«Если бы свет Солнца, не проходя через земную атмосферу, светил непрерывно, в течение суток на квадратный километр земной поверхности мы получили бы 43 200 больших калорий», — писал в своей работе «Жизнь в эфире» К.Э. Циолковский еще в начале XX века.
Правда, добавлял ученый, из-за рассеивания и поглощения земной атмосферой «в среднем до почвы в сутки доходит не более 5000 калорий: на экваторе несколько больше, а к полюсам — меньше. Если же принять в расчет облачность, низкое стояние Солнца, то еще меньше»…
Тем не менее, и этого количества хватит, чтобы произвести огромное количество работы. «Механическая энергия, — писал Циолковский, — соответствующая такому количеству тепла (5000 кал), составит в сутки более 2 000 000 килограмм-метров, то есть она достаточная, чтобы поднять 1000 килограммов на 2 километра высоты».
Большая часть этой энергии превращается в теплоту и только примерно 1/5000 часть преобразуется в потенциальную энергию плодов, зерен, фруктов, овощей, древесины…
Потому Циолковский предлагал строить солнечные электростанции. И рассчитал, что при КПД всего 10 % на каждого жителя Земли, как будто на фараона, бесплатно и круглосуточно работали бы 4000 рабов!
При жизни великого ученого, как известно, никто такими «рабами» не обзавелся. Ну а как обстоят дела сейчас, в начале XXI века? Вот какие факты и цифры привел в одном из своих выступлений генеральный директор научно-производственного объединения «Интерсоларцентр» А.Б. Пинов.
За последние 10 лет в мире накоплен огромный опыт по организации автономного энергоснабжения на основе использования солнечной энергии путем ее преобразования 8 электрическую с помощью фотоэлектрических солнечных панелей, встроенных в крыши домов. Такие установки вырабатывают ныне суммарно 50 млрд. кВт-ч.
Впрочем, несмотря на масштабность этого числа, оно составляет всего лишь 0,5 % от общей выработки электроэнергии на планете. Так что резервы тут огромнейшие! И во всем мире стараются наверстать упущенное.
В ФРГ, например, практический успех первой программы «1000 солнечных крыш» привел к тому, что ныне таких крыш стало уже в 100 раз больше, чем задумывали. Программа «70 000 солнечных крыш» осуществлена в Японии, и уже более 1 млн. крыш оборудовано солнечными элементами в США.
Так выглядит современный дом, крыша которого изготовлена из солнечных фотоэлементов.
Передвижная фотоэнергетическая установка, созданная нашими специалистами.
В России, к сожалению, в основном, ограничивались лишь созданием солнечных элементов для спутников и космических станций. Хотя физические принципы преобразования солнечной радиации были разработаны российскими учеными и специалистами уже давно. В них использованы самые современные теоретические модели и новые конструкции с предельным КПД до 9 3 %.
Для решения этой проблемы в 1996 году Министерством науки и технологий РФ был разработан проект по созданию высокоэффективных кремниевых фотопреобразователей и модулей.
Для их производства была создана научно-производственная фирма «Кварк» в Краснодаре. Спустя два года на фирме «Солнечный ветер» в Краснодаре было налажено экспериментально-опытное производство продукции, характеристики которой соответствуют лучшим мировым образцам. Одновременно было начато внедрение этой технологии в ЗАО ОКБ завода «Красное знамя» (г. Рязань). Там под руководством «Интерсоларцентра» разработан проект организации широкомасштабного производства кремния и кремниевых солнечных элементов и модулей общим объемом до 2 МВт в год.
Промышленная реализация этого проекта позволит создать в России мощное производство, способное поставлять качественные изделия даже на мировой рынок. Так что дела вроде бы движутся. Но все-таки темпы освоения солнечной энергии все еще оставляют желать лучшего.
Между тем, как показывают проведенные исследования и опыты, солнечные фотоэлементы могут с успехом работать не только в районе Краснодара или Сочи, но и практически повсеместно. Зимой в тундре такие агрегаты бесполезны. Зато летом солнце там светит круглые сутки, наверстывая упущенное. А вот, скажем, в Сибири или Забайкалье солнечные установки могут работать круглый год с достаточно высокой эффективностью.
Например, в поселке Кольцово, близ Новосибирска, построен уже целый поселок, где половина потребности в тепле и энергии покрывается за счет нашего светила. А в Бурятии, как показали расчеты, даже при КПД всего 12 % удельная выработка электроэнергии составляет 200 кВт на квадратный метр площади солнечных панелей.
Этапы развития фотоэлектричества в России
1958 г. Запущен первый спутник Земли с солнечными батареями.
1964 г. В пустыне Каракумы, недалеко от Ашхабада, в Туркмении, опробована солнечная батарея с концентраторами мощностью 0,25 кВт для подъема воды.
1967 г. Разработан новый класс фотопреобразователей — многопереходные солнечные элементы из кремния.
1970 г. Технологию ионной имплантации начали применять в производстве солнечных элементов.
1970 г. Разработана технология фотопреобразователей с двусторонней чувствительностью.
1975 г. Прошли испытания солнечные батареи площадью 1 м 2 и напряжением 32 кВ для ракетного ионно-плазменного двигателя.
1975 г. Разработана технология солнечных элементов на основе GaAlAs-GaAs. В 1981 г. эти элементы были использованы в лунной космической программе.
1980 г. Разработана технология многопереходных солнечных элементов на основе GaAlAs-GaAs.
1984 г. В Ашхабаде установлена фотоэлектрическая система мощностью 10 кВт с пластиковыми параболическими концентраторами.
1985 г. При преобразовании лазерного излучения солнечными элементами достигнут КПД 8 36 %.
1987 г. Разработана технология очистки металлургического кремния для солнечных элементов.
1989 г. В Краснодарском крае построена «солнечная» деревня мощностью 40 кВт.
1989 г. Разработана специальная технология производства солнечных элементов наземного применения.
1993 г. Достигнут КПД в 30 % для каскадных солнечных элементов на основе GaAlAs-GaAs гетероструктуры на германиевой подложке, разработаны новые классы голографических, призматических, параболических концентраторов и оптических систем на их основе.
Публикацию подготовил С.НИКОЛАЕВ