«Одно время много писали, что ученые научились получать искусственно шаровые молнии, и потом все затихло. Так удалось все же разобраться в природе шаровых молний или нет?»

Андрей Казьмин ,

Нижний Новгород

Обширная литература по шаровой молнии (ШМ) насчитывает более двух тысяч работ, не считая бесконечного числа газетных заметок. Впервые целую коллекцию связанных с нею случаев описал французский академик Араго. В его книге, датированной 1859 годом, приводится, в частности, первый достоверно зарегистрированный случай гибели матроса и тяжелого ранения двух других в результате взрыва шаровой молнии на борту судна «Гуд Хоуп». Произошло это 13 июля 1798 года.

«Литературная газета» 21 декабря 1983 года описала событие, происшедшее на Кавказе. Огромная шаровая молния внезапно появилась из тучи в самом начале грозы. От ее взрыва пострадало 23 человека, трое из них погибли.

Случаи разрушения, виной которых стали шаровые молнии, позволили обсчитать их некоторые наиболее важные энергетические параметры. Чаще всего шаровая молния живет от 5 до 16 секунд, ее диаметр 24–32 см, энергия составляет от 13 до 32 кДж, что соответствует энергии от падения грузов весом от 130 до 320 кг с высоты один метр. Стоит ли удивляться, что она может быть опасна!

Еще в конце 40-х годов прошлого века академик П.Л.Капица высказал гипотезу о том, что шаровая молния получает энергию извне при помощи радиоволн. Этим можно объяснить и ее высокую энергоемкость, и почти все другие странности поведения. В лабораторных условиях физики П.Л.Капица, Е.Бабат и другие получали высокочастотные разряды сантиметровых радиоволн, внешне похожие на ШМ. Однако появление во время грозы достаточно мощных потоков таких радиоволн обнаружить не удалось. Не получает ли шаровая молния энергию каким-то иным путем, например, в виде потока элементарных частиц? Ответа нет.

Еще один факт. В конце 80-х годов XX века ШМ размером с футбольный мяч пролетала на высоте 20–30 метров над деревней Гольцовка, что в Алтайском крае. При этом был раздавлен сарай с железобетонными столбами, сорван вместе с гвоздями шифер с крыши дома, поднят и перенесен на триста метров железный каркас весом в 100 кг. Все это могло бы проделать магнитное поле напряженностью в несколько десятков миллионов гаусс. Величина огромная: магнитное поле Земли равно 0,5 гаусса, а в лабораториях удается на тысячные доли секунды получить поле в один миллион гаусс.

В ряде случаев ШМ плавила на улице асфальт и сжигала траву. При этом очевидцы указывали ее расстояние от земли. По этим данным удалось определить, что температура молнии составляет 2–3 тысячи градусов.

Шаровая молния издавна привлекала внимание художников.

Во всех гипотезах принято считать, что ШМ образуется в результате специфического, пока до конца не понятного, воздействия электрического разряда на воздух и находится в состоянии плазмы. Плотность ее вещества при этом примерно в 10 раз меньше плотности окружающего воздуха. Это означает, что шаровая молния должна всплывать, подниматься вверх со скоростью выпущенного из рук воздушного шарика. Но свидетельства отмечают, что в большинстве случаев она движется либо горизонтально, либо вниз. Лишь десятая часть ШМ очень медленно поднимается вверх. Что же ей мешает подниматься? Ответа нет.

Далее. Разделив энергию шаровой молнии на ее объем и плотность, можно узнать, какая энергия выделяется при взрыве одного грамма ее вещества. Эту величину называют удельной энергоемкостью. Оказывается, что у ШМ она как минимум в полтора раза больше, чем у сильнейшего взрывчатого вещества — гексагена. А энергоемкость некоторых шаровых молний в 15 раз выше, чем у гексагена. Если бы удалось энергию лучших образцов шаровых молний приспособить для космических полетов, то путешествие на Луну превратилось бы в мероприятие, доступное рядовым туристам.

Ракетчикам в принципе известны вещества, способные дать на единицу массы в 15 и даже в 30 раз больше энергии, чем гексаген. Это атомарный водород и молекулярный гелий. Но время их жизни — миллионные доли секунды. Проводившиеся на протяжении последних пятидесяти лет крупномасштабные исследования в надежде увеличить этот срок ни к чему не привели. Вполне возможно, что подобные вещества «работают» и в шаровых молниях, но что там увеличивает продолжительность их жизни — ответа нет.

Вот еще одна загадка: газета «Правда» сообщала 8 ноября 1981 года о столкновении военного самолета с шаровой молнией. Огромный, до пяти метров в диаметре, огненный шар летел рядом с самолетом прямо перед стеклом кабины. Через какое-то время молния взорвалась. Самолет получил повреждения, но до аэродрома дотянул.

Проведем небольшое следствие. Самолет летит со скоростью несколько сот метров в секунду. Если предположить, что шар, летящий рядом с ним, состоял из плотного твердого вещества, то в обтекающем его воздухе должны были возникнуть сильнейшие вихри, которые не могли не повлиять на устойчивость самолета. (Они нередко погибают от гораздо менее сильных вихрей, создаваемых другим самолетом, летящим впереди на расстоянии в сотни метров.) Но летчик ни о каких нарушениях в поведении машины не сообщает. Значит, их не было.

Огненный шар не влиял на воздушный поток, обтекающий самолет.

Это можно объяснить лишь одним: воздушный поток проходил огненный шар насквозь. Но в этом случае шаровая молния не может быть сгустком или облаком газа.

Ученые не раз пытались получить ШМ в лабораторных условиях. Впервые и наиболее успешно это удалось изобретателю свинцового аккумулятора Гастону Планте.

Ученый заряжал соединенные параллельно аккумуляторы от гальванического элемента, а затем при помощи специального переключателя — «реостатической машины» — соединял их последовательно. (Отдельный аккумулятор в среднем дает напряжение 2,5 В, но когда их соединяют последовательно, то напряжения складываются.)

Так Планте удавалось получить батарею с напряжением до 4500 В. При ее разряде через воду на положительном электроде получались устойчивые вращающиеся шары. Направление вращения было случайным, что говорит о том, что оно не связано с действием тока. В то же время при перемещении электрода шары следовали за ним. Это говорит, что они получали энергию от батареи.

Схема опытов Планте . Слева — шаровая молния между комочками мокрой бумаги. Справа — молния в ванне.

Такие огненные шарики Планте уверенно отождествлял с шаровыми молниями и полагал, что шаровая молния — это первичная форма существования «электрической материи», а линейная — лишь цепочка шаровых. Это заявление он подтверждал своими наблюдениями, из которых следовало, что в городе практически при любой грозе можно увидеть ШМ, нужно лишь уметь смотреть.

Планте утверждал, что ШМ получает энергию через вихревой столб, по которому на нее стекают заряды из грозовых туч. Сегодня к этому можно добавить то, чего Планте не знал: полый внутри вихревой столб является отличным волноводом, концентрирующим в нижней своей части энергию возникающих при грозе электромагнитных волн.

Но почему же шаровые молнии не наблюдались в экспериментах других ученых? Начнем с источников тока.

В то время их было два. Первый — это мощные батареи, длительно дававшие токи в десятки и сотни ампер при напряжении несколько десятков вольт. Опыты с ними привели к открытию дугового разряда.

Другие — электростатические машины и конденсаторы — давали короткие (около 0,001 с) импульсы напряжением до 100 000 В. Получались длинные змеистые искры, похожие на линейную молнию. Сегодня эти опыты продолжаются. Длина разряда достигает 50 м при напряжении миллионы вольт, но шаровых молний нет как нет.

Источник тока, которым пользовался Планте, отличался по своим параметрам от тех и других. Напряжение в 4500 В, сила тока медленно, за 10–20 секунд, спадала от десятков ампер до нуля. Источников тока с такими характеристиками не было тогда и нет сейчас. Возможно, их сегодня можно было бы получить на основе молекулярных конденсаторов, но гораздо проще было бы повторить установку Планте. Уж если он ее сумел сделать сто пятьдесят лет назад, то получится и сейчас. А секретов из своих опытов он не делал. Они подробно изложены в докладах французской Академии наук в 1875 году, а часть их описаний вы можете попробовать найти в «ЮТ» № 8 за 1999 г.

А.ИЛЬИН