Юный техник, 2005 № 10

Журнал «Юный техник»

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

 

 

Верхом на чужой волне

В научно-фантастическом романе А.Казанцева «Пылающий остров» есть любопытное место. Советский летчик Матросов попадает в подвал с прикованными на цепях скелетами. Казалось бы, все, конец… Но находчивый летчик делает из цепей коротковолновый радиопередатчик, в котором нет ни ламп, ни каких-либо иных радиодеталей. Работает же он за счет энергии отраженных радиоволн. Матросов посылает сигнал SOS, и помощь приходит вовремя…

Неужели такое возможно?

В современном естествознании немало фактов, разъяснить которые наука бессильна. Работа антенны — один из них.

Поговорим о самой простой — штыревой. Какую часть от энергии, излучаемой радиостанцией, может принять простой металлический штырь? Казалось бы, только тех радиоволн, которые непосредственно на него падают. Если это так, штыревую антенну нужно делать как можно толще. Поскольку поперечник рельса, например, в тысячи раз больше, чем у медного волоска, то и энергии он должен принять в тысячи раз больше. Но если вы сделаете эксперимент с приемом на рельс и потом замените его самым тонким медным волоском такой же длины, то разницы в громкости приемника обнаружить не удастся. Это удивляет, не правда ли?

Поэтому в свое время ученые ввели для антенн понятие «эффективная площадь» и постановили считать ее математической абстракцией. Однако такую точку зрения приняли не все ученые.

Физическое объяснение принципа работы антенны выдвинул Р.Рюденберг, один из основателей теории антенн, еще в 1908 году. Затем это объяснение уточнили в 1947 году Чу и в 1981 году Хансен. Правда, эти работы опирались на крайне сложный математический аппарат, малодоступный даже для специалистов. Недавно профессору физики В.Т.Полякову удалось найти достаточно точное решение задачи методами элементарной математики.

Вот в чем, по его мнению, физическая суть работы приемной антенны.

Под действием приходящих радиоволн в ней возникают токи, создающие вокруг антенны собственное поле. Оно действует в непосредственной близости от нее, на расстоянии менее длины волны. Поэтому его называют ближним полем. Если антенна настроена в резонанс с частотой приходящих радиоволн, то ближнее поле как бы увеличивается в размерах, распухает и окутывает антенну. Антенна как бы многократно увеличивается в размерах.

Таким образом, антенна ловит радиоволны не самим проводником, а своим ближним полем, являющимся не чем иным, как полем движущихся по поверхности металла электронов.

Что же касается здравого смысла, то он здесь прекрасно работает. Надо лишь правильно его применять. Антенна, рельс или любой гибкий кусок металла в поле радиоволн всегда обретают ближнее поле, невидимое глазу.

Ненагруженная антенна, настроенная в резонанс с принимаемой волной, сбрасывает «лишнюю» мощность в окружающее пространство. Она переизлучает принятый сигнал по всем направлениям, в соответствии со своей хорошо известной диаграммой направленности — максимум на горизонт и нуль вверх.

Если антенну как-то нагрузить, например, соединить с землей, энергия принятой волны перейдет в тепло, никакого переизлучения не будет. На этом принципе можно осуществить передачу сигнала за счет энергии сигнала принимаемой станции. Опыты в этом направлении были сделаны в 1980 году одним радиолюбителем из Рязани.

К антенне, настроенной на частоту одной из радиовещательных станций, он присоединил один провод обычного угольного микрофона (рис. 1), другой конец которого был заземлен.

Этот микрофон в такт звуковым колебаниям меняет свое сопротивление, причем в тысячи раз. Когда оно максимально, антенна оказывается ненагружена и приходящую к ней радиоволну отражает, а с точки зрения стороннего наблюдателя как бы излучает.

Когда же сопротивление микрофона становится минимальным, то вся принятая ею высокочастотная энергия уходит в землю.

В этом эксперименте в паузах передач, когда станция передавала немодулированную несущую, можно было вести переговоры на частоте этой станции. Поскольку мощность, принятая антенной, составляла сотые доли ватта, то переговоры были слышны в пределах ста метров.

А теперь вернемся к роману «Пылающий остров». Вот как бы мог поступить летчик Матросов. Прежде всего он должен был бы взять два одинаковых отрезка металлической цепи, соединить изолятором и растянуть от стенки до стенки (рис. 2).

Так у него получилась бы антенна типа «симметричный вибратор», настроенная в резонанс на волну, длина которой вдвое больше длины цепей. Если в подвале достаточно сухо, то такая антенна начнет интенсивно переизлучать, отражать приходящие к ней волны в направлении, перпендикулярном цепям. Поэтому их желательно сориентировать так, чтобы излучение шло в направлении приемного центра.

Чтобы это излучение прекратилось, достаточно цепи разъединить или, если технически удобнее, подключить и отключить заземление, подавая сигналы азбукой Морзе. Сегодня на стандартный приемник службы радиоперехвата эти сигналы удалось бы принять за сотни километров.

Отправить сообщение азбукой Морзе можно, повесив вертикально кусок провода и касаясь им заземленного стержня. Тогда радиоволны отражались бы равномерно во все стороны и создавали бы помехи радиоприему на волне, в четыре раза превышающей длину провода.

Внимательные радиослушатели могли бы обнаружить периодическое изменение громкости принимаемой станции и опознать в нем текст сообщения. А вообще-то, судя по иллюстрациям из книги, «передатчик» Матросова мог бы работать на частоте, близкой к 25 МГц, вблизи радиовещательного диапазона 13 м.

А.ВАРГИН

 

О чем говорят звезды?

Не удивительно, что М.Ю. Лермонтов написал в свое время строки: «И звезда с звездою говорит…» — у поэтов ведь особенный слух. Но разговор звезд можно услышать, даже не обладая поэтическим даром. Тем более что есть сугубо физические основание предположить, что звезды и планеты подают нам голоса.

Вот, например, кольца Сатурна. Как недавно выяснилось, это — рой метеоритов, связанных между собою гравитационными и магнитными полями. Ведут они себя, как упругое тело. При ударе метеорита кольца звучат, как колокол, и модулируют по амплитуде и частоте отражаемый свет. И при помощи простейшего телескопа этот свет можно сфокусировать на фотоприемнике. Усилив его сигналы, мы сможем услышать гудение колец в громкоговорителе.

Схему усилителя вы видите на рисунке.

Фоторезистор R1 служит одним из плеч делителя напряжений, вторым плечом которого служит постоянный резистор R2. С него пока очень слабый, пульсирующий электрический сигнал поступает на вход 3 операционного усилителя DA1. На его выходе 7 стоит эмиттерный повторитель на транзисторе VT1, согласующий сравнительно высокое выходное сопротивление операционника с более низким входным сопротивлением усилительного каскада на транзисторе VT2. Этот каскад обеспечивает «раскачку» выходного каскада на транзисторе VT3, который посредством трансформатора Т1 нагружен на низкоомную пару наушников BF1, работающих в монофоническом режиме.

В качестве датчика R1 использован высокочувствительный фоторезистор типа СФЗ-2Б. Для согласования с ним применен операционный усилитель с входным сопротивлением около 30 МОм и высоким коэффициентом усиления по напряжению, достигающим значения KU = 5 x 104.

Для нормальной работы операционника необходимо, чтобы в отсутствие входного сигнала напряжение на его выходе 7 имело нулевой уровень. Это достигается регулировкой резистором R6.

Если при наличии сигнала на входе возникает самовозбуждение, устраните его подбором емкости конденсатора С2. Фотодатчик смонтирован в центре, на дне пенала от фотопленки. Он одевается на окуляр телескопа после того, как тот уже наведен на объект.

Как видите, на уровне эскизного проекта наше устройство выглядит достаточно простым.

Питание устройства лучше производить от готового двуполярного источника, имеющего хорошую стабилизацию выходного напряжения. В схеме предусмотрены индивидуальные фильтры R3, С1 и R7, С4 в цепях питания делителя R1, R2 и микросхемы DA1. Их назначение — оградить указанные узлы от помех, могущих возникнуть на входе общего источника G1 при работе усилительных каскадов на транзисторах VT1…VT3.

Для нормальной работы этих каскадов их коллекторные токи должны иметь значения, близкие к указанным на схеме. Регулировать их можно подбором номиналов резисторов, стоящих в базовых цепях транзисторов.

В конструкции все постоянные резисторы могут быть взяты типа МЛТ мощностью 0,25 Вт, переменный резистор R6 — типа СП-0,4. Для упрощения подбора емкости конденсатора С2 на его месте удобно использовать подходящий по емкости керамический подстроечный конденсатор.

Трансформатор Т1 готовый, от любого переносного радиоприемника. Заметим, если в вашем распоряжении имеются парные высокоомные наушники типа ТОН-2 либо ТА-56, можно обойтись без трансформатора Т1, включив эти наушники на место его первичной обмотки. В таком случае коллекторный ток транзистора VT3 следует уменьшить до 1,5…2 мА.

Сборку устройства лучше выполнить на односторонне фольгированной плате из стеклотекстолита. По окончании монтажа протрите плату ватным тампончиком, смоченным в спирте — такая чистка монтажа позволит не только заметить лишние перемычки от затеков или разбрызгивания припоя, но и сведет к минимуму паразитные утечки тока, способные нарушить нормальную работу слаботочных цепей.

Закончив все подготовительные операции, можно приступить к поиску и прослушиванию сигналов, доносящихся из космического пространства.

Кстати, кроме Сатурна, кольца есть у всех дальних планет. Кроме того, возможно образование акустических волн на поверхности и в атмосфере Солнца и звезд. Таким образом, собрав электронную приставку к окуляру телескопа, вы, возможно, откроете для себя звучание звезд всей Вселенной.

Ю. ПРОКОПЦЕВ

Дорогие друзья!

В этом году мы писали о ядерной физике, энергетике, успехах механиков, связистов и, конечно, о работах ваших сверстников, любителей науки, техники, моделирования. Всего за год вы прочитали около 400 статей и заметок на самые разные темы.

Но о многом мы не успели написать.

В следующем, 2006 году наши читатели узнают:

— о людях, которые своими руками строили «летающие тарелки»;

— о том, как в Австралии сумели опровергнуть закон термодинамики;

— о школе, на уроках в которой учеников учат летать.

Вы прочтете также о том:

— зависит ли от вас судьба Вселенной;

— можно ли питаться солнечным светом;

— как превзойти Эдисона;

— стоит ли стрелять из пушки по генам;

— зачем металл превращают в стекло;

— когда скрестят капусту с альбатросом;

— понадобится ли компьютеру зеркальце и помада и о многом-многом другом.

Напоминаем! Наши подписные индексы — 71122 и 45963 (годовая) по каталогу агентства «Роспечать» и 99320 по каталогу Российской прессы «Почта России».