Так называлась специализированная выставка, посвященная новинкам подземного строительства. Среди прочих посетителей на ней побывал и наш специальный корреспондент Станислав ЗИГУНЕНКО. И вот что там увидел.

Дома на «ножках», или Зачем молния строителям?

Этот стенд сразу бросился в глаза броской надписью. «Разрядно-импульсные технологии и аппараты» — значилось на ней. И немного ниже: «Строительство на фундаменте зданий».

Я подошел поближе и попросил технического директора проектно-строительного предприятия РИТА Валерия Яковлевича Еремина — так значилось на табличке, прикрепленной у него к лацкану пиджака, — пояснить мне суть дела.

— Ведь разрядно-импульсные технологии, наверное, предполагают использование в строительном деле электричества, этаких искусственных молний? — попробовал проявить свою эрудицию ваш корреспондент.

Схема, поясняющая суть разрядно-импульсной технологии.

Цифрами на схеме обозначено: 1 — скважина до обработки; 2 — электродная система; 3 — генератор импульсных токов; 4 — бетононасос; 5 — зона цементации грунта; 6 — зона уплотнения грунта; 7 — камуфлетное расширение в основании сваи.

Вид самой сваи, отрытой после экспериментальных проб.

— Вы правы, — согласился со мной Валерий Яковлевич, — иногда мы вынуждены метать молнии. Но они не опасные, примерно такие же, как и те, что работают в карбюраторном двигателе внутреннего сгорания. Только «свечи зажигания» у нас побольше. И он продемонстрировал цилиндр длиной с полметра. Такие «свечи» могли бы стоять разве что на автомобиле великана.

Потом он опустил «свечу» в бочку с водой, повернул электровыключатель, и в бочке тут же забухало — то взрывались искусственные молнии, производя гидравлические удары.

— Здесь мы подаем на разрядник всего около 6000 вольт, — пояснил Еремин. — Можно и вдвое больше, да боимся, бочка тогда развалится. Используется же подобная технология вот для чего. Дома обычно строят на сваях. Чтобы не копать котлован, на строительную площадку загоняют копер и он стучит несколько дней, загоняя в землю железобетонные сваи. Однако такая технология применима далеко не всюду. Из-за нехватки свободных земель в больших городах начинают вести строительство и на так называемых слабых грунтах, которые при обычной методике могут и не выдержать тяжести здания. И тогда оно потонет, словно «Титаник».

— А помните ли вы, на каком основании стоит избушка Бабы Яги? — неожиданно спросил Валерий Яковлевич.

— Конечно же, на курьих ножках!

— Правильно. А каждая такая ножка кончается, между прочим, лапой, растопыренные пальцы которой обеспечивают значительную площадь опоры. Так что такая избушка может стоять даже на болоте — ничего с ней не случится.

Нечто подобное теперь применяют в своей практике и современные строители. Они делают сваи с «пальцами». Точнее, с опорой большой площади, на которую и опирается свая, а на нее — уж и сам многоэтажный дом. Делают такую сваю непосредственно на месте строительства.

Сначала бурят скважину на проектную глубину. Обычно на слабых грунтах она тут же заполняется подземными водами. В воду и опускают электроразрядник. Несколько разрядов — и гидравлические удары заставляют окружающий грунт заметно раздаться в стороны. Разрядник вытаскивают, а в скважину закачивают бетонный раствор и вставляют арматурные стержни. А когда бетон застынет, получается монолитная свая, опирающаяся своим нижним концом на солидных размеров «подушку».

Дом на таком фундаменте не покосится, простоит долгие годы даже на болотистом грунте.

Современный туннель — сложное гидротехническое сооружение.

Проходческий щит — могучая машина!

Плавают ли стены, или Зачем в земле якоря?

И это — не единственная новинка, которую используют в своей работе специалисты предприятия РИТА. (Кстати, само название образовано не от женского имени, это аббревиатура от — Разрядно-Импульсные Технологии и Аппараты). Еще, например, они умеют ставить в нужных местах якоря-анкеры.

— На море, как известно, якоря позволяют судну держаться на одном месте, несмотря на волны и ветер, — проявил эрудицию еще раз ваш покорный слуга. — Но зачем якоря на суше?

Оказалось, и тут бывают своего рода штормы. Нет, речь в данном случае не о землетрясениях. В тех местах, где бывают колебания почвы, строят особо сейсмостойкие сооружения.

Довольно часто прежде, чем поставить какое-то строение, строителям приходится-таки рыть котлован. Например, в тех случаях, когда под зданием запроектирована подземная стоянка для автомобилей или склад.

Многоярусная «стена в грунте» в котловане, отрытом при строительстве делового центра Москва-Сити.

В современных городах стройплощадки зачастую приходится втискивать между уже построенными зданиями. Грунт же, как известно, обладает определенными механическими свойствами, в частности, сыпучестью. Так что невозможно выкопать в земле котлован с вертикальными стенками. Если не принять специальных мер, они обязательно «поплывут», начнут осыпаться, а то и попросту обвалятся.

Укрепляют стенки котлована разными способами. Специалисты предприятия РИТА предпочитают делать это с помощью якорей-анкеров. По существу, они представляют собой примерно такие же монолитные сваи, как и в предыдущем случае, только скважины под них теперь бурят горизонтально. А когда закачанный внутрь скважины железобетон затвердеет, крепят к арматуре щиты опалубки. Эти щиты и не дают грунту осыпаться.

Схема укрепления стенок канала и береговых откосов с помощью якорей-анкеров.

Стена в грунте, или Как строят «земноскребы»?

Когда периметр котлована очень велик, а сам он очень глубок, его края крепят при помощи технологии «стена в грунте». Вот что рассказал мне об особенностях этой технологии главный специалист ООО «Каналстройпроект» Б.М. Пржедецкий.

— Представьте себе, что нам нужно прорыть канал в местности, грунты которой славятся особой осыпаемостью, — пояснил он. — Тогда по краю будущего канала начинают рыть траншею. Сначала неглубокую, чтобы стенки не осыпались. Канаву по мере отрытия заполняют глинистым раствором с удельным весом больше единицы. Он вытесняет грунтовые воды, не дает им возможности заполнить канаву. Тем временем землеройная техника отрывает соседний участок канавы. Глинистый раствор постепенно перетекает туда, а ему на смену заливают бетон и ставят арматуру. И так, шаг за шагом, на одном берегу канала строят своеобразный бетонный забор. Аналогичную операцию делают и на другом берегу. После этого пространство между «заборами» освобождают от земли, не опасаясь, что стенки будущего канала обвалятся.

Технология «стена в грунте» позволяет вести строительство в самых трудных условиях.

По мере необходимости операцию по участкам повторяют снова и снова, пока весь котлован не достигнет проектной глубины, после чего переходят к бетонированию дна будущей искусственной реки. Иногда подобную технологию применяют и для обычных, а не гидросооружений. Так, скажем, наши знакомые из РИТА используют технологию «стена в грунте» для возведения подземных стоянок под уже существующими зданиями. В таких случаях по периметру будущей стоянки они сверлят отверстия для монолитных свай вплотную друг к другу, так что они действительно по окончании работ образуют сплошную монолитную стену.

Можно таким образом вести и строительство своеобразных «земноскребов», — многоярусных подземных сооружений, уходящих вглубь на десятки метров.

Лазерные изыски, или Как не потеряться под землей?

И наконец, на выставке «Подземный город» я получил ответ на еще один, давно интересовавший меня вопрос. А именно: каким образом строители подземелий ухитряются строить, например, тоннели таким образом, чтобы они соединяли между собой точно намеченные пункты?

Оказывается, точное направление строителям дают подземные штурманы — маркшейдеры. Причем если морские или воздушные штурманы выверяют свои маршруты с помощью магнитных и гирокомпасов, спутников системы GPS, то и маркшейдеры используют самые современные приборы.

В частности, в последнее время особым предпочтением пользуется у них лазерная техника. Например, на выставке представители научно-производственного предприятия «Навгеоком» продемонстрировали целый набор лазерных инструментов на все случаи жизни.

С помощью лазеров проводят, например, трехмерное сканирование объектов, которые затем подвергнутся реставрации, точный обмер помещения, где потом разместят то или иное технологическое оборудование, определят параметры участка тоннеля метро, который нужно подвергнуть ремонту, или определят точное направление при прокладке нового.

Вот как, например, по словам представителя НПП «Навгеоком» М.Н. Аникушкина, работает система лазерной навигации при проходке тоннеля.

Основу ее составляет лазерная станция или лазерный теодолит, который устанавливают на стене или облицовке уже построенной части тоннеля таким образом, чтобы его поменьше трясло. Положение луча в пространстве задается маркшейдерами на основе расчетов. Они ведь перед тем, как проложить трассу под землей, не раз выверяют ее маршрут на поверхности. Определяют с помощью контрольного бурения заглубление тоннеля на том или ином участке, еще и еще раз уточняют его направление и возможные изгибы.

Итак, лазерный луч выставлен, распространяется же он строго по прямой, даже в условиях запыленности примерно на 100–200 м, и попадает в закрепленную на проходческом щите лазерную мишень. На самой же мишени установлен двухосевой инклинометр — прибор, датчики которого позволяют измерять продольный наклон и закручивание лазерной мишени относительно опорного луча.

Таким образом любое изменение положения проходческого щита тут же фиксируется инклинометром. И он подает сигнал оператору о выправлении курса проходки. Ну, а чтобы каждый последующий участок тоннеля в точности совпадал с предыдущим, позади лазерной станции на определенном расстоянии ставится призма, на которую направляется еще один лазерный луч. По колебаниям светового зайчика на этой призме специалисты определяют величину смещения «хвоста» проходческого щита относительно его «головы» и таким образом все время выправляют курс движения агрегата.

Схема лазерной навигации при проходе туннелей.

Цифрами обозначено: 1 — готовый тоннель; 2 — призма; 3 — лазерная станция; 4 — лазерная мишень; 5 — проходческий щит.