Приятно снова повстречать добрых знакомых. Именно это произошло с нашим специальным корреспондентом С. НИКОЛАЕВЫМ на очередном смотре научно-технического творчества молодежи — НТТМ-2004. Все участники заметно выросли и возмужали. Многие даже перешли в другую «весовую категорию» — из школьников стали студентами. А на смену им подрастают новые таланты, представившие на выставке свои оригинальные работы.
Астероидный патруль космических «наездников»
Эта угроза уже неоднократно рассматривалась в фантастических романах, кинофильмах и научно-популярных статьях. Действительно, что делать, если завтра вдруг окажется, что на нашу планету надвигается космическая катастрофа — метеорит диаметром в несколько километров?..
Свой вариант решения проблемы предлагают юные техники из г. Новочеркасска. Безопасность жителей Земли может обеспечить лишь тройной пояс защиты, рассказал мне один из разработчиков этого проекта, Тимур Мустаев. Первый пояс отчасти уже существует. Он состоит из военных спутников, которые наблюдают за поверхностью нашей планеты. Их основная задача — обнаружение старта межконтинентальных баллистических ракет возможного противника.
Но поскольку эпоха «холодной войны» миновала, появилась возможность использовать «глаза» этих спутников и для обнаружения опасности извне. Кроме того, наблюдение за окружающим космосом ведут также специальные научно-исследовательские спутники и орбитальные телескопы.
В общем, у землян сейчас достаточно сил и средств, чтобы наладить постоянное наблюдение за окружающим космическим пространством, регулярно просчитывать траектории тех или иных астероидов, комет и прочих космических пришельцев.
Если же вдруг обнаружится, что один из этих пришельцев непосредственно угрожает нашей планете, в действие должна вступить «тяжелая артиллерия». В настоящее время на Земле осталось еще немало межконтинентальных баллистических ракет, оснащенных ядерными и термоядерными боеголовками. Их-то и предлагают ребята использовать для полезного дела — уничтожения приближающегося астероида. Некоторые из них даже прошли предварительные испытания…
Но главная «изюминка» проекта — вовсе не в использовании выходящего из эксплуатации военного снаряжения. Третий, самый передовой, пояс космической обороны ребята предлагают составить из… космических «наездников».
— Практически всегда мирное решение проблемы эффективнее военного, — считает Тимур. — В данном случае мы предлагаем не доводить ситуацию до того, что в дело придется вступать ракетам с термоядерными боеголовками. Любой взрыв опасен непредсказуемостью своих последствий. Ну взорвали мы астероид, он развалился на множество более мелких обломков. Но кто сказал, что такая шрапнель нанесет меньше ущерба? Вполне возможно, что падение множества менее крупных осколков нанесет даже больше вреда, чем одиночный взрыв большого болида.
В общем, выход из положения ребята видят таким. На третьем, внешнем, поясе космической обороны нужно расположить межпланетные зонды со спецоборудованием. Как только поступит сигнал о приближении нежеланного «гостя» и будут вычислены его координаты, такой зонд выйдет на перехват болида. Причем траектория сближения выбирается такой, чтобы наш зонд-перехватчик приблизился к астероиду или комете со стороны задней полусферы и, постепенно догоняя его, высадил «десант» на его поверхность.
Спускаемая капсула закрепится на поверхности болида и начнет воздействовать на него. «Очень часто поверхность космических пришельцев содержит лед, — пояснил Тимур. — Так что достаточно разогреть его, как в сторону начнет выбрасывать облако пара. Разогрев можно произвести с помощью небольшого ядерного реактора. А струю пара направить таким образом, чтобы появилась реактивная тяга, уводящая болид от нашей планеты. И столкновение не состоится». Ну а если вдруг болид окажется целиком каменным или металлическим, придется в дополнение к реактору доставить на поверхность космического «гостя» еще и ракетный двигатель.
Куда ударила молния?
— В грозу часто кажется, что молния ударила совсем близко, и многие пугаются, — начал свой рассказ Денис Будуев, представитель Южноуральского государственного университета. — Но это, так сказать, субъективно. Между тем, существует целый ряд специалистов, которым важно знать, куда ударила молния.
Оперативная и достоверная информация о молниевых ударах позволит решить многие проблемы геологии, гидрологии, метеорологии, экологии, физики атмосферы, энергетики.
Были, например, случаи, когда из-за грозы приходилось отменять запуски космических кораблей, в грозу, как правило, не работают и аэропорты. Известны случаи, когда именно из-за ударов молний выходили из строя энергосистемы целых городов, что приводило к огромным убыткам. От ударов молнии в деревья случаются лесные пожары, горят нефтехранилища и склады боеприпасов…
В общем, поводов следить за грозовыми фронтами предостаточно. Но как это сделать?
Уральские физики под руководством доктора физико-математических наук, профессора А.В. Панюкова предлагают воспользоваться тем обстоятельством, что молния представляет собой гигантскую электрическую искру. И когда она проскакивает по ионизированному каналу, в атмосфере вокруг него происходит сильнейшее возмущение электромагнитных полей. Но то, что плохо для радистов — в грозу, как известно, возникают большие помехи для радиосвязи, — физики в данном случае предложили использовать во благо.
Денис Будуев долго пытался объяснить мне все тонкости физико-математического аппарата, которым воспользовались специалисты, чтобы точно определить координаты места, куда ударяют молнии. Честно признаюсь, из всех этих рассуждений я понял только одно: теперь молнию можно запеленговать, словно шпионскую радиостанцию.
Пояснения дает один из разработчиков молниевого детектора, Д.Будуев .
Помните, в фильмах о Второй мировой войне показывают машины с направленными антеннами, которые разъезжают по улицам и устанавливают, в каком именно доме спрятан потайной радиопередатчик? Примерно так же и радиофизики определяют азимут, то есть направление на молниевый разряд, с помощью специальных локаторов. Кроме того, зная примерную силу разряда, с помощью специальной компьютерной программы они могут вычислить и расстояние до того места, куда ударила молния.
— Еще точнее координаты молнии определяются, если одновременно работают два или несколько локаторов, — завершил свой рассказ Денис Будуев. — В этом случае точку удара молнии удается иногда определить с точностью до метров.
Электронная инструкция для портативного гранатомета
Военная техника год от года становится сложнее, а сроки срочной службы в армии все укорачиваются. Каким же образом можно научить молодого солдата владению тем или иным оружием, сложной боевой техникой в кратчайшие сроки?
…Танк зримо наползал на меня, становясь все грознее и массивнее. И не так-то просто оказалось унять дрожь в пальцах, тщательно прицелиться и нажать спуск. Когда ракета поразила цель, у меня отлегло от сердца: «Попал!» И это несмотря на то, что находился я не на полигоне, а всего лишь за дисплеем портативного ноутбука, на экране которого и разворачивалось, собственно, все «сражение».
Не вставая из-за компьютера, я мог, в принципе, изучить все подробности устройства данного противотанкового оружия, уловить все особенности использования его днем и ночью, зимой и летом.
— Понятно, что после столь подробного инструктажа изучать реальное оружие на практике куда легче, — пояснил главную идею разработки представитель тульского КБ приборостроения Дмитрий Бурцев. — Причем эта электронная инструкция не уникальна. В нашем КБ теперь взяли за правило наряду с бумажными, печатными инструкциями составлять и электронные. И многие наши заказчики утверждают, что работать с последними куда легче и удобнее.
Электронные инструкции теперь помещаются на стандартных дисках и дискетах, а читаются с помощью компьютера.
Интеллектуальный пылесос
Роботом сегодня трудно удивить, тем более таким довольно неуклюжим, похожим на большого механического жука. Единственное, что привлекло мое внимание, так то, что представляли «жука» давние знакомые — студенты Таганрогского государственного радиотехнического университета, работающие под руководством доцента В.Х. Пшихопова. Каждый год они привозят на всевозможные выставки новые свои разработки.
И в данном случае при ближайшем рассмотрении оказалось, что робот на самом деле представляет собой… пылесос. Только не совсем обычный, а интеллектуальный.
— Все, конечно, видели промышленные пылесосы, с помощью которых производят уборку залов ожидания на вокзалах и в аэропортах, подземных вестибюлей на станциях метро, — пояснил суть дела один из разработчиков, Евгений Журавлев. — Неплохие машины, только за каждой обязательно должен присматривать оператор.
Наш пылесос, оснащенный системой ультразвуковых и лазерных сенсоров и искусственным интеллектом, способен вести уборку самостоятельно. При этом он старательно объезжает не только постоянные препятствия в виде, скажем, колонн, скамеек, но и людей, их багаж. При этом всякий раз при сближении пылесос дает предупредительный сигнал, мигает огоньками. Дескать, посторонитесь, пожалуйста, уборка идет!