Юный техник, 2003 № 07

Журнал «Юный техник»

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

 

 

Зачем роботу мясо?

Слышал, что в Японии, в Иокогаме, на выставке демонстрировали робота, который питается… мясом! Есть ли такой робот, и если есть, то какой в этом смысл?

Андрей ЛОЖНИКОВ ,

Ленинградская область

Робот, питающийся мясом, действительно построен. Есть еще несколько роботов, которые питаются пшеницей или сахаром, причем, могут, наверное, использовать и мясо. Слово «питаются» здесь вполне уместно — энергию продуктов они превращают в электричество, необходимое для их электронных схем и моторов.

Почему — мясо? Почему — сахар?

Да, можно поставить на автономную машину батареи или аккумулятор. Но емкость их, как правило, невелика. Сами знаете, поработал плейер или приемник день-два, и все — заряжай аккумуляторы или меняй батарейки. Старые батареи, как правило, выбрасывают на свалку.

(Между тем, вещества, что в них содержатся, — сильнейший яд, который портит окружающую среду, отравляет грунтовые воды.) А на зарядку аккумуляторов, даже самых лучших, требуется несколько часов.

Хотя, впрочем, аккумуляторы бывают разные. Возьмите пачку макарон или шоколадку и присмотритесь. Скорее всего, вы найдете на упаковке число, обозначающее энергетическую ценность продукта. Выражается она в калориях.

Что это за калории? Да те самые, из курса физики! Так или иначе, все продукты — это своего рода аккумуляторы, сохраняющие энергию Солнца. Съел за завтраком сосиску с вермишелью — и порядок, энергией для работы организм на полдня обеспечен, поскольку внутри каждого из нас исправно работает свой собственный химический завод, который преобразует калории пищи в калории тепла и дает возможность нормально жить и двигаться. Скопировать его деятельность в точности пока не удается, слишком сложен. Но, тем не менее, преобразовать энергию макарон в электричество все же можно.

Мы уже рассказывали об устройстве топливных элементов, но напомним.

Упрощенно говоря, состоит такой элемент из двух платиновых электродов, которые разделяет электролит, например, соленая вода. Если подать на один электрод кислород, а на другой — водород, на электродах возникнет разность электрических потенциалов. Этот процесс сродни горению, но происходит при значительно меньших температурах — около 250 °C и при сравнительно высоком КПД — до 85 %.

Остается лишь превратить макароны, сахар или мясо в водород — и вот вам электричество. Как это сделать? Да очень просто!

Так в общих чертах выглядит схема преобразования органических остатков в электричество.

Каждый из нас, увы, знаком с запахом помойки. Зажимать носы заставляет газ, выделяющийся в результате гниения органики — объедков, очистков… Если проанализировать его, то можно обнаружить и сероводород, и метан, какие-то еще газы. В основе всех их водород. А вырабатываются они в результате действия бактерий, которым «по зубам» и те же наши макароны, и мясо, и шоколад.

В реакторе робота, с которого мы начали рассказ, бактерии превращают продукты в биогаз, а топливный элемент превращает его в электроэнергию. Так что можно сказать, что робот питается мясом, а можно — солнечной энергией.

В конце концов, для робота-игрушки все же можно использовать обычные аккумуляторы, периодически подзаряжая их от сети. Но представьте, что «всеядными» удастся сделать бытовые приборы. Насколько удобнее и дешевле не менять чуть ли не ежедневно батарейки в своем плейере, мобильнике или магнитоле, а время от времени «подкармливать» эти устройства, сунув в батарейный отсек кусочек сахара или, если его нет под рукой, пучок травы. И это лишь малая часть перспектив, которые открывает перед нами новая схема производства электроэнергии.

В среднем от каждого из нас остается как минимум полкило органических отходов в день: это и картофельные очистки, и колбасная кожура, и объедки с нашего стола. В лучшем случае, 10 процентов этих отходов идет в дело — на корм для свиноферм. Все остальное просто выбрасывается на помойку. И по самым скромным подсчетам только в нашей стране ежесуточно на свалках скапливается порядка 7000 т отходов. За год сложится гора, которую впору штурмовать альпинистам.

Пока все это просто гниет, отравляя окружающую среду. А ведь могло бы послужить всем на пользу. Расчет показывает, что из тонны органических отходов теоретически можно получить около миллиона ватт электроэнергии.

При этом мы не учли отбросы животноводческих ферм, разного рода производств… Так что на самом деле органических отходов гораздо больше и они вполне могут послужить сырьем для работы мощных стационарных биореакторов. Такой мне, например, довелось видеть в МГУ. По словам старшего научного сотрудника лаборатории, где ведутся эксперименты с получением горючего из органических отходов, кандидата технических наук Натальи Михайловской, у этой технологии большое будущее. Подобные биореакторы могут быть использованы в качестве источников энергии на животноводческих фермах, в фермерских хозяйствах, сельских домах…

Одна из первых полупромышленных установок такого типа, созданная сотрудниками НИИ тепловых процессов, уже несколько лет работает в Подмосковье, на одной из птицеводческих фабрик неподалеку от города Истра.

Весной этого года в штате Миссури был введен в действие экспериментальный биореактор, предназначенный для получения топлива из отходов птицефабрик. Ежедневно он перерабатывает 200 т отбросов. В будущем году такой же реактор будет сооружен в Италии, неподалеку от города Парма.

Компактные же установки меньших размеров смогут приводить в действие сельскохозяйственную технику. Скажем, исследователи из Британского университета создали опытный образец робота, который запрограммирован на поиск вредных моллюсков в полях и огородах. Он выходит на охоту с наступлением темноты, когда слизняки начинают проявлять активность, и может за час собрать более 100 вредителей.

Пойманных слизняков робот складывает в специальный поддон. А когда после ночной охоты возвращается на базу и разгружается, вредители сельского хозяйства попадают в специальный резервуар с жидкостью, в котором происходит брожение. В результате получается биогаз, который используется затем как топливо и для выработки электричества. А полученную энергию робот использует для перезарядки собственных батарей…

Однако ученые пока не всем довольны. Профессор университета Северной Каролины Ричард Бофенден и его британские коллеги сравнили скорость расщепления некоторых веществ в живых клетках и в лабораторных условиях.

Так вот оказалось, что в первом случае биологические катализаторы — фосфотазы — позволяют завершить реакцию разложения всего за 10 миллисекунд. Обычно же такие реакции могут протекать и… десятилетия! Таким образом, как видите, скорость преобразования отходов в доходы теоретически может быть повышена еще в 1021 раз, а это значит, что мощность биоэлектростанций может расти почти безгранично.

Станислав СЛАВИН

Художник Ю. САРАФАНОВ

 

Портрет на фоне ДНК

Правду ли говорят, что ныне с помощью ДНК-анализа можно не только точно сказать, кто кому родственник, но и обрисовать характерный облик носителя этой самой ДНК?

Анатолий Семешков ,

Ростовская область

Обнаружив на месте преступления следы крови или даже волосок, криминалисты могут точно сказать, кто тут был, сделав ДНК-анализ улик. При одном, правда, условии. Характеристики ДНК данного человека, словно отпечатки пальцев, должны быть занесены в картотеку или банк данных.

А если таких данных нет? Тогда специалисты вступают на тропу предположений и догадок. И тем не менее, уже довольно многое могут сказать об облике хозяина ДНК.

Скажем, еще в 1995 году ученые из университета Ньюкасла, Великобритания, сообщили об открытии генетической особенности, связанной с цветом волос. Они обратили внимание, что у 70 % рыжих есть по два специфических гена в геноме. Так что теперь, даже не обнаружив волос на месте преступления, эксперты могут сказать: белый человек, имеющий два характерных гена, с вероятностью 96 % окажется рыжим. А это уже существенная зацепка для детективов.

В американском городе Сарасота, штат Флорида, есть биотехнологическая фирма DNAPrint Genomics, сотрудники которой могут по ДНК определить цвет глаз. Оказывается, есть четыре гена, по которым с 97-процентной вероятностью можно установить, что у данного носителя ДНК глаза либо темные, либо светло-карие или с желтизной, либо светлые (голубые и серые).

От цвета глаз недалеко и до определения этнической принадлежности. Например, известно, что арабы или китайцы никогда не бывают голубоглазыми.

Ныне исследователи от криминалистики уверены, что по геному можно определить форму носа и овала лица. Правда, пока единственного гена, определяющего, например, размер носа, обнаружить не удалось.

Тем не менее, сама идея выявления генов, ответственных за черты лица, не умерла. Ученые решили пойти окольным путем и для начала занялись… мордами животных. Ведь большинство характерных генов можно найти у млекопитающих, например, у мышей. Тем более что работать с ними намного проще.

Так, на основании исследований, проведенных с подопытными животными, установлено, что формой челюсти заведуют 25 генов, а ее размерами — 12. Еще пять определяют ее симметричность. Конечно, этого недостаточно, чтобы по геному воссоздать «фоторобот» его носителя. Работа в самом разгаре…

Возможно, по капле крови, помещенной под микроскоп, исследователи научатся определять облик ее владельца.

Разные этнические группы оставляют разные ДНК-следы.

С. НИКОЛАЕВ