Юный техник, 2005 № 07

Журнал «Юный техник»

ПОЛИГОН

 

 

Решим задачу Григгса?

Наука открывает законы природы, опираясь на твердо установленные факты. Но время от времени «выплывают» эксперименты, ставящие ученых в тупик. Так, например, было после открытия радиоактивности — откуда-то выделялась энергия, а атом, считавшийся неделимым, распадался на части. Прошли годы, прежде чем все недоумения были развеяны. Нечто подобное происходит и в наше время. Но давайте по порядку.

В начале 90-х годов прошлого века американский инженер Джеймс Л. Григгс, занимавшийся электрическими приборами для систем отопления зданий, отошел от традиции. Обычно для нагрева воды применяют трубчатые нагревательные элементы (ТЭНы). ТЭН — напомним — это трубка, внутри которой расположена спираль, нагреваемая электрическим током. Чтобы она не касалась стенок, на нее надевают фарфоровые изоляторы, а все свободное пространство заполняют порошком окиси магния либо алюминия. Он способствует передаче тепла от спирали к стенке и далее к воде.

При нормальных расчетных условиях работы спираль имеет низкую температуру, почти не окисляется, а срок службы ТЭНа достигает многих лет. Однако если в воде много солей, то поверхность ТЭНа покрывается шубой накипи (рис. 1).

Спираль перегревается, и ТЭН быстро «перегорает». ТЭН может выйти из строя и потому, что в воде содержатся твердые частицы и растворенные газы. И даже от того, что замедлилась скорость ее движения. Особенно неприятно, когда выходит из строя система отопления большого здания.

Григгс решил получать тепло при помощи трения. И специально для этих целей сконструировал… очень плохой водяной насос, в котором лишь 2–3 % мощности тратились на перекачивание воды, а все остальное уходило на трение и приводило к сильному нагреву воды. Именно это и требовалось от устройства, которое стали называть механическим теплогенератором.

Если КПД ТЭНа близок к 100 %, то у механического теплогенератора он не выше, чем у приводящего его в движение электромотора — 90–95 %. Потеря энергии должна была, по мнению Григгса, окупиться снижением затрат на ремонт системы отопления из-за частого выхода ТЭНов из строя.

Опыт подтвердил правоту инженера. Механический теплогенератор надежно работал в системе отопления зданий. На него не влияли содержавшиеся в воде соли и механические примеси. Но когда стали подсчитывать затраты на отопление, то вместо ожидавшихся 10 % потерь неожиданно получили 14 % экономии по сравнению с системой, где применялись ТЭНы. Откуда-то брался избыток энергии.

Теплогенераторы охотно покупали, но Григгса продолжал волновать вопрос, откуда берется избыток энергии. В 1992 г. он поставил контрольный опыт. В лабораторных условиях теплогенератор забирал воду из бака с добротной тепловой изоляцией и возвращал обратно. Энергия, потребляемая мотором теплогенератора, измерялась при помощи точных приборов.

Через час работы системы температуру воды в баке замерили, подсчитали и выяснили: каждый джоуль электроэнергии, пришедший из сети, создавал в баке 1,5 Дж тепла!

Сегодня, потратив 2–3 тысячи долларов, вы можете купить кондиционер, способный работать в режиме теплового насоса и на каждый Дж электроэнергии выдавать более двух Дж тепла. Но избыток тепла он берет из уличного воздуха — засасывает теплый, а выбрасывает холодный. В теплогенераторах Григгса этого нет. Нет и никакого внятного объяснения причин появления в них избытка энергии. Существуют лишь догадки.

Думали, что в воде происходят термоядерные реакции между атомами присутствующего в ней тяжелого водорода. Но тогда при работе генератора возникала бы радиация, а ее не обнаружили.

Думали, что молекулы воды как-то соединяются друг с другом и это приводит к выделению энергии. Тогда на выходе генератора в больших количествах появлялась бы гипотетическая «полимерная вода». Но нигде никто и никогда ее не обнаружил.

Есть и гипотезы об извлечении энергии из физического вакуума, но сегодня они вообще не поддаются проверке.

Когда тайна теплогенератора будет раскрыта, сказать трудно. Но построить его модель вы можете уже сейчас.

Вот как он устроен (рисунок взят из патента США № 5 188 090) (рис. 2).

Рис. 2

В цилиндрическом корпусе, выточенном из стали, расположен алюминиевый ротор со сверлениями на ободе. Корпус закрыт плоской крышкой на винтах. Вода поступает через зазор между боковой поверхностью ротора, обтекает его со стороны обода и через другой боковой зазор вытекает, уже нагретая. В зазорах вода нагревается за счет трения, и в ней образуется множество газопаровых пузырьков. Основные же события происходят на ободе (рис. 3).

Здесь идут два процесса. Сначала ячейки заполняются водой. Она смачивает их стенки и прилипает к ним. Но под действием центробежной силы вода в них начинает растягиваться, как бы рвется, и вылетающие капли с большой скоростью ударяют в стенку. Возникает ударная волна, и возрастает давление. Волна встречает на своем пути многочисленные газопаровые пузырьки и схлопывает их. Происходит кавитация. В центре пузырька возникает громадное давление — от 12 до 450 тыс. атм. В этой-то зоне и возникают непонятные пока физические события.

Обычно теплогенераторы Григгса делают на мощности в несколько десятков кВт. Диаметры их роторов достигают 300 и более мм при скорости вращения 3000 об/мин. Но если, например, увеличить ее вдвое, те же явления будут происходить и на роторе диаметром 75 — 100 мм. Сделать его можно на школьном токарном станке. Ротор и статор такого теплогенератора для демонстрации и лабораторных работ показаны на рисунке. В качестве привода для него подойдет любой асинхронный двигатель мощностью более 0,5 кВт с ременной повышающей передачей. В ней могут быть использованы шкивы, применяемые в легковых автомобилях.

Для определения эффекта получения избытка энергии нужно замерить энергию, получаемую электромотором, и сравнить ее с той, что дает теплогенератор.

Энергопотребление мотора замеряют при помощи обычного электросчетчика. Энергию, выдаваемую теплогенератором, подсчитывают, измеряя массу и температуру полученной горячей воды.

В нашем случае можно получить тепловую мощность 1–1,5 кВт, что может быть полезно в хозяйстве и наведет вас на мысль о необходимости постройки более мощного устройства.

Для этого мы рекомендуем ознакомиться с книгой: Л.П.Фоминский. Роторные генераторы дарового тепла. Сделай сам . Черкассы, «ОКО-Плюс», 2003.

Предупреждаем, что книга очень своеобразна. Примерно половина ее посвящена технике и науке, а другая — политике. Техническая часть написана очень хорошо; именно ее мы и рекомендуем прочитать.

А.ИЛЬИН

 

Почти без электроники

Как мы уже рассказывали (см. «ЮТ» № 6 за 2005 г.), телевизионный приемник появился в начале 20-х годов прошлого века и был в основном механическим, а вся его электроника состояла из двух обычных радиовещательных приемников. Один из них принимал телевизионный сигнал, другой — звуковое сопровождение. Высшая частота модуляции телесигнала достигала 7500 Гц, поэтому телепередачи велись на средних и коротких волнах и их можно было принимать даже на другом берегу Атлантического океана.

Принятый телевизионный сигнал подавался на неоновую лампу. Ее свет реагировал на модуляцию телевизионного сигнала, нес всю информацию о передаваемом изображении. Но ее еще нужно было превратить в изображение.

Делали это чаще всего двумя способами. Самый простой из них — это установка перед лампой диска Нипкова (рис. 1) и ограничительной рамки. В соответствии с принятым тогда стандартом, диск имел тридцать отверстий, расположенных по спирали, и вращался со скоростью 12,5 оборота в секунду.

При неподвижном диске через ограничительную рамку было видно одно из отверстий. Освещенное лампой, оно казалось светящейся точкой. Но когда же диск вращался, глаз воспринимал светящуюся строку. (Так превращается в круг свет от быстро вращаемого в темноте фонарика.) Поскольку яркость лампы постоянно изменялась, то и яркость отдельных участков строки получалась различной. Так возникала строка телевизионного изображения.

В каждой строке укладывалось сорок точек. Таким образом, один кадр состоял из 1200 элементов. За один оборот диска в пределах ограничительной рамки возникал один телевизионный кадр, а за секунду — 12,5 кадра.

Несмотря на то что зритель за секунду получал в 600 раз меньше информации, чем получает сегодня на экране ТВ нормальной четкости, механическое телевидение имело успех. Можно было легко опознать любимых актеров, а если изображение давалось во весь экран, то и полюбоваться их красотой.

Телевизоры с диском Нипкова были крайне просты. В промышленных образцах диск вращался при помощи крохотного синхронного электромоторчика. Это была самая сложная его часть. Однако любители делали такие моторы самостоятельно, а иногда и обходились без них. Диск вращали при помощи рукоятки через ременную передачу и получали вполне удовлетворительное изображение. Принципиальным недостатком диска Нипкова была низкая яркость изображения. Сквозь отверстие диска проходила лишь малая часть света тускловатой лампы. Практически наблюдать изображение мог лишь один человек, и то через лупу.

Значительно лучше использовался свет в простейших телевизорах с разверткой зеркальным винтом (рис. 2).

Он состоял из тридцати металлических пластин, спирально насаженных на вертикальную ось. Одна из их граней была отполирована как зеркало. Рядом с зеркальным винтом ставилась неоновая лампа с ярким свечением в щели между электродами. Пока винт был неподвижен, в одной из его граней было видно отражение кусочка щели лампы. Как только зеркальный винт начинал вращаться, отражение пробегало от одного конца грани до другого, прочерчивало строку и уходило из поля зрения. А вслед за ним появлялось изображение в другой грани. Как утверждал журнал «Радиофронт», возле небольшого, размером с коробку от торта, телевизора с зеркальным винтом могло располагаться до 30 человек. В это можно поверить лишь с учетом крайней неприхотливости первых телезрителей (рис. 3).

Четкость в 30 строк оставляла желать лучшего. В Англии ее повысили до 60 строк. Качество изображения получилось сравнительно высоким, полоса частот увеличилась до 30 кГц, но сигнал еще можно было передавать на коротких волнах в свободном радиоэфире того времени.

В нашей стране в 1938 году был сделан механический телевизор с четкостью изображения 440 строк. Он имел сложную оптико-механическую систему отклонения светового луча, а источником света служила проекционная лампа со специальным модулятором света.

Появившиеся в это время электронно-лучевые трубки (ЭЛТ) давали более качественное изображение и были гораздо проще в изготовлении, чем оптико-механические системы. По пути применения ЭЛТ и пошло телевидение.

Но механическое ТВ не закончилось. Один из последних механических телевизоров работал в 80-е годы прошлого века на одной из международных выставок в Японии. Он давал превосходное цветное изображение на экране с диагональю двадцать метров. В печать просочились лишь довольно скудные сведения о его устройстве.

В основе его был обычный телевизионный приемник. Изображение на экране создавалось путем отклонения трех разноцветных лазерных лучей. Оно производилось при помощи двух многогранных зеркальных барабанов. Один из них осуществлял строчную развертку с частотой 625x25 строк в секунду. Этот барабан имел 25 граней и вращался со скоростью 37 500 оборотов в минуту. Другой — осуществлял кадровую развертку, сдвигая строку поперек кадра.

Оптико-механическая система имела незначительные потери света, и применили ее, несмотря на старомодность, для получения изображения, размеры и качество которого для электронных средств недостижимы.

Тогда, в 80-е годы прошлого века, техника телевидения вполне могла пойти по пути создания компактных механических телевизоров для домашнего применения. Аппарат размером с коробку от торта давал бы изображение высочайшего качества размером с целую стену. При кассовом производстве он стоил бы не дороже видеоплейера. Но был выбран иной путь, который лишь через двадцать лет привел к появлению в наших домах дорогих плоских экранов.

Эксперименты с простейшими механическими телевизорами не лишены интереса и в наши дни. Сегодня всем нам доступны применяемые в карманных фонариках светодиоды белого свечения, яркость которых в сотни раз превышает яркость неоновых ламп. У некоторых из них она под действием приложенного напряжения может меняться с частотой в сотни и тысячи кГц.

Сделать телевизор с зеркальным винтом или диском Нипкова и применить в нем светодиод совсем нетрудно.

Но где взять для него сигнал? Сохранились рассказы очевидцев о радиолюбителе В. Китченкове, который в 60-е годы прошлого века на механический телевизор принимал московское телевидение. Он увеличил частоту вращения зеркального винта до 50 об/сек., а на неоновую лампу подавал сигнал от каждой десятой строки. К сожалению более подробных сведений не сохранилось.

Но для чисто демонстрационных целей, а также для управления моделями можно собрать замкнутую систему механического телевидения. В ней, как это иногда бывало в старину, в качестве телекамеры используется доработанный телевизионный приемник, в котором за диском Нипкова или рядом с зеркальным винтом вместо лампы ставился фотоэлемент, а на плоскости кадра посредством объектива от фотоаппарата создавалось действительное изображение снимаемого объекта. Снятый с фотоэлемента сигнал поступал на вход обычного радиопередатчика и передавался в эфир.

Однако, если механический ТВ-приемник при правильном конструировании может стать полноценным конкурентом приемника электронного, то с механической телекамерой (МТК) этого не происходит. Ее чувствительность к свету всегда в тысячи раз ниже, чем у телекамеры электронной. На рисунке 4 вы видите схему простейшей МТК с зеркальным винтом. Объектив желательно взять с максимальной светосилой, например, Гелиос-44 от фотоаппарата «Зенит». Справа от зеркального винта расположена накрытая кожухом группа фотодиодов и усилитель. На первых порах ограничимся связью МТК с приемником при помощи провода.

На рисунке 5 — схема механического телевизионного приемника (МТП) с зеркальным винтом.

Справа от винта расположен источник света. Он состоит из яркого светодиода белого свечения, заключенного в отражающий кожух из белой жести. Равномерно освещенная щель в нем играет роль протяженного источника света. Если один достаточно яркий светодиод достать не удастся, то можно выстроить в одну линию несколько маломощных. Но и в этом случае их следует закрыть кожухом со щелью, ширина которого примерно в два раза уже ширины элемента изображения.

Во всех случаях кожух делается из чистой белой жести, хорошо отражающей свет. Для защиты изображения от постороннего света МТП помещен в корпус, окрашенный изнутри в черный цвет.

Несколько слов о телевизионном стандарте. В данном случае для вращения винта лучше всего использовать двигатель от старого электропроигрывателя. Он отличается высокой точностью исполнения и вращается бесшумно со скоростью 3000 об/мин. Если на него насадить винт, то тем самым будет определена частота кадров — 50 за одну секунду. При этом возрастает занимаемая сигналом полоса частот, но это не важно, если передача производится по проводу.

Количество строк на стороне МТП определяется яркостью источника света и нашим умением точно сделать два зеркальных винта. Вот как их делали в старину.

Для стандарта в 30 строк нарезали из нержавеющей стали или дюраля 34–36 ровных плоских пластин, насаживали их на ось и стягивали гайками. Одну из плоскостей полученного пакета сначала опиливали напильником с мелкими зубьями, а затем шлифовали с мелким наждаком и маслом на ровной чугунной плите. Если это делать плавными движениями и так, чтобы края детали не выходили за границы плиты, то за 2–3 часа работы можно получить ровную и очень плоскую поверхность (рис. 6).

Далее ее нужно отполировать до зеркального блеска. Конечно, лучше бы это сделать на той же плите, заменив наждак зеленой полировочной пастой ГОИ. Но на такую работу уйдет много времени. Поэтому пользовались смазанным пастой полировальным кругом из сукна. Но при такой работе неизбежно будут «завалены», скруглены края плоскости. Из-за этого отражение света в первых и последних строках не будет видно. Чтобы этого избежать, в стопу добавляли несколько лишних пластин, которые повреждались при полировке, но удалялись при окончательной сборке винта. При окончательной сборке важно все пластины развернуть относительно друг друга на постоянный угол. Это делалось при помощи шаблона. Так можно получить два одинаковых зеркальных винта. На первых порах лучше ограничиться небольшим числом строк. Это позволит приобрести опыт в совершенно забытой области механического телевидения.

В заключение отметим, что яркости современных светодиодов, как показывает расчет, вполне достаточно для получения хорошего изображения с четкостью 600–800 строк. Сделать зеркальный винт с соответствующим числом пластин умели еще 70 лет назад. Намек, думаю, понятен. Только сигнал для такого телевизора получить от механической телекамеры невозможно, следует применять только электронную.

Г. МАЛЬЦЕВ

Рисунки автора

Подробности для любознательных

Низкая чувствительность механической телекамеры объясняется самим принципом работы. Система развертки как бы «ощупывает» изображение точка за точкой и, задерживаясь на каждой из них очень короткое время (тысячные доли от времени, отведенного всему кадру), успевает послать на фотоэлемент ничтожную порцию света, вызывающую в нем очень небольшой импульс тока.

У телекамеры электронной каждый элемент изображения находится под действием света на протяжении всего кадра и успевает за это время накопить солидный заряд, который снимается электронным лучом и вызывает в его цепи в тысячи раз более мощный импульс.