Юный техник, 2005 № 05

Журнал «Юный техник»

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

 

 

Так полетим ли на «ядре»?

В одной очень старой книге прочитал, что в СССР будет создана ядерная авиация. Где же она? Собираются ли строить самолеты с атомными реакторами в наши дни?

Сергей Караваев ,

г, Самара

Первая проба

— В 50-е годы XX века идея мирного использования атомной энергии была очень модной, — рассказывал мне бывший инженер-конструктор Павел Карпович Гонин. — Многим казалось: еще чуть-чуть и электроэнергию мы будем получать исключительно на атомных электростанциях, по морям-океанам поплывут атомные корабли, в небо поднимутся атомные самолеты и дирижабли. И даже по земле мы станем ездить на вездеходах, приводимых в движение энергией ядерного реактора…

Сбылось из тех мечтаний относительно немногое. Атомные электростанции действительно построены и работают, но их значительно меньше, чем предполагалось. По морям плавают несколько атомных ледоколов, да в океанских глубинах перемещаются атомные субмарины с ракетами на борту. А вот атомных самолетов, а тем более автомобилей что-то не видно. Почему? Павел Карпович в ответ на этот вопрос рассказал вот какую историю.

В 1959 году пермский конструктор Н.М.Цыпурин потихоньку стал приглашать коллег к участию в некоем суперсекретном проекте. И через некоторое время из Перми в столичный НИИ-1 прибыла группа молодых специалистов в составе В.Блинова, Т.Васиной, П.Гонина, В.Диканева и других. Перед ними была поставлена задача создания первого в СССР ядерного самолета.

Научным руководителем проекта был назначен М.В. Келдыш — будущий президент Академии наук СССР. Познакомившись с коллективом разработчиков, он вскоре понял, что энтузиазма молодым авиаконструкторам не занимать. Но неплохо было бы добавить к нему знаний по ядерной физике и соответствующим технологиям. Поэтому решено было действовать так: с утра разрабатывать проект, а вечером слушать лекции.

— Принципиальная схема двигателя оказалась не слишком сложной, — продолжал свой рассказ Гонин. — Его основу составляли тепловыделяющие элементы — ТВЭЛы, представляющие собой графито-урановые стержни, которые пронизаны капиллярами, изнутри покрытыми радиоактивными изотопами. Жидкое топливо, нагретое энергией радиоактивного распада, поступало в камеру сгорания, вспыхивало, и струя раскаленного газа создавала реактивную тягу.

Так все выглядело в теории. Однако на практике постоянно возникали разнообразные, порой очень сложные проблемы. Как сделать, чтобы графитовые ТВЭЛы выдерживали высокие давления? Как надежнее регулировать ядерный процесс? Как избежать аварийных ситуаций?..

Обсуждения и споры продолжались до поздней ночи. А утром — снова за работу. Так, ударными темпами, всего за несколько месяцев удалось создать первоначальный проект будущего самолета. И в назначенный срок он был представлен на «высший суд» авторитетнейших специалистов.

Совещание вел И.В. Курчатов. Присутствовали: С.П. Королев, В.П. Глушко, М.В. Келдыш, а также другие знатоки космической, авиационной и атомной техники. После доклада Цыпурина началось обсуждение разработки. Подчеркивались и сильные, и уязвимые стороны проекта. Но, в общем, его оценивали как весьма перспективный. Королев даже предположил, что в будущем подобные двигатели, установленные на ракете, позволят долететь до Луны и Марса.

Однако тут слово взял Курчатов. Худой, с болезненным, желтым лицом, он окинул зал пронзительным взглядом:

— Работа выполнена большая, грамотно и основательно. Пермяки молодцы. Однако есть одно «но»… Вы подумали о том, какова будет судьба населения, на головы которого падут радиоактивные выбросы двигателя?

Ответ руководителя группы, что, дескать, судя по расчетам, выбросы эти будут не такими уж значительными, Курчатова не удовлетворил.

— Ни грамма радиоактивных веществ в атмосферу! — категорично заявил он. — Иначе через пару десятилетий на планете нельзя будет жить…

И пояснил свою мысль так: «Представьте себе, что конструкция двигателя будет удачной. Тогда вслед за экспериментальным самолетом полетят другие. В мире начнется гонка ядерных моторов. А что делает радиация с человеком, я знаю на собственном печальном опыте…

Придумайте надежную систему защиты, иначе я не дам «добро» проекту».

На том и остановились…

Группа вернулась в Пермь. Работа над атомным авиадвигателем продолжалась. Теперь главным образом разрабатывались меры защиты, специальные замкнутые контуры, фильтры… Однако все это в комплексе получалось столь тяжелым, что сводило на нет все преимущества.

Вскоре, в 1960 году, умер Курчатов. А тогдашний руководитель СССР Н.С.Хрущев не поддержал идею развития стратегической авиации, на которую, в сущности, и был рассчитан проект. Группу в Перми расформировали; увесистые же тома отчетов оказались надолго замурованы в спецархивах.

Так бы выглядел в полете атомный бомбардировщик М-30 :

1 —реактор; 2 —ядерный двигатель.

Полеты с реактором

Так закрылась одна интересная и до недавнего времени совершенно секретная страница в истории отечественной авиационной техники. Возможно, это был первый в нашей стране инженерный проект, остановленный по соображениям экологической безопасности. Тем не менее, он не был забыт окончательно.

В Москве, в одном из отделов Российского научного центра «Курчатовский институт», стоит сравнительно небольшой — в полтора человеческих роста и в три обхвата — аппарат: физическая модель ядерного двигателя. Предполагалось, что примерно такой будет установлен на пилотируемом марсианском корабле.

По мнению одного из разработчиков аппарата, В.А. Павшука, только использование атомной энергии позволит совершить космический перелет продолжительностью 665 суток, пробыть в течение месяца на орбите искусственного спутника Марса и вернуться на Землю. Данная установка создаст реактивную тягу для преодоления силы земного притяжения и последующих маневров, а также обеспечит бортовые системы электрической и тепловой энергией.

Преимущества полета «на ядре»: максимальные мощности при минимальных размерах (в сравнении с установками других типов), наиболее компактное топливо — твердый раствор карбидов урана, ниобия, циркония. Наименьшая масса одного модуля: 50–70 т (предполагается использовать связку из 3–4 модулей). Общая масса пилотируемого комплекса порядка 1000 т. Его сборка будет производиться на околоземной орбите. Отсюда же он стартует в межпланетный полет. Тем самым исключаются любые вредные экологические влияния на биосферу.

Таковы перспективы космических разработок. Более того, в наши дни уже запущено несколько межпланетных исследовательских зондов с ядерными реакторами на борту. Ну а как дела обстоят с ядерными самолетами?

Оказывается, пермская разработка была не единственной. В декабре 1955 года наша разведка донесла: в США начались испытания перспективного стратегического бомбардировщика В-36 с ядерной силовой установкой на борту.

В противовес этому нашим правительством было тут же принято решение о доведении аналогичных работ до стадии испытаний и в СССР. И в марте 1956 года в ОКБ А.Н. Туполева начали работу по проектированию летающей атомной лаборатории на базе стратегического бомбардировщика Ту-95.

По словам непосредственного участника тех работ Д.А. Антонова, прежде всего специалисты хотели понять, можно ли создать достаточно эффективную и безопасную для экипажа конструкцию реактора. С этой целью в ОКБ были приглашены ведущие ученые-ядерщики того времени — Александров, Лейпунский, Пономарев-Степной и другие.

Один из вариантов компоновки атомного гидросамолета:

1 — кабина с защитным экраном; 2 — реактор; 3 — двигатели.

С их помощью авиационные конструкторы сумели так «обжать» ядерную силовую установку, поначалу напоминавшую по своим габаритам небольшой дом, что ее удалось «вписать» в самолетные габариты.

Тем не менее, до полетов было еще далеко. На основе первоначального проекта построен был в натуральную величину наземный испытательный стенд, изображавший часть фюзеляжа Ту-95, и отвезен на испытательную базу под Семипалатинск.

Именно там началась отработка практических режимов эксплуатации опытного реактора, выявление наилучшей конструкции защитной экранировки. На сей раз прямой выброс радиоактивного газа за пределы реактора не предусматривался. ТВЭЛы должны были нагревать теплоноситель первичного контура. Тот, в свою очередь, обогревал вторичный контур, а полученная энергия должна была использоваться для работы авиадвигателей.

Реактор, выгруженный из самолета-лаборатории Ту-95 .

Гладко было на бумаге…

Впрочем, на самой летающей лаборатории, куда после соответствующей доработки на земле и был помещен реактор, он прямой связи с турбореактивными двигателями не имел. Задача летающей лаборатории состояла лишь в том, чтобы выявить возможность работы реактора в воздухе и проверить системы безопасности. Эта задача и была выполнена в ходе 34 испытательных полетов, совершенных с мая по август 1961 года.

Испытания показали, что испытанные методы защиты хотя и достаточно надежны, но все же чересчур громоздки и тяжелы. Кроме того, они не обеспечивали 100 % защиты населения от радиации в том случае, если самолет в результате аварии или попадания ракеты противника упадет на землю.

Эти проблемы намечено было решить в ходе работы над модернизацией самолета Ту-119, который должен быть стать переходной моделью к бомбардировщику, двигатели которого непосредственно должны были работать от ядерной силовой установки.

Проект такого самолета был заказан ОКБ В.М. Мясищева, который разработал даже два варианта: сухопутный высотный стратегический бомбардировщик М-30 и гидросамолет с атомной силовой установкой (проект 60М). Однако оба эти проекта, несмотря на то что были тщательно проработаны и вполне осуществимы на базе технологий того времени, все же остались на бумаге.

Причин тому было несколько. С одной стороны, авиаконструкторам не удалось окончательно решить проблему безопасности в случае аварии самолета на своей территории. Более того, как показали расчеты, регулярные взлеты и посадки того же гидросамолета с ядерной установкой на борту приведут к значительному радиоактивному загрязнению акватории.

С другой стороны, в нашей стране были созданы ракеты, способные не только доставить атомную боеголовку в любой район земного шара, но и вывести полезную нагрузку в космос. И все это делалось с меньшим риском и стоило дешевле, чем создание атомного авиафлота.

Поэтому Н.С. Хрущев отдал все же предпочтение ракетам. Тем более что их стартовые установки оказалось возможным размещать не только на земле, но и на борту атомных подводных лодок.

Теперь еще и гафний…

И все-таки в наши дни возникла еще одна волна интереса к давнему проекту. Из-за рубежа пришло сообщение о подготовке к первому полету самолета с ядерным реактором на борту.

Несмотря на то что многие подробности проекта засекречены, нам удалось выяснить вот что. На сей раз реактор намечено разместить на беспилотном самолете-разведчике Global Hawk. Он уже совершил несколько испытательных полетов, даже пересек Атлантику, но пока с обычным турбореактивным двигателем. Теперь к нему хотят добавить небольшой реактор последнего поколения, работающий не на уране, не на плутоне, а на гафнии. Ранее этот редкий металл использовался в качестве замедлителя цепной реакции распада в некоторых промышленных реакторах. А сейчас выяснилось, что некоторые изомеры гафния — скажем, так называемый «гафний-17В» — способны под ударами рентгеновского излучения выдавать поток энергии в виде гамма-излучения. Причем мощность этого потока в 60 раз больше, чем исходное рентгеновское излучение!

Теперь схема полета самолета-разведчика видится экспертам такой. Взлетит он, как обычно, с помощью турбореактивного двигателя, работающего на керосине. Но когда наберет высоту порядка 15 км, двигатель переключится на использование горячего воздуха, нагреваемого уже не в камере сгорания, а в ядерном реакторе.

По словам Кристофера Гамильтона, одного из разработчиков нового реактора, такая схема позволит самолету летать без дозаправки несколько месяцев. А поскольку при работе гафниевого реактора испускается только гамма-излучение, для защиты требуются более легкие экраны — вроде тех, что используются в рентген-кабинетах. Причем период полураспада гафния-17В составляет всего 31 год, а не тысячелетия, как у урана. Что, согласитесь, нанесет куда меньший урон окружающей среде, чем при аварии обычного реактора. В отличие от урана или плутония, гафний так же не способен самостоятельно поддерживать цепную реакцию, а значит, радиация от него прекращается тотчас после выключения рентгенустановки, инициирующей излучение.

Наконец, гафний совершенно бесполезен для террористов — бомбу из него не соорудишь… Тем не менее, даже в лабораториях ядерного оружия в Лос-Аламосе и Сандии (штат Нью-Мексико), где ведутся работы над этим проектом на деньги Министерства энергетики США, пока сдержанно комментируют перспективы разработки. Специалисты явно помнят о 60-летней истории разочарований и неудач, связанных с этим проектом.

Илья ЗВЕРЕВ

 

И снова о киборгах

Слышал, что во всем мире, в особенности в США, ударными темпами идут работы по созданию кибернетических организмов. Зачем это надо? Когда могут появиться первые киборги?

Виктор Малахов ,

г. Калининград

Мы уже рассказывали (см. «ЮТ» № 12 за 1999 г.), как радовался английский профессор Кевин Уорвик, когда ему удалось вживить микрочип себе под кожу. «Теперь я становлюсь всемогущим, — восторгался он. — В лаборатории передо мной сами собой открываются двери, а центральный компьютер приветствует меня, как только я вхожу: «Доброе утро, профессор Уорвик»…

Восторгался профессор, впрочем, недолго. Через неделю микрочип пришлось вытащить из-под кожи, поскольку организм начал отторгать чужеродный предмет.

Однако преодоление иммунного барьера — дело времени. Уже появились первые биочипы на основе органики. Дальше дело дойдет до того, что микрочипы начнут строить из белков организма самого пациента, и иммунная система не сможет отличить его от клеток собственного организма. Человек таким образом получит возможность иметь в своем организме собственный вычислительный центр.

Разве плохо? Ведь тогда люди, что называется, усилием мысли смогут управлять любой техникой, без труда входить в Интернет, да и вообще откроют мир новых возможностей!

Что такое, в принципе, возможно, недавно доказали исследователи из Университета Брауна (г. Провидено, США). Им не только удалось разработать действующую модель микросхемы, способной читать электрические импульсы головного мозга и преобразовывать их в сигналы, понятные электронной технике, но и вживить микрочип в головной мозг обезьяны.

Сразу три макаки-резуса стали обладателями чипов размером с фасолину. Каждую обезьяну усадили перед монитором и дали возможность воздействовать на компьютерное изображение традиционным способом — при помощи джойстика или мышки.

Когда обезьяны вошли во вкус игры, джойстики отключили; сигнал в компьютер пошел через специальное устройство, связанное с вживленной микросхемой. Та сканировала определенные участки мозга, улавливала знакомые электрические импульсы и направляла курсор именно туда, куда хотела макака. Так обезьяны, сами того не подозревая, первыми сделали шаг к управлению компьютером более удобным и высокоточным — мысленным способом.

Осталось перейти от опытов над животными к полноценному взаимодействию компьютерной техники с людьми. И хотя ожидаемый прорыв еще впереди, уже сейчас идет серьезная борьба за то, кого запишут в первые киборги.

Те же ученые из Университета Брауна заявили, что будут внедрять свою разработку среди инвалидов, лишенных возможности двигаться. Полностью парализованный человек с подобной микросхемой сможет, например, управлять инвалидной коляской, работать на компьютере и, может быть, даже вернет себе контроль над своим телом.

Впрочем, у инвалидов имеются серьезные конкуренты и среди вполне здоровых людей. Это, как ни странно, — астронавты. Еще в 2001 году НАСА заявило о возможности создания устройства, при помощи которого человек, вышедший в открытый космос, мог бы почти мысленно управлять космическим аппаратом.

Если быть точным, в описании говорилось о «нейроэлектронном подключении»: в кисть руки, как у профессора Уорвика, вознамерились вживить специальные электроды, которые снимали бы сигналы с нервных окончаний, а компьютер на борту аппарата мог бы расшифровывать эти сигналы и выполнять отданные команды.

По мнению экспертов, такая система могла бы пригодиться в случае возникновения ЧП на борту орбитальной станции в тот момент, когда ее экипаж работает в открытом космосе.

Специалисты исследовательского центра имени Эймса в начале 2004 года продемонстрировали прототип этого устройства и заявили, что работы по созданию рабочей модели продлятся еще около двух лет. Впрочем, даже если исследования американцев продлятся дольше, многие эксперты полагают, что управление при помощи мыслей электроприборами в целом и компьютером в частности непременно станет общедоступным — как, например, постепенно становится сама собой разумеющейся беспроводная связь модема и компьютера.

Действительно, принципиальных ограничений в создании такой системы, похоже, нет. Каждая отрасль современной науки вложит в кибернетизацию человека свой вклад. Биологи создадут органический микрочип, работающий именно с человеческим мозгом, и разработают быструю и безболезненную операцию по его вживлению — не сложнее, чем пирсинг. Физики сделают возможной связь между мозгом и процессором, а также постараются, чтобы эта связь поддерживалась на значительных расстояниях. Программисты напишут специальные программы, приспособленные для расшифровки электрических импульсов мозга.

Наконец, психологи разработают систему тренировок, которые позволят каждому человеку обучиться командованию электронными помощниками, не открывая рта.

Так что не за горами первая стадия превращения человека в киборга. Но почему же тогда так много специалистов относятся к этой идее настороженно?

Еще полвека назад ученые провели впечатляющую серию опытов, вживив электроды в мозг быка. Посылая один сигнал, быка превращали в разъяренного зверя, сметавшего любую преграду на пути. А стоило подать другой сигнал, и бык тут же становился покорней овечки…

Аналогичные эксперименты провели затем на крысах и даже собаках. И при этом выяснилось, что животными вполне можно управлять, направляя их туда, куда хотелось бы оператору. И даже говорилось о том, что вот, дескать, теперь управляемые крысы смогут проникать в завалы, неся на себе телекамеры и позволяя таким образом быстрее разыскивать людей, попавших в завалы после землетрясения, бомбежки или иного бедствия.

Однако пострадавших можно отыскать и при помощи дистанционного зондирования особыми портативными радарами снаружи — и такие системы уже имеются. А вот управление через мозг ах как заманчиво использовать, например, для тотального контроля.

До сих пор ведь на людей пытались воздействовать лишь пропагандой да силой принуждения. А тут такой идеальный инструмент… Так что, стоит, наверное, пока не поздно, наложить на подобные разработки мораторий, как это сделано с клонированием людей. И сначала хорошенько разобраться, что можно и что нельзя в этой технологии, а уж потом двигаться дальше.

Д.НОВИКОВ , научный обозреватель «ЮТ»