До сих пор, чтобы получить мигание сигнальных светодиодов, приходилось собирать генераторы импульсов. Теперь же с появлением на рынке светодиодов марки L-36 BND, которые мигают сами по себе, все иначе. На рисунке 1 приведена диаграмма тока нового диода.
В характере работы таких диодов нет ничего сверхъестественного. Высокая технология позволила создать в габаритах обычных светодиодов узел, содержащий генератор импульсов, управляющий электронным ключом.
Когда такой светодиод «горит», напряжение источника питания делится между светодиодом и последовательно соединенным токоограничивающим резистором; в паузах свечения все напряжение приложено в запертому светодиоду.
Эти перепады напряжения умельцы использовали, например (рис. 2), для управления цифровой микросхемой DD1, образующей вместе с навесными деталями мультивибратор, с частотой переключения порядка 2 кГц. нагруженный пьезоэлектрическим звукоизлучателем.
Звучание последнего усилено включением буферных элементов DD1.3, DD1.4. Такими простыми средствами удается получить сразу и световую, и звуковую сигнализацию.
Светодиод и последовательный с ним резистор могут меняться местами, а режим генерации нового светодиода возможен при изменении величины сопротивления указанного резистора в весьма широких пределах. При значениях сопротивления, приближающихся к срыву генерации, яркость свечения убывает и даже исчезает вовсе, но выдача серии импульсов еще продолжается. При этом возникает дополнительная генерация с частотой около 2 кГц, а каждый низкочастотный импульс представляет собой пачку сравнительно высокочастотных. Это позволяет избавиться от постройки специального звукового генератора, как на микросхеме DD1 по рисунку 2.
Используя это качество «мигающего» светодиода, а также логический элемент — триггер Шмитта (рис. 3), можно создать совсем простой свето-акустический сигнализатор, применение которому найдется во многих устройствах автоматической сигнализации.
Здесь скачки напряжения на светодиоде HL1, сопровождающиеся световыми вспышками, периодически запускают генератор импульсов звуковой частоты; свечению светодиода соответствует логический нуль, затемнению — логическая единица. Звуковую генерацию можно проверить, включив между выводом 3 микросхемы и «плюсом» питания акустический пьезоизлучатель типа ЗП-1, ЗП-19. Для более громкого звучания сигнала к выходу микросхемы можно присоединить соответствующий усилитель, нагруженный динамической головкой.
Экспериментаторами было обнаружено и такое интересное явление: при сопротивлении резистора R1 порядка 135 кОм на выходе устройства получается последовательное мелодичное трезвучие. Если же поменять местами светодиод и резистор R1, подобрав величину сопротивления последнего, на выходе можно получить сигнал с плавно изменяющейся высотой звука.
Не приходится сомневаться, что поиски позволят отыскать новые полезные «изюминки» устройств с мигающими светодиодами.
В заключение приведем встречающуюся в радиолитературе рекомендацию: проверяя мигающий светодиод перед его установкой в конструкцию, включите последовательно с ним и 9-вольтовой батарейкой (типа «Кроны») резистор с сопротивлением около 200 Ом. Это убережет светодиод от повреждения при ошибочной полярности присоединения источника.
Ю. ПРОКОПЦЕВ
* * *
Дорогие друзья!
Подводим итоги конкурса «ЛЕГО», объявленного в журнале «Юный техник» № 2 за 2001 год. Победителями стали:
Василий ХУСАИНОВ из Республики Коми (главный приз — конструктор «ЛЕГО»)
Владимир БАКЛАНОВ из пос. Заря Подмосковья Московской области
Дмитрий МУРАТ из г. Еманжелинска Челябинской области
Михаил МИГУЛЯ из г. Новокузнецка Кемеровской области
Поздравляем победителей и благодарим всех, кто принял участие в конкурсе.