Юный техник, 2002 № 10

Журнал «Юный техник»

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

 

 

Невидимые пришельцы

Говорят, одной из причин затопления в Мировом океане орбитальной космической станции-ветерана «Мир» стало засилье на ее борту микробов-мутантов, пожиравших; по некоторым сведениям, все подряд и угрожавших не только работе уникального оборудования, но и здоровью самих обитателей станции. Но когда «Мир» затопили, выяснилось, что, к сожалению, проблема не утонула вместе с ним. Микробы стали постоянными обитателями и Международной космической станции. А люди, по существу, лишь прилетают к ним в гости. Неужто ничего нельзя сделать с этими «оккупантами»?

Игорь СИРОТИН ,

г. Павлодар

Нежелательные «пассажиры»

To, что колонии невидимых пришельцев уже прочно обосновались на МКС, космонавты с астронавтами стали замечать по их следам. В некоторых модулях станции появился белесый налет, похожий на плесень, — это бактерии начали «дегустировать» облицовку станции, кожухи аппаратуры, изоляцию проводов.

Естественно, микробы, беспощадно портящие уникальное космическое оборудование и дорогую оптику, радости никому не доставляют. Причем если на Земле ущерб от микробиологических повреждений полимерных материалов составляет всего 2 процента от общего объема промышленной продукции, то в космосе проблема стоит куда более остро. Здесь неважно, сколько процентов оборудования будет «съедено».

Достаточно нарушиться герметичности того или иного разъема, соединительного узла или прокладки, и жизнь людей подвергнется реальной опасности. При этом зачастую исследователям не удается предугадать заранее, какая именно часть оборудования будет атакована микробами. Как показывает опыт, бактерии, что ныне обитают на МКС, способны расщеплять самые разнообразные химические соединения. Они не ограничиваются лишь пластиками, а поедают краску, способствуют биокоррозии металлов, формируют тромбы в гидромагистралях систем регенерации воды.

Микробиологи, изучая различные штаммы бактерий, стремятся выявить среди микробов как врагов, так и помощников.

Так выглядят поврежденные микробами пластиковые элементы станции.

История интервенции

Впервые исследователи столкнулись с этой проблемой еще в 1980 году, во время длительного полета станции «Салют-6». Пятый основной экипаж обнаружил белый налет на отдельных деталях интерьера, тренажера для физических упражнений, санузла… Микробиологические пробы доставили на Землю, и вскоре стало ясно, что пленочка образована плесневыми грибами — пенициллами, аспергиллами и фузариумами.

Поначалу этому не придали особого значения, поручив космонавтам время от времени проводить протирку пластиковых поверхностей специальными растворами, уничтожающими плесень. Но когда пять лет спустя, в ходе работы 5-й основной экспедиции уже на орбитальной станции «Салют-7», была выявлена плесень в разъемах и кабелях рабочего отсека, стало понятно, что косметическими мерами не обойтись. При осмотре под микроскопом были выявлены изменения структуры образцов, а на отдельных материалах, в частности на изоляционной ленте, даже обнаружили сквозные дыры. А это уже грозило коротким замыканием и прочими ЧП.

Причем интервенция микробов развивается достаточно быстро. Скажем, стоило одному из транспортных кораблей «Союз» простоять у причала станции «Мир» полгода, как плесень поселилась даже на поверхности сверхпрочного кварцевого стекла иллюминаторов и на эмали титановой оправы.

Причем в тех местах, где колонии грибков разрослись особенно бурно, стекло оказалась разъедено и потеряло свою прозрачность.

На самой станции «Мир» был выведен из строя один из блоков системы коммутационной связи. Под металлическим кожухом были обнаружены колонии плесневых грибов на изоляционных трубках, контактных колодках, на армированном полиуретане. Это в конце концов привело к повреждению изоляции и окислению медных проводов.

Зачем «жарят» бактерии?

В общей сложности, в течение двадцати лет исследований ученые открыли свыше 250 видов микроорганизмов, которые живут внутри пилотируемых космических кораблей и станций. Все микробы оказались земного происхождения. Однако, попав в космос, они существенно видоизменились, мутировали из-за повышенного уровня радиации и стали агрессивнее.

Так что еженедельной гигиенической уборки станции с помощью пылесоса и специальных салфеток, пропитанных фунгистатом — веществом, убивающим бактерии, зачастую оказывалось недостаточно. Как рассказывал мировой рекордсмен по длительности космического полета (438 суток). Герой Советского Союза и России, член Академии космонавтики Валерий Поляков, время от времени экипажам приходилось прибегать и к помощи наземных служб. В частности, Центр управления полетами время от времени включал дополнительный подогрев определенных участков станции, «поджаривая» микробы.

Однако, к сожалению, такой способ стерилизации применим далеко не всюду. Поэтому на сегодняшний день наиболее универсальный и надежный метод борьбы с микробами — определение гарантированных сроков безотказной работы оборудования и своевременная замена тех или иных блоков. Соответственно установлены гарантийные сроки службы и самих модулей станции.

Так что за свои 15 лет службы станция «Мир» стала настоящим полигоном для испытаний многих технических решений и технологических процессов, используемых теперь на МКС. Если бы не опыт, накопленный на нашей легендарной станции, нынешний комплекс уже зарос бы плесенью.

Белье микробам на «закуску»

С «Мира» сотрудниками Института медико-биологических проблем была получена целая коллекция штаммов микробов-мутантов. Все образцы микроорганизмов, выросших в космосе, хранятся в надежном месте в запаянных ампулах: ученым неизвестно, как поведут себя мутанты в земной среде. Кроме того, не исключено, что эта коллекция может послужить сырьем для создания биологического оружия, способного выводить из строя боевую технику.

Впрочем, судя по словам руководителя пресс-службы Института медико-биологических проблем РАН Дмитрия Малашенкова, микроорганизмы-мутанты вполне могут быть использованы не только во вред, но и на благо людей. Скажем, с их помощью сотрудникам института не столь давно удалось решить проблему утилизации в космосе… грязного белья.

Стиральной машины на орбитальной станции нет, поэтому приходилось запаковывать использованные майки, трусы, носки в специальные контейнеры, загружать ими пришедший с Земли грузовик и отправлять его затем назад, чтобы все это сгорело в плотных слоях атмосферы. Теперь же предлагается подключить к работе микробов-мутантов, которые будут попросту все это съедать.

Не только вред, но и благо…

И это лишь один из примеров. Как говорит кандидат биологических наук, заведующая лабораторией микробиологии Наталья Новикова, мы сегодня стоим на пороге новой технологической революции. Микробы в скором будущем смогут помочь нам не только перерабатывать мусор, которого, кстати, и на Земле накопились целые горы. Из него можно, например, вырабатывать биогаз, который затем используется как топливо вместо природного метана. Микроорганизмы способны также очищать и опреснять воду, добывать металлы из руд, причем даже из таких бедных, которые сегодня металлурги никак не используют. Им по силам не только превращать, например, молоко в кефир, но даже обезвреживать радиоактивность!

И мы до сих пор говорили лишь о тех способностях, которыми наделены наши земные микробы. А ведь и в самом космическом пространстве существуют микробы, которые иногда прибывают на поверхность нашей планеты вместе с метеоритами.

Причем «пришельцев» этих не так мало. Ученые полагают, что ежегодно на нашу планету «десантируется» из космоса порядка 300 кг бактерий. Этого хватит, чтобы их досконально изучить, выяснить, на что они способны.

Предстоит тщательно разобраться и с теми микробами, которые время от времени попадаются исследователям в самых неожиданных местах на Земле. Оказывается, они сохраняют жизнеспособность не только на высоте более 80 км, но и на 11-километровой глубине в океане, где давление достигает 1100 атмосфер. Микроорганизмы обнаружены в шахтах на глубине 4 км, в безжизненных пустынях и в самом соленом из озер — Мертвом море. Они живут даже внутри вулканов и в активной зоне ядерных реакторов!..

С ними стоит поработать, и тогда, глядишь, самые злостные бактерии могут превратиться в самых что ни на есть полезных охранников окружающей среды.

А. СМИРНОВ

 

Секреты «острова» стабильности

В последние годы ученые-ядерщики очень большое внимание уделяют ток называемому «острову» стабильности, который, по идее, должен существовать в «море» коротко живущих трансурановых элементов, получаемых искусственно. Найден ли этот «остров»?

Игорь Квашнин ,

Тверская область

Художник Ю. САРАФАНОВ

Началось все с того, что в 1999 году группа американских физиков знаменитой Национальной лаборатории в Беркли объявила об открытии сразу двух сверхтяжелых элементов таблицы Менделеева — 116-го и 118-го. Сообщение было воспринято с энтузиазмом и распространено практически всеми главными информационными агентствами мира.

Вообще-то говоря, сверхтяжелые трансурановые элементы с порядковыми номерами выше определенного в таблице Менделеева существовать не могут, поскольку их ядра чрезвычайно нестабильны. Однако лет тридцать назад родилась гипотеза о том, что среди океана трансурановой нестабильности для ядер, содержащих примерно 114 протонов и 184 нейтрона, существуют стабильные «островки». Так что некоторые сверхтяжелые элементы, попадающие на территорию этих «островков», могут какое-то время существовать.

И среди физиков-экспериментаторов началась своего рода заочная гонка: кто сумеет первым попасть на этот «остров» стабильности, создав искусственно хотя бы один сверхтяжелый элемент с подходящими параметрами.

И вот американцы, соперничая с группой наших физиков из Дубны, работавших под руководством профессора Юрия Оганесяна, затеяли такой эксперимент. На имевшемся в их распоряжении 88-дюймовом циклотроне они 11 дней бомбардировали свинцовую мишень интенсивным пучком ионов криптона. В итоге, изведя на это миллиард триллионов ионов, экспериментаторы получили три иона элемента 118, которые жили по 200 микросекунд, а потом превращались в ионы элемента 116.

Важность работы для физиков Беркли заключалась не только в мировом приоритете (хотя и он немаловажен), но еще и в том, что выполненная работа сразу ставила их далеко впереди самых главных берклиевских конкурентов — физиков из Объединенного института ядерных исследований в Дубне, незадолго до того заявивших об обнаружении следов существования 114-го элемента.

Однако время шло, и восторги по поводу берклиевского успеха стали утихать. Дело в том, что ни на немецком, ни на японском циклотронах повторить результаты американцев не удалось. Не смогли повторить эксперимент и в самом Беркли, хотя все первоначальные условия новая группа экспериментаторов старалась воспроизвести с максимальной точностью. Вдобавок ко всему год назад выяснилось, что теоретики предсказали существование стабильного 118-го элемента ошибочно. В итоге физикам из Беркли пришлось писать опровержение на собственную статью, сообщив, что, по всей вероятности, они что-то не так проанализировали и весть о рождении нового элемента скорее всего была преждевременной.

Но дело на том не кончилось. Вскоре газетчикам стало известно, что, проведя внутреннее расследование, администрация Беркли пришла к выводу, что в данном случае могла иметь место не ошибка, а преднамеренная фальсификация фактов. В итоге без лишнего шума из лаборатории был уволен экспериментатор Виктор Нинов, ведший злополучный эксперимент.

Впрочем, сам Нинов, выходец из Болгарии, некоторое время работавший в Германии, в Институте тяжелых ионов в Дармштадте, где зарекомендовал себя талантливым экспериментатором, участвовал в опытах по обнаружению 110, 111 и 112-го элементов, категорически отрицает обвинения в свой адрес. Он полагает, что скорее всего имела место ошибка, произошедшая в спешке, когда экспериментаторы всеми силами старались опередить российских конкурентов. И теперь администрация Беркли просто сделала из него «стрелочника».

Тем не менее, скандал продолжается, поскольку теперь появился повод усомниться и в точности результатов, полученных в Германии при синтезе 110 — 112-го элементов. Педантичные немцы обнаружили в своих научных отчетах той поры несколько подчисток, сделанных, как предполагают, рукой все того же Нинова…

Тем временем ученые из Объединенного института ядерных исследований в Дубне без особого шума готовят эксперименты по обнаружению 118-го элемента. По словам научного руководителя работы, члена-корреспондента РАН Юрия Оганесяна, опыты пройдут в два этапа, каждый из которых займет около четырех месяцев.

Сначала мишень из химического элемента ниобия будут бомбардировать изотопами кальция. Это позволит отработать все тонкости эксперимента. Затем работу по непосредственному получению 118-го элемента проведут с мишенью из калифорния. В результате бомбардировки произойдет слияние ядер калифорния и кальция с образованием ядра нового элемента.

Чтобы убедиться в том, что новый элемент действительно получен, исследователи надеются зарегистрировать 2–3 события по образованию и радиоактивному распаду нового ядра. В этот момент и будут определены время его жизни, время распада и некоторые другие характеристики.

В.ЧЕРНОВ