпускал модели паровой турбины и паровой машины, укомплектованные электрическим паровым котлом. Их и сегодня можно найти в физических кабинетах старых школ (рис. 4).

Как правило, восстановить работоспособность парового котла очень трудно. Однако работу паровых двигателей можно с успехом продемонстрировать, заменив пар сжатым воздухом от обычного автомобильного насоса.

Модель турбины сделать нетрудно. Колесо ее можно склеить из ватмана, а лучше спаять из жести (рис. 3).

В качестве оси используйте большую швейную иголку или ровную стальную спицу. Статор турбины можно собрать из деталей конструктора. Турбина прекрасно работает от сжатого воздуха. Если при помощи электронного стробоскопа измерить скорость ее вращения, она окажется неожиданно велика — сотни оборотов в секунду! Да и мощность у такой турбины немала. При наличии простейшего парового котла размером со спичечный коробок она «тащит» модель глиссера.

В заключение вернемся к началу статьи, разберем проект «идеального», не нуждающегося в топливе двигателя, изображенного на рисунке 1.

Лучший электрогенератор лишь 95 % мощности, полученной с вала двигателя, превратит в электроэнергию. Очень хороший прибор для разложения воды на водород и кислород лишь 90 % энергии электрического тока превратит в химическую энергию газов.

При сгорании водородно-кислородной смеси в цилиндре двигателя не более 50 % тепла превратится в механическую работу. Она будет составлять: 0.95 x 0,9 x 0,5 = 0,4275 от механической энергии, полученной с вала.

Где уж тут избыточная мощность, пригодная для полезных целей!

А. ИЛЬИН

Рисунки автора