Есть такое направление в XXI веке — Змеенавтика
Воздушных змеев люди научились запускать еще в древности, и не только забавы ради. С их помощью разбрасывали листовки, поднимали наблюдателей для разведки позиций, радиоантенны для дальней связи… Еще одну профессию современному воздушному змею нашли сотрудники Центральной научно-исследовательской лаборатории «Астра» при Московском государственном авиационном институте, под руководством доктора технических наук, профессора Г.В. Малышева .
— Наши заказчики поставили перед нами задачу — поднять полезную нагрузку порядка 100–200 кг на высоту 10 км.
И было бы неплохо, если бы груз этот находился на запланированной высоте не менее 1–2 лет, — разъяснил мне суть один из разработчиков этой интересной конструкции, Александр Свотин. — Перебрав несколько вариантов, мы в конце концов пришли к «АИСТу»…
«АИСТ» в данном случае не птица, а аббревиатура названия Аэродинамической интегральной системы телекоммуникаций, или попросту — воздушного змея новейшего поколения.
Почему он оказался победителем среди других возможных вариантов? Давайте попробуем разобраться.
В принципе, поставленная задача может быть решена тремя различными способами. Во-первых, мы можем поднять груз с помощью привязного аэростата. Однако гелий, которым обычно заполняют оболочки таких летательных аппаратов, очень текуч. И каждые 3–4 недели нам придется опускать воздушный шар на землю, чтобы восполнить утечку весьма недешевого газа. Правда, японские и американские специалисты обещают создать сверхнадежные оболочки, которые позволяют поднимать такие шары на высоту порядка 25 км и держать их там чуть ли не год. Но посмотрим, когда все исполнится…
Другой способ — заставить барражировать над данным местом дирижабль. Но и к его оболочке предъявляются те же требования, что и к привязному аэростату.
Замена дирижабля беспилотным летательным аппаратом опять-таки не решает проблемы кардинально. Такой аппарат способен продержаться в воздухе без дозаправки не более суток. Стало быть, придется держать в данном районе не менее 2–3 летательных аппаратов, оборудовав площадки для их посадки, ремонта и заправки.
— Наши исследования показывали: наилучшим образом подобную задачу решить именно воздушный змей, продолжал свой рассказ Александр.
И вот почему. Мы попросили специалистов Центрального аэродинамического института (ЦАГИ) дать нам срез атмосферы в 10–15 точках, характерных для территории России. И выяснилось: на высоты 9,5 — 10 км приходится как раз максимум ветров. Они дуют там постоянно со скоростью порядка 16–25 м/с…
Заметим, ветер только мешает полету летательных аппаратов. Любому, но не воздушному змею. За счет ветра он-то как раз и держится в воздухе.
Так что оставалось разработать оптимальную конструкцию такого аппарата и технологию его запуска и спуска.
Обычные плоские и коробчатые змеи далеки от идеала по своим летным качествам. Прежде всего потому, что плоские поверхности обладают не столь уж высокими аэродинамическими качествами. Крыло со специально подобранным профилем — например, как у планера — куда лучше. Однако расчет показывал: для подъема на высоту 110 км при нагрузке в 200 кг необходимо крыло площадью порядка 170 кв. м. Если сделать монокрыло, как у планера, его размах составит порядка 60 м — конструкция получается довольно громоздкой.
Отдать предпочтение крылу решетчатому — состоящему из множества плоскостей — тоже не очень удобно: конструкция начинает резко расти в высоту.
Разработчики «АИСТа» отдали предпочтение биплану — двойному крылу своеобразной коробчатой формы. Как показывают расчеты, оно оптимально для данного случая. Кроме всего, крыло с тщательно подобранным профилем решает и проблему безопасности конструкции. Ведь что произойдет, если привязной трос вдруг оборвется? Обычный воздушный змей тотчас потеряет устойчивость полета и будет беспорядочно падать. Может даже свалиться кому-нибудь на голову…
А вот «АИСТ» в подобном случае просто превратится в обычный планер. А поскольку на борту его предусмотрена аппаратура дистанционного управления, его можно заставить приземлиться в расчетном квадрате, по соседству с местом запуска.
Кстати, о запуске. Осуществить его можно, даже если на поверхности царит полный штиль. Аппарат устанавливают на крышу автомобильного фургона, где располагается и остальная аппаратура, автомобиль разгоняется, скажем, до скорости 60 км/ч, и воздушный змей стартует, постепенно набирая высоту. А чтобы не удаляться особо от расчетной точки запуска, можно проложить кольцевую трассу просто по полю.
Еще одна головная боль привязных конструкций — трос. Он должен быть прочным и в то же время легким. Стальной трос — это уже вчерашний день. Сегодня чаще используют синтетические материалы, армированные стальными жилами, их еще используют в качестве токоведущих проводов для передачи электроэнергии на борт воздушного змея. Пригодится и последнее изобретение нашего времени — электропроводящие пластики.
Одна из основных задач «АИСТа» — использование его в качестве ретранслятора, к примеру, телевизионных программ. Но таким же образом можно осуществлять ретрансляцию радиопередач, организовывать систему сотовой телефонной связи…
Передавая информацию с ретранслятора на ретранслятор, при желании можно перекрыть поверхность всего земного шара.
А еще одна задача для воздушного змея — мониторинг окружающей местности: нет ли пожаров, утечек газа или нефтепродуктов, смога…
Вполне возможно, что в будущем на борту такого змея разместят ветрогенератор. И он сможет обеспечить электроэнергией не только ретрансляционную аппаратуру, но и послужить источником энергии для наземных потребителей.
Словом, работы для «АИСТов» предстоит немало. Вот только когда мы увидим его в небе? Это единственный вопрос, на который Александр Свотин затрудняется ответить. Все зависит от инвестиций.
Пока же разработка ведется сотрудниками за свой счет. На очереди создание большой 7-метровой модели и, наконец, запуск полномасштабного — 30-метрового прототипа. И на их строительство у научно-исследовательской лаборатории средств пока нет. И будет жаль, если нашими простоями воспользуются зарубежные конкуренты. Они ведь тоже не дремлют.
Так выглядит макет « АИСТ а» сегодня.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА «АИСТА»:
Масса… 1500 кг
Площадь крыла… 145 кв.м
Удельная нагрузка… 5,9 кг/м*
Удлинение крыла… 128
Аэродинамическое качество… до 30
Схема, показывающая, каким образом может быть организована ретрансляция радиотелесигналов с помощью воздушного змея.
Станислав ЗИГУНЕНКО
На рельсах — «Летучий голландец»?!
В «ЮТ» № 9 за 2001 г. мы рассказали о системе монорельсового транспорта, которая испытывается в Москве. Главное ее отличие — отсутствие в кабине машиниста. Ныне можно добавить, что первые поезда с «автопилотами» уже появились и на обычных железных дорогах.
Равных этой системе нет в мире, хотя аналоги существуют — уверяют специалисты ВНИИ железнодорожного транспорта. Истоки ее нужно искать в конце 60-х годов XX века, когда проблемой «автомашиниста» стали заниматься сотрудники ВНИИЖТ Юрий Бушненко и Нина Никифорова…
По разным причинам разработка системы изрядно затянулась. Ее обкатка началась лишь три года назад.
Первые «автомашинисты» появились на некоторых локомотивах депо Ильича, Пассажирская-Курская, Москва-Киевская и Москва-Смоленская. А ныне уже многие пригородные поезда оснащены такой системой. Как объяснили разработчики из лаборатории микропроцессорных систем управления ВНИИЖТ, сложность проблемы заключается в том, что каждый нюанс того или иного участка пути заносится в программу, то есть в память компьютера.
Поэтому для пригородных, пассажирских и грузовых поездов дальнего следования «автомашинистов» пришлось разрабатывать отдельно. И каждый вариант испытывать по множеству раз. Зато если вы ныне услышите, что в электричке женский голос объявляет остановки и читает рекламу, значит, вас везет «автомашинист». Работает система в двух режимах: собственно автоматическом, когда поезд едет без участия человека, и в режиме советчика, когда система сообщает машинисту предупредительную информацию о приближении светофоров и переездов. Причем переход с одного режима на другой происходит мгновенно.
Например, поезд идет в автоматическом режиме, и вдруг кто-то выбежал на рельсы. Машинист тут же начинает тормозить, и система ему не мешает, она уже перестала управлять движением. Теперь она — только информационная.
Новая система автоматического ведения составов не только сама следит за скоростью поезда и соблюдением расписания, но также разгоняет и тормозит состав. Причем делает это настолько рационально, что позволяет еще и экономить электроэнергию. Правда, эффективность действий «автомашиниста» во многом зависит от расстояния между остановками и их количества. Лучший коэффициент полезного действия получается при использовании автоматической системы на поездах-экспрессах и на пассажирских поездах дальнего следования, где мало остановок. Безопасность же при работе «автомашиниста», считают в лаборатории микропроцессорных систем управления, не ниже, чем при работе машиниста обычного.
И все-таки пока никто не рискует сказать даже, в каком году машинист окончательно покинет свое рабочее место. Кибер скорее всего еще долгое время будет исполнять обязанности помощника машиниста.
А вот за рубежом, скажем, в Германии, поначалу было поставили проблему кардинально. «Уже в ближайшие годы, — обещали специалисты, — по железным дорогам ФРГ побегут поезда под автоматическим управлением»…
Вот только что скажут пассажиры, когда к перрону подкатит поезд, в кабине которого не мелькнет и тени человека? Посверкивая пустыми глазницами стекол, он замрет, призрачный, как «летучий голландец»? Не жутко?
В самом деле, подобный поезд поначалу может отпугнуть пассажиров, задумались разработчики. Тем более что опросы показали: большинство людей предпочтут выбрать поезд с машинистом, даже если знают, что человек почти не вмешивается в работу автоматики. Поэтому на первых порах машинист в кабине все же будет присутствовать и в поездах ФРГ. Просто он будет контролировать работу автоматики, а вмешается в ее работу лишь в крайнем случае.
Впрочем, подобная идея вовсе не нова. В японском городе Кобе поезда местной железной дороги начали курсировать под управлением автоматов еще в 1981 году. В канадском городе Ванкувере поезда скоростной железной дороги стали ходить в автоматическом режиме в 1986 году. В парижском метро с 1998 года можно прокатиться на автоматическом поезде «Метеор». Во Франкфуртском аэропорту пассажиры разъезжают от одного терминала к другому на автоматическом транспорте.
Однако все эти трассы объединяет одно — там поезда мчатся в туннелях или по огороженным трассам. Другое дело — обычная железная дорога. В неположенных местах ее переходят люди. На рельсах может оказаться посторонний предмет; на переезде — застрять автомобиль. Понятно, как среагирует на это машинист: в минуту опасности нажмет на тормоз. Автомат же скорее всего не обратит внимания на человека, готового прыгнуть под колеса…
По этой причине инженеры работают сейчас над двумя дополнительными системами: одна позволит распознавать препятствия, оказавшиеся на пути; другая при приближении к перрону будет наблюдать за пассажирами, ожидающими поезда. И в случае непредвиденной ситуации поезд экстренно затормозит. Уже сейчас можно сказать, что с расстояния в 300 метров автоматика заметит на рельсах ребенка, или, говоря техническим языком, предмет высотой один метр, шириной сорок сантиметров и глубиной пятьдесят сантиметров. Как только подобный объект будет замечен, поезд начнет тормозить.
Пока опытный состав оснастили лишь обычными видеокамерами. Если на испытаниях станет ясно, что они не справляются с возложенными на них обязанностями, к ним добавят другие системы наблюдения, например, инфракрасные камеры, способные видеть объекты и в кромешной тьме, и в сплошной туман.
Что, если компьютер «зависнет» в пути? Вся автоматика устроена так, что поезд сразу остановится и управление составом возьмет на себя диспетчер ближайшей железнодорожной станции. К нему будет стекаться вся информация, которую получают видеокамеры, установленные в кабине поезда.
Впрочем, для автоматического движения по трассе мало оборудовать автоматикой подвижной состав.
Главная опасность поджидает поезд по прибытии на станцию. Поэтому перроны придется оборудовать целой сетью компьютеров и видеокамер, которые станут следить за всеми перемещениями пассажиров и особенно приглядывать за теми, кто стоит на краешке платформы. Как только кто-то окажется в опасной зоне, громкоговоритель попросит пассажира отойти от края платформы.
В начале 2001 года подобная система была введена на одном из вокзалов Дрездена. Однако первые поезда без машинистов — «летучие голландцы наших дней» — появятся здесь не ранее 2003 года. Тем более что многие по-прежнему скептически относятся к этим планам.
«Вокзал нельзя сравнивать с производством, которое можно автоматизировать до предела, — говорят они. — Вокзал — это сфера обслуживания пассажиров. А им нужны сервис и безопасность. То и другое обеспечивают прежде всего люди».
В общем, похоже, автоматика и человек еще долгое время будут работать параллельно. Скажем, наряду с билетными автоматами, как и ныне, сохранится и окошко, за которым будет сидеть кассир и продавать билеты по старинке. А безопасность пассажиров в дороге гарантируют не только видеокамеры и киберы, следящие за всем, что происходит в поезде и вокруг него, но и дежурные по составу, машинист в кабине и диспетчер на главном диспетчерском пункте. Автоматика просто повысит надежность движения, позволит водить поезда с меньшим напряжением и большими скоростями.
Александр ВОЛКОВ
Кап…кап…кап… Готов компьютер!
В «ЮТ» № 10 за 1999 год мы рассказали, что в одной из лабораторий Международного НИИ проблем управления, которой руководит профессор Н.Г.Рамбиди , в колбе пытались вырастить… компьютер. Хотя работы примерно по такой же тематике ведутся во всем мире, готового нейрокомпьютера, как было сказано, работающего на молекулярных принципах, нет пока ни в нашей стране, ни за рубежом. Но работы в этом направлении продолжаются.
Сегодня мы можем сообщить вам об окончании очередного этапа исследований.
Информационные агентства разнесли весть по всему миру: в Израиле, в Институте Вейцмана, создан самый маленький в мире компьютер — он так мал, что может свободно разместиться внутри обычной биологической клетки. Да и сам по себе подозрительно смахивает на живую клетку: несколько цепочек ДНК, пара считывающих ферментов…
«Если внимательнее приглядеться к клетке, становится ясно, что происходящие в ней процессы очень похожи на вычисления, — говорит руководитель группы израильских исследователей Эхуд Шапиро. — По крайней мере, при репликации весьма четко удваиваются цепочки ДНК»…
Разрабатывая уникальный нанокомпьютер (1 бит информации в нем размещается на участке молекулы длиной 0,35 нанометра), ученые использовали поразительное сходство механизма биосинтеза ДНК с принципом действия так называемой «машины Тьюринга».
Еще в 1936 году английский математик Алан Тьюринг опубликовал статью, в которой доказывал принципиальную возможность создания универсального цифрового вычислительного устройства, способного решить задачи любой степени сложности, а также предложил его абстрактную схему.
В двух словах, оно представляет собой бесконечную ленту, в каждой ячейке которой тем или иным способом записаны символы «0» или «1». Вдоль ленты может передвигаться считывающая головка, связанная с блоком внутренней памяти и устройством управления. Причем, в зависимости от символа, считанного с ленты, могут изменяться как содержание ячейки, так и состояние памяти, и управляющее устройство командует головке сдвинуться на шаг влево, вправо или остаться на месте…
Устройство окрестили «машиной Тьюринга» и принялись обсуждать, где ее можно использовать с наибольшей пользой.
За последующие десятилетия на основании теоретической модели Тьюринга было сконструировано немалое количество чисто практических моделей ЭВМ — релейные, ламповые, транзисторные… И вот теперь, похоже, очередь дошла и до «машины Тьюринга» на биочипах.
Как ни удивительно, молекулы ДНК в принципе выполняют те же функции, которые в машине Тьюринга выполняла перфолента, на которой записывалась программа работы. Только вместо дырочек «лента ДНК» заполнена символами четырехбуквенного алфавита нуклеотидов: аденин (А), тимин (Т), гуанин (G) или цитозин (С). Уникальная для каждой ДНК последовательность таких «букв» и представляет собой кодовую запись биологической информации.
Биосинтез самих носителей наследственной информации производится при помощи специальных ферментов. Вообще говоря, таких соединений, «работающих» над ДНК внутри клетки, довольно много. Одни разрезают цепочку, другие склеивают ее, третьи по исходной цепи восстанавливают комплементарную (т. е. дополнительную) ей, четвертые «дописывают» утраченные в процессе деления «хвосты»… Все они перемещаются по молекуле, «считывают» последовательность нуклеотидов и на основании полученной информации «принимают решения», что именно нужно делать.
Так вот, если роль программного обеспечения (ленты) поручить молекуле ДНК, то управляющим устройством, аналогичным считывающей головке машины Тьюринга, могли бы послужить ферменты; главным образом два из них — «режущий» и «склеивающий».
Руководитель группы израильских исследователей Э.Шапиро держит в руке пробирку с триллионом биокомпьютеров.
«Программируя» задачу, исследователь синтезирует молекулы ДНК, подходящие для данного конкретного случая.
Каждая такая «программа» содержит наряду с «сигнальными цепочками» для режущего фермента и другие символы, которые, в частности, определяют, где будут произведены разрезы на дочерних цепочках. Ферменты перемещаются по молекуле ДНК подобно тому, как головка «машины Тьюринга» продвигается вдоль перфоленты, и выполняют все необходимые операции.
Данная попытка создать нанокомпьютер на основе ДНК не первая. Кроме работ в лаборатории профессора Н.Рамбиди, подобные исследования ведутся также в Австралии, в ряде стран Европы и в США. Так, в 1994 году американский ученый Леонард Адельман уже решил при помощи биомолекулярного устройства классическую «задачу коммивояжера» для семи городов.
Задача эта формулируется так: некий коммивояжер должен объехать по кратчайшему маршруту указанное число городов, не побывав ни в одном из них дважды. Несмотря на кажущуюся простоту, эта задача требует немалых усилий для своего решения. Причем нужна не только для тренировки ума и сообразительности. На практике такую задачу ежедневно решают во многих транспортных конторах, и от того, насколько успешны предлагаемые решения, во многом зависит прибыльность всего дела.
В данном же конкретном случае это решение выглядело так. Вычисления были разделены на четыре этапа. Каждому соответствовала отдельная реакция, проходившая в колбе или пробирке и контролируемая ученым. В общей сложности эксперименты продолжались целую неделю, но, в конце концов, результат был получен в виде смеси веществ в последней колбе.
Принципиальная возможность использовать внутриклеточные механизмы при решении «неудобных» для обычного компьютера задач (а к таковым относится и «задача коммивояжера») была доказана. Повысить же быстродействие такого компьютера — не проблема, считают энтузиасты нового направления. И указывают, что, в отличие от обычного компьютера, который решает все задачи последовательно, быстро перебирая возможные варианты, биомолекулярный компьютер способен к параллельным действиям — все ДНК анализируются одновременно.
Кроме того, биокомпьютеры не требуют больших затрат энергии, весьма компактны и неприхотливы в работе. Ведь для того, чтобы получить результат, необходимо перемешать в пробирке молекулы, представляющие «аппаратное обеспечение» (процессор), и молекулы, являющиеся «программным аппаратом». Результат химической реакции и является решением. Остается лишь проанализировать, что и в каких количествах в результате взаимодействия содержится в растворе.
Правда, возможности «компьютера в пробирке» пока весьма ограничены: он способен лишь разобраться в простейших свойствах последовательности из единиц и нулей.
Зато вероятность того, что будет найдено именно оптимальное решение для каждого случая, свыше 99,8 %! Да и плотность элементов на квадратный сантиметр в 100 000 раз выше, чем у силиконового или кремниевого чипа. Так что лиха беда начало…
Кроме того, как говорит Эхуд Шапиро, он и его коллеги и не ставили перед собой цели научиться решать любые математические задачи. Они стремились создать компьютер, который мог бы работать с информацией, зашифрованной в реальных ДНК, а в перспективе — проникать внутрь клетки, диагностировать болезни и синтезировать на месте необходимое лекарство.
Представьте: выпил пациент микстуру, содержащую триллионы «компьютерных» клеток, и они, оказавшись внутри, разбредутся по всему организму, производя необходимую профилактику и его ремонт. И человек не только излечится от любой болезни, но даже помолодеет.
Но это в будущем. Пока нанокомпьютер умеет работать лишь со специально синтезированной ДНК. Однако очень скоро, считает Эхуд Шапиро, ему по плечу станут и «настоящие» четырехбуквенные молекулы.
Вообще-то ученый уже запатентовал устройство биомолекулярного компьютера, способного выполнять любые вычисления. «Постигнув внутриклеточные механизмы, можно сконструировать универсальный наномеханизм, — говорит он. — И при этом не придется даже обучать клетку новым фокусам; нужно просто собрать воедино все, что она и так умеет».
Принцип работы такого биокомпьютера показан на схеме.
Для начала берется молекула ДНК (1) и реконструируется по специальному образцу (2). Затем она подстраивается к заранее заложенной в компьютер ДНК-«программе» по принципу комплементарности (аденин — к гуанину, тимин — к цитозину) (3,4) и «склеивается» с ней при помощи соответствующего фермента (лигазы) (5). Потом на полученную молекулу «осаживается» другой фермент — Fokl (6). Он последовательно «считывает» нуклеотиды и, распознав специфическую «сигнальную» последовательность, разрезает цепочку (7). К остатку входящей цепочки пристыковывается новая ДНК из «программного обеспечения» (8), и вся операция повторяется вновь.
«Вычисления» продолжаются до тех пор, пока фермент не распознает «заключительную» последовательность (9). Тогда лигаза склеивает из двух обрывков ответ — новую молекулу (10). Ученые расшифровывают результат, пропуская жидкость, в которой растворены молекулы, через особый гель, используемый при анализе обычных молекул ДНК.
Максим ЯБЛОКОВ