Молетроника — это новая область вычислительной техники, которая использует в качестве микрочипов отдельные молекулы. А натолкнули исследователей на мысль о таком их использовании, как ни странно… костяшки домино.

Если выстроить костяшки вертикально друг за другом слегка толкнуть крайнюю, она собьет соседку, та — следующую…

Во многих странах существуют клубы любителей фигур из костяшек домино. Лучшие из них участвуют в соревнованиях и телешоу, где демонстрируют свое искусство. Рекорд по этой части, недавно занесенный в Книгу рекордов Гиннесса, гласит, что самая длительная «цепная реакция» охватила… более 8 млн. камней!

Впрочем, подобные затеи так, наверное, бы остались развлечением, если бы конструкторам фирмы IBM не пришло в голову использовать «принцип домино» для разработки новых компьютерных систем. Только в данном случае роль камней домино решили поручить молекулам, которые исследователи тоже выстроили в цепочки. Изменение в одной молекуле приводит к цепочке перемен в соседних. А это, в конце концов, дает возможность выполнять определенные логические операции.

Чтобы понять, какие именно вычисления можно производить подобным образом, ученые используют сканирующий тоннельный микроскоп — изобретение немецкого физика Герда Бенинга, за которое в 1986 году он был удостоен Нобелевской премии.

В общих чертах этот инструмент действует следующим образом. Намагниченная игла микроскопа приближается почти вплотную к поверхности носителя и по желанию исследователя позволяет перемещать с места на место отдельные молекулы. Говоря совсем уж попросту, игла микроскопа действует подобно электромагниту на подъемном кране, ведущем погрузку металлоконструкций. Перемещаемая деталь удерживается магнитом до тех пор, пока на него подают электрический ток. Перемещая таким образом отдельные молекулы, можно выстраивать их на подложке в определенные структуры.

Хрестоматийный пример: сотрудники фирмы IBM таким способом выложили из 555 молекул окиси углерода на медной подложке название своей фирмы. Такая методика позволяет получать некие структуры, которые можно использовать для долговременного запоминания информации. Однако Андреасу Хайриху и его коллегам по фирме этого показалось недостаточно. Ведь сами по себе молекулы и атомы представляют собой достаточно сложные структуры. Кроме того, атомы обладают еще и некоторыми другими характеристиками, например, спином, характеризующим момент вращения того или иного атома.

Здесь можно снова прибегнуть к аналогии с костяшками домино. У них есть всего две возможности — они либо стоят, либо лежат. Так же и с молекулами окиси углерода — они могут находиться либо в одном положении, либо в другом, иметь либо один спин, либо другой.

Одно из положений мы можем обозначить как «0», другое — как «1». И таким образом получить как бы молекулярный триггер — элементарную ячейку логической схемы. А исследователи уж знают, как из таких триггеров, по каким правилам и схемам можно построить логические ячейки — скажем, «И», «ИЛИ».

При этом расстояния между ячейками составляют всего-навсего четверть нанометра. Такая теснота приводит к тому, что изменение положения в одной ячейке может привести к изменению положения в другой. То есть, если подать сигнал на один триггер, то по его срабатывании может сработать соседний. По логической схеме пойдет некая волна, заставляя ячейки «падать» подобно костяшкам домино.

Схема сработает, перейдет из одного положения в другое, произведя какие-то операции. Что, как говорится, и требовалось доказать.

Причем, когда физики выстроили из молекул 6 основных логических ячеек, а из них собрали некое молекулярное вычислительное устройство, его размеры составили всего 12x17 нанометров! Для сравнения скажем, что в сегодняшних компьютерах один микротранзистор занимает площадь размерами 2x2000 нанометров.

Недостаток новой технологии — ученые вынуждены всякий раз выстраивать структуры от молекулы к молекуле, подобно тому как приходится поднимать костяшки домино после того, как они были повалены в результате «цепной реакции». Делают это опять-таки при помощи туннельного микроскопа, операция довольно хлопотна и занимает немало времени.

Так что конкурировать по быстродействию с современными компьютерами «нанодомино» пока не в состоянии и речь идет не о готовом вычислительном устройстве, а лишь о его прототипе.

Однако экспериментаторы довольны и тем, что их опыты доказывают принципиальную возможность осуществления вычислительных операций на молекулярно-атомарном уровне. Кроме того, подобные устройства уже сейчас можно использовать в качестве долговременных хранителей информации.

Выложенную определенным образом молекулярную поверхность можно уподобить не только типографской странице, испещренной буквами, но и поверхности виниловой грампластинки. Когда по ней скользит игла проигрывателя, с пластинки снимается звуковая информация. Из проигрывателя слышится мелодия, песня или речь исполнителя.

Когда игла туннельного микроскопа скользит по неровностям молекулярного слоя носителя, эффект считывания информации примерно такой же.

В общем, исследователи пока играют с молекулами, выстраивая из них все новые и новые фигуры, подобно тому как это делают любители из костяшек домино. Но нанодомино обещает поднять на новый качественный уровень устройства хранения и переработки информации.

С.НИКОЛАЕВ

Художник Ю. САРАФАНОВ